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Abstract. Multi-objective optimization algorithms are
widely used for the calibration of conceptual hydrological
models. Such algorithms yield a set of Pareto-optimal solu-
tions, reflecting the model structure uncertainty. In this study,
a multi-objective optimization strategy is suggested, which
aims at reducing the model structure uncertainty by consid-
ering parameter interaction within Pareto-optimal solutions.
The approach has been used to develop a nested setup of a
rainfall-runoff model, which is integrated in a probabilistic
meso-/macroscale flood forecasting system. The optimiza-
tion strategy aided in determining the best combination of
a lumped (computationally efficient in operational real time
forecasting) and a semi-distributed parameterization of the
hydrological model. First results are shown for two sub-
basins of the Mulde catchment in Germany. The different
phenomena of parameter interaction were analysed in this
case study to reduce the model structure uncertainties.

1 Introduction

Conceptual rainfall-runoff models have been widely used
for hydrological modelling at the meso- and macroscale due
to their significant advantages regarding parameter estima-
tion and in computation time, when compared to physically-
based models. Conceptual models simplify the complex nat-
ural hydrological processes. In general the model parameters
can not be determined experimentally and must therefore be
inferred by calibration of the hydrological model using his-
torical data. In this paper we present an efficient strategy
for automatic model calibration based on pre-calibration and
parameter sensitivity analysis.

In recent years several single- and multi-objective calibra-
tion algorithms have been developed (e.g. Duan et al., 1992,
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1993; Yapo et al., 1998; Vrugt et al., 2003a, b). These algo-
rithms use objective functions to represent the hydrograph.
As a result, the calibration problem transforms into an opti-
mization problem. Single-objective optimization algorithms,
such as SCE (Shuffled Complex Evolution method, Duan et
al., 1992, 1993), consider only a single criterion and calcu-
late the “best” solution corresponding to this criterion. This
kind of algorithm assumes that the input data and the model
structure are correct. In the optimization process only the
parameter uncertainty is evaluated. In fact, calibration based
on one single objective function often results in unrealis-
tic representations of hydrographs. One reason is that the
single-objective function constrains the calibration to fit cer-
tain characteristics of the system response, while neglecting
the remaining aspects. Furthermore, integration of the resid-
uals into one value underestimates the information which is
present in the data (Fenicia et al., 2007). These limitations
clearly stipulate the need to constrain the calibration pro-
cesses with multiple objective functions, leading towards a
multi-objective view of the calibration problem. Yapo et al.
(1998) formulated this problem as

minF(θ) = {f1(θ), f2(θ), ....., fm(θ)} , (1)

wheref1(θ).....fm(θ) are them non-commensurable objec-
tive functions, which reflect the model performance with re-
spect to the parametersθ of the model. The solution of the
optimization problem (Eq. 1) results not in one single so-
lution, but rather in a set of Pareto-optimal solutions. The
Pareto-optimal solutions define the minimum uncertainty in
the parameters, which can improve one specific component
of F(θ) without compromising others. Hence all Pareto-
optimal solutions are tantamount, if no objective function is
preferred. Assuming a perfect model with a model struc-
ture precisely reproducing the real world, one single optimal
solution must exist. However, model structural uncertainty
always exists and therefore it is impossible to find the perfect
solution. The Pareto-optimal solutions may be regarded as
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Fig. 1. Study area: sub-basins of the upper Zwickauer Mulde
(Schoenheide gauge, 149 km2) and Schwarzwasser (Aue gauge,
363 km2).

Fig. 2. ArcEGMO model structure.

failure records due to model structure uncertainty during the
search for one single perfect solution.

In this study we will focus on parameter interactions,
based on the analysis of Pareto-optimal solutions. As a re-
sult, a calibration strategy is proposed that improves the sim-
ulation performance of a conceptual, semi-distributed hydro-
logical model.

2 Data and model

2.1 Study area and data

The mountainous Mulde River Basin, which lies partly in
Germany and the Czech Republic, is formed by several par-
allel sub-basins, draining from South to North. During West-
cyclonic rainfall events, which caused several extreme flood
events in the past, the spatial uncertainties of the precipita-
tion forecasts are crucial. This results in high uncertainties
of flood alerts with regard to the locations of a possible inun-
dation. For this study two upstream headwaters in the Ore-
Mountainous region have been selected (Fig. 1): the upper
Zwickauer Mulde sub-basin (149 km2, gauge Schoenheide)

Fig. 3. Sensitivity analysis for(a) gauge Aue (Schwarzwasser)
and (b) gauge Schoenheide (Zwickauer Mulde). Each parameter
was changed equidistantly in its feasible space while the other pa-
rameters were fixed with the initial, manually calibrated values.
The Nash Sutcliffe coefficient NS was used as performance mea-
sure. Excluding parameter interaction, the minimum storage capac-
ity HSC of the runoff generation sub-model is the most sensitive
parameter.

and the Schwarzwasser sub-basin (363 km2, gauge Aue). El-
evation model, soil data, land use data and discharge time
series were provided by local authorities. Climate time se-
ries with hourly time step were used to calibrate the model
for five summer flood events (Table 1).

2.2 Hydrological model

The model structure of the GIS-based multi-scale hydrolog-
ical modelling system ArcEGMO (Becker et al., 2002) is
shown in Fig. 2. ArcEGMO consists of three sub-modules:
1) runoff generation, 2) runoff concentration and 3) river
routing. A sensitivity analysis (Fig. 3) revealed that the eight
model parameters listed and described in Table 2, are most
relevant for the calibration of runoff with this modelling sys-
tem during the summer season. The semi-distributed param-
eters HSC (minimum soil water storage capacity) and HMX
(maximum soil water storage capacity) define the amount of
runoff generation. The runoff generation sub-module uses
the hydrotope concept to consider the spatial variability of
land use and soil related properties. The six remaining pa-
rameters (C1, S1, CC1, C2, S2, CC2; see Table 1) belong
to the lumped runoff concentration module. They define
the shape of the hydrograph. The catchment is partitioned
into two types of contributing areas for the description of the
runoff concentration processes, supplying mainly slow (up-
lands) and quick (hillslopes) runoff. Channel routing (with
the Kalinin-Miljukov method) and snow melt can be simu-
lated and optimized, but were not required in this study due
to the particular case study areas and flood events that were
chosen.
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Table 1. Summer flood events considered in this study.

Event Begin End Duration Peak flow Aue Peak flow Schoenheide

Jun 95 1995.06.01, 01:00 1995.06.04, 20:00 92 h 32.5 m3/s 13.7 m3/s
Sep 95 1995.08.31, 00:00 1995.09.03, 23:00 96 h 144.1 m3/s 84.1 m3/s
Jul 96 1996.07.07, 13:00 1996.07.13, 09:00 140 h 64.1 m3/s 31.6 m3/s
Sep 98 1998.09.14, 00:00 1998.09.19, 12:00 132 h 61.9 m3/s 41.2 m3/s
Nov 98 1998.11.01, 00:00 1998.11.02, 23:00 48 h 72.7 m3/s 31.6 m3/s

Table 2. Parameters of the ArcEGMO model.

Parameter Units Type Spatial units Description Initial value Lower limit Upper limit

HSC mm Semi-distributed Hydrotope min. soil storage capacity – – –
HMX mm Semi-distributed Hydrotope max. soil storage capacity – – –
C1 day Lumped Uplands storage coefficient of SG 150 30 270
S1 mm Lumped Uplands storage capacity of SG 120 25 215
CC1 day Lumped Uplands storage coefficient of SGs 8 1.6 16
C2 day Lumped Hillslopes storage coefficient of SH 5 1 10
S2 mm Lumped Hillslopes storage capacity of SH 20 4 35
CC2 day Lumped Hillslopes storage coefficient of SHs 1 0.2 1.8

3 A combined multi-objective optimization strategy

3.1 Definition of objective functions

In semi-distributed models, some parameters with low spatial
variability or low sensitivity are assigned to the entire catch-
ment (lumped parameters). In this study, six of the eight
parameters under consideration are of lumped type. As a
consequence, if the parameter set changes, then the model
performance may increase for some of the sub-basins, but
decrease for others. Nevertheless, assigning these parame-
ters to the smallest spatial units of the model as distributed
parameters would contradict the aim of computational effi-
ciency for real time forecasting. A compromise is the gener-
ation of nested sub-models (catchment zones) with individ-
ual lumped parameters. In order to find groups of sub-basins
which could form such a zone, the relationship of parameter-
ization among different sub-basins was considered by using
the individual sub-basin as an objective function. The perfor-
mance measureEFF, calculated from the transformed Nash
Sutcliffe coefficientNS∗, is defined as

EFF =
1

m

m∑
i=1

NS∗

i , (2)

with

NS∗
= 1 − NS =

n∑
j=1

(
Qobs,j − Qsim,j

)2

/
n∑

j=1

(
Qobs,j − Qobs

)2
,

(3)

wherem is the number of simultaneously evaluated periods
(flood events in this study),n is the number of observations
during a period,j accounts for the time step andQ is the
discharge. The subscripts “sim” and “obs” indicate the simu-
lated and observed values. The Nash-Sutcliffe coefficientNS
in Eq. (3) is a measure for the overall agreement between ob-
served and simulated time series (withNS=1 being the best).
HereNS∗ is used in order to minimize the objective function
values.

3.2 Methodology of the combined multi-objective opti-
mization

According to different ways of interpreting the calibration
process, the multi-objective optimization can be separated
into a “stepped” and an “all at once” process (Fenicia et al.,
2007). The “all at once” optimization process refers to the
concept of Pareto-optimality (Gupta et al., 1998) and cal-
ibrates all model parameters simultaneously, considering a
common set of objective functions. Such approaches re-
sult in Pareto-optimal solutions that represent the different
trade-offs between parameters and objective functions. The
“stepped” optimization assumes that each parameter can be
assigned to a particular model process which influences the
overall system response. Thus the parameter related to these
objective functions can be calibrated in separate steps. The
parameters of previous steps have to be fixed in the next cal-
ibration step. Consequently, a single solution that represents
a balance between all objective functions should be obtained
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Fig. 4. “Stepped” initial optimization phase:(a) Parameter tendencies of step 1 (the dashed box indicates the region with a strong change
in the parameter values), and(b) the corresponding Pareto-optimal front;(c) Parameter tendencies of step 2, and(d) the corresponding
Pareto-optimal front;(e)Parameter tendencies of step 3, and(f) the corresponding Pareto-optimal front.

(Houge et al., 2003). Such an approach can provide a bet-
ter performance than “all at once” calibration, but depends
strongly on the parameter’s identifiability and is of subjec-
tive character.

In this study, a method combining the benefits of a
“stepped” and “all at once” optimization is suggested. This
method is implemented in two phases: 1) the “stepped” ini-
tial optimization phase and 2) the “all at once” fine-tune op-
timization phase. In the first phase the optimization is in-
vestigated with different sets of parameters. Parameters with
best identifiability are selected. In the second phase, the re-
maining parameters are optimized simultaneously. For this
purposes the MOCOM (Multi-Objective COMplex evolution
method, Yapo et al., 1998) was adopted.

4 Case study

4.1 Initial optimization phase – stepped

Step 1: The parameters HSC, HMX, C1 and C2 were opti-
mized in this step, whereas the other parameters remained
unchanged at their initial values. It should be noted that
the runoff generation parameters HSC and HMX control the

entire entry volume into the storage elements of the runoff
concentration sub-model, whereas the baseflow parameters
C1 and C2 are responsible for the amount of water that will
be temporarily kept in the storage elements. These param-
eters were taken into account for the initial optimization
phase, where 100 Pareto-optimal solutions were calculated.
These 100 solutions allow for statistically significant con-
clusions and remain computationally inexpensive. The in-
dividual parameter tendencies, sorted according to the objec-
tive function value EFF at Aue gauge, are shown in Fig. 4a.
Two strongly different parameter tendencies emerge from
Fig. 4a. The runoff generation parameters are rather constant,
whereas the baseflow parameters exhibit strong fluctuations.
Furthermore, a sudden change, marked with a dashed box
in Fig. 4a, has been observed. This phenomenon is termed
specific parameter interaction, since the influence among the
different parameters exists either solely in one or in a certain
part of the entire set of solutions. We also note that the pa-
rameter HSC, previously found to be most sensitive (Fig. 2),
is influenced through the variation of the less sensitive pa-
rameters C1 and C2. The Pareto-optimal front with the cor-
responding solutions can be seen in Fig. 4b.
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Fig. 5. “All at once” fine-tune optimization phase:(a) Parameter tendencies of fine-tune phase and(b) their corresponding Pareto-optimal
front; (c) Sorted parameter tendencies to show the general parameter interaction;(d) Comparison of Pareto-optimal front from MOCOM,
together with Monte-Carlo (MC) samples.

It is feasible to derive important information from the
different parameter tendencies. HSC and HMX are typi-
cal catchment parameters which are parameterized by us-
ing soil and land use information. These parameters are
therefore physically-based rather than conceptual. They are
catchment-specific and independent from a particular flood
event. Chappell et al. (2004) define such parameters as
“properties of a catchment that are largely unchanging with
time (e.g., soil-rock permeability, porosity), but may be spa-
tially variable”. By using ArcEGMO, spatial variability was
considered using GIS-data in the pre-processing. On the
other hand, the reservoir parameters of runoff concentration
can be regarded as conceptual. These are influenced by both
the catchment’s characteristics and each flood event’s spec-
ifications. For this reason, it is imperative to separate the
runoff generation parameters from the reservoir parameters
of runoff concentration during the optimization.

Step 2: In this step, HSC and HMX were optimized
and the six remaining parameters of runoff concentration re-
mained unchanged. The results of this step are shown in
Figs. 4c and d. The effect of local parameter interaction was
avoided due to a reduction of the parameter members that
were optimized. Both parameters show very little deviation
from linear behavior. Therefore these parameters are identi-
fiable for the sub-basins. Since the degree of freedom for the
simulation is reduced, the extent of the Pareto–optimal front
is also reduced. This will be addressed in the next step by
using fixed values of HSC and HMX.

Step 3: The parameters C1 and C2 were optimized with
fixed parameters HSC and HMX from step 2 and the other

parameters remained unchanged with their initial values. The
results of this step are shown in Figs. 4e and f. The compari-
son between the Pareto-optimal front of step 2 (Fig. 4d) and
step 3 (Fig. 4f) shows significant improvement, in particu-
lar for the objective function of the Aue gauge. However, in
Fig. 4e an opposing effect between different parameter ten-
dencies of C1 and C2 can be observed. This is termedgen-
eral parameter interactionthat exists in all fields of the entire
Pareto-optimal solutions. The consequence is large decision
uncertainty. The parameters C1 and C2 therefore need to be
estimated with the other parameters of runoff concentration
in a subsequent fine-tune optimization phase.

4.2 Fine-tune optimization phase – all at once

In this phase, the six runoff concentration parameters are
optimized with fixed HSC and HMX (Sect. 4.1, step 2) si-
multaneously. Figure 5a shows the individual parameter ten-
dencies of 100 Pareto-optimal solutions. Figure 5b repre-
sents their corresponding Pareto-optimal front. The Pareto–
optimal front moved strongly to the axis origin when com-
pared with the solution obtained during the initial optimiza-
tion phase. This demonstrates an improved model perfor-
mance that has been achieved through the combined opti-
mization method. Figure 5a indicates that there is no signif-
icant change of the individual parameter tendencies. How-
ever, if only three directly related parameters (C1, S1 and
CC1) are considered and subsequently sorted according to
the value of CC1 (Fig. 5c), a similar opposing effect that has
also been observed in Fig. 4e (i.e.general parameter inter-
action), in this case between S1 and C1, becomes evident.
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To confirm the validity of the Pareto front obtained with
MOCOM, Monte-Carlo simulations (10 000 parameter sets,
uniform sampling) were employed additionally (Fig. 5d).
The Monte-Carlo simulations did not yield values smaller
than Aue EFF or Schoenheide EFF, i.e. the Pareto front of
MOCOM, hence supporting the usefulness of the combined
multi-objective optimization algorithm.

5 Conclusions and outlook

The analysis of parameter interaction shown here strongly
supports the usefulness of an optimization strategy that
reduces the structural uncertainties of conceptual rainfall-
runoff models. Such a strategy was implemented in this study
as a combined optimization scheme of a “stepped” and an
“all at once” approach. For meso- to macroscale model ap-
plications further refinement of the model structure can be
achieved by nesting regions. These nested regions are then
treated as semi-distributed sub-models in the overall model
setup. Currently the development of a concept for adap-
tive structuring of a nested watershed model is underway,
whereby sub-basins, defined as objective functions, form the
basis. It should be noted that such an approach may also
significantly increase computational efficiency, which in turn
plays an important role in probabilistic real time flood fore-
casting.
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