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Abstract. In the field of operational flood forecasting, uncer-
tainties linked to hydrological forecast are often crucial. In
this work, data assimilation techniques are employed to im-
prove hydrological variable estimates coming from numeri-
cal simulations using all the available real-time water level
measurements. The proposed assimilation scheme, a classi-
cal Kalman filter extension to non-linear systems, is applied
in a rainfall-runoff distributed model based on the SCS-CN
approach. The complex hydrological system of the Toce river
basin is studied, a mountainous catchment of about 1500 km2

in the Italian alps, through the development of a prototype
available for operational use. For the considered flood event,
the assimilation scheme is stable, even when available obser-
vations show gaps or outliers. It allows significant improve-
ments in the simulation results, in particular when the focus
is addressed to the peak.

1 Introduction

In the last years, local, national and international authori-
ties showed an increasing awareness of flood and inunda-
tion hazard. Higher and higher damages and large costs in
term of human lives, ask for new and more efficient strate-
gies for risk management (WMO, 2004). Flood forecasting
certainly plays a major role in these new approaches through
the early warning to Civil Protection authorities allowing a
more efficient organisation of mitigation and safety plans.
The present work deals with the uncertainties in the hydro-
logical forecasting models, often resulting into slight reliable
discharge estimates especially when little and fast respond-
ing basins are focused on. The aim of the work is to provide
a tool for reducing the errors and evaluating the uncertain-
ties in the quantitative discharge forecasts (QDF), based on
a simple scheme of discharge observations assimilation. A
Kalman filter recursive technique (Jazwinski, 1970) is de-
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veloped to avoid heavy calculations that can increase com-
putational time loosing one of the main requirements for a
real-time system. Applications of Kalman filter can be found
in hydrological modelling (Todini and Wallis, 1978). The
key point here is the use of a distributed hydrological model
and easily available real time data so to develop a useful tool
simple to be extended to a large number of cases. Only rain
gauge data and discharge observations are used, as they are
usually available in survey networks. A prototype system is
developed in the frame of the Piemonte hydrometeorological
alert system, in the upper Po river catchment, northwestern
Italy (Rabuffetti and Barbero, 2004). The case study focuses
on the October 2000 flood of the Toce river.

2 The rainfall-runoff model

The distributed event-based model, FEST (Mancini, 1990),
is used. The two main components of the hydrological cy-
cle are represented into separated modules: run-off produc-
tion on the hill slopes; flood wave formation and propagation
along the river network. The first module implements the
simple SCS-CN infiltration model (USDA, 1986) that calcu-
lates the run-off for each cell of the DTM. The second mod-
ule is based on the Muskingum-Cunge routing model. In
this application, the infiltration module is considered in the
assimilation process. The CN method is based on the well
known relation between total precipitation,P , and run-off,
R, whereIa=c·S andc=0.2 as usual:

R =

{
(P−Ia)2

P−Ia+S
P > Ia

0P ≤ Ia
(1)

S is an infiltration capacity index [mm] that can be evaluated
as a function of the single coefficientCN , which depends
on soil characteristics and land use. Though the method is
quite rough, it offers the chance to describe all the soil prop-
erties with a single parameter that does not need calibrating.
Several applications of the method have shown thatS should
not be taken as a constant but that it varies on the base of
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Fig. 1. Sketch of subcatchment definition. The subcatchment closed
at section C cannot be considered because it would cover subcatch-
ments A and B.

the saturation degree of the soil. Three wetness classes are
defined based on antecedent precipitation. Recently Bingner
and Theurer (2001) proposed a continuous variation ofS dur-
ing the rainfall event, evaluated by means of a simple water
balance equation. In this wayS becomes a sort of state vari-
able describing the residual soil infiltration capacity.

The CN method shows a heavy sensitivity to the estima-
tion of initial condition. From an operational point of view,
this can create serious problems during real-time forecasting
(Mancini et al., 2002). For this reason, it has been considered
to avoid the initial condition assessment preferring an indi-
rect evaluation based on the observed response of the catch-
ment and its consequent assimilation in the system variable
S.

3 The assimilation scheme

Discharge measurements at catchments outlet can be seen as
a way to represent the run-off generation process integrating
all the contributions of the single catchment portions. Focus-
ing on the different subcatchments closed at each stage gauge
in the river network, one can obtain a number of independent
parts of the whole catchment of interest (Fig. 1). Each sub-
catchment is characterised by the state variableS, calculated
every time step,t , as the mean on the cells belonging to it.

For every independent subcatchment, an assimilation pro-
cedure is implemented. For theoretical details see Cohn
(1997) and Welch and Bishop (2001). The different compo-
nents of the scheme: the dynamic system, the observation
model and the errors are described in the following para-
graphs. The calculation procedure is quite simple. First,
at each computational time step the deterministic distributed
model calculates the expected discharge for all the cross sec-
tion of interest. Then the availability of discharge data for
any of these sections is checked for. Where data are avail-
able, with no requirement to have all the observations at

specified time intervals (crucial feature in a real-time frame-
work when data availability cannot be always guaranteed),
observed cumulated flood volumes and total run-off coeffi-
cients are calculated. In the end, by means of Kalman filter,
St is corrected and the correction used to update all the cell
values. The question is to understand if and how much a
mean subcatchment correction, does improve the results of
the distributed model at cell scale.

3.1 The dynamic model

With respect to the CN approach,St should be kept constant
during a rain event. So a simplified dynamic model can be
set up enhancing the fact that the model is not perfect through
the introduction of a noise,wt , which represent model errors.

St+1 = St + wt (2)

3.2 The model error

An estimate of the model error is based on the hypothesis
that S can range between a dry and a wet condition value
(USDA, 1972). This range is usually very high compared
with S value itself, meaning that the ‘a priori’ estimate of the
model error should be a very high value. In any case, once
fixed the observation error, this value can be considered a cal-
ibration parameter of the Kalman filter: here,σ 2

S
=100 mm2

is used because a first sensitivity analysis showed that this
value increased the assimilation stability.

3.3 The observation model

Rainfall data and cumulated flood volumes,Vflood(t), easily
calculated from discharge data, are analysed in terms of to-
tal run-off coefficient,φobs(t)=Vflood(t)/P (t−L). The time
lag,L, is introduced to account for the time needed for total
precipitation to become catchment run-off. This lag is calcu-
lated with the SCS lag equation (USDA, 1973).

In general, the observation model can be written as
φ(t)=f (St )+vt , highlighting the errors in the noisevt .
Equation (1) relatesφ to the state by the expression below:

φ(t) =
R(t)

P (t)
=

(P (t) − c · St )
2

P(t)
(
P(t) + (1 − c)St

) with P > c · St

(3)

When P>c·St , Eq. (3) can be solved as second-degree
equation in·St . Equation (3) has two real and different
solutions,̂St,1eŜt,2. By the Tartenville analysis method, it is

easy to verify that̂St,1> (P/c) >Ŝt,2 and that
_

St,1 is not ac-
ceptable becausêSt,1>P/c in contradiction with the condi-
tion in Eq. (3).

3.4 Observation error

Observation error is represented by the estimated variance
of φobs. In this caseσ 2

φoss
=0.04 is assumed. That’s to say

that the observed run-off coefficient has a mean error of
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Fig. 2. Toce catchment with monitored cross section. Subcatchments and river network derived from 200×200 m DEM are highlighted.
Along the Anza river, there are no stage gauges.

±0.2 which seems a reasonable hypothesis taking into ac-
count flood event observations as well as the uncertainty ei-
ther in discharge measurements and in mean area rainfall es-
timates. An “a priori” estimation is here possible because in
the kalman filtering approach what determines the results is
the relative weight of model and observation errors. The sen-
sitivity analysis on model error (Sect. 3.2) is then enough to
understand the filter performance.

3.5 State updating

The Kalman filter works for linear systems. In this case,
Eq. (3) can be approximated by the tangent linear approach
around the solution (Bouttier and Courtier, 1999).

dφ

dSt

(t)

∣∣∣∣
Ŝt,1

= −2c
(P (t) − cŜt,1)

P (t)
[
P (t) + (1 − c)Ŝt,1

]
−(1 − c)

(P (t) − cŜt,1)
2

P(t)
[
P(t) + (1 − c)Ŝt,1

]2
(4)

One can now calculate the Kalman gain, the innovation toSt

and the new estimate variance:

Kt = σ 2
St

·
dφ

dSt

(t)

∣∣∣∣
Ŝt

·

σ 2
St

(
dφ

dSt

(t)

∣∣∣∣
Ŝt

)2

+ σ 2
φoss

−1

, (5)

1St = Kt (φoss(t) − φ(t)), (6)

σ 2
St

= (1 − Kt ·
dφ

dSt

(t)

∣∣∣∣
Ŝt

)σ 2
St−1

. (7)

3.6 Initial condition

The Kalman procedure is recursive and needs, for the first
time step integration, an estimate of the initial condition and
of its variance. The simple assumption made here is to start
from normal conditions with an estimate varianceσ 2

S
as de-

fined in Sect. 3.2.

4 Application to the Toce river basin

The Toce river is one of the main tributaries of the Lake
Maggiore in northwestern Italy. It’s a medium sized Alpine
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Fig. 3. Evolution ofS and of its estimation variance. Comparison betweenφ(t) different evolutions.

Fig. 4. Comparison between discharge hydrographs.

catchment with an area of about 1500 km2. Nevertheless, it
is a very important river in the Piemonte Region alert system
because, beyond the damages it can cause in the developed
Ossola valley, it has a crucial role in the lake floods. This
catchment has been widely studied for its frequent floods as
one can see in the Meteorological Alpine Program (MAP).
The event here analysed is the heavy flood occurred in Octo-
ber 2000.

ARPA Piemonte manages the regional survey network that
counts for more then 20 rain gauges in the area providing
10 min rainfall. Furthermore 8 water level gauges, providing
30 min level observations, are present: 7 are located at the
confluence of all the main tributaries and one at the catch-
ment closure (Fig. 2). In the model the hourly values are
used.

4.1 Assimilation of tributaries flood volume observation

In the first experiment, flood volume observations along the
tributaries are assimilated to correct subcatchments’S while
discharge at Candoglia outlet is used only for verification.

In general, for the flood volumes of the tributaries in Fig. 3,
one can notice an improvement, highlighting the fact that the
assimilation procedure works in a proper way for the single
subcatchments Anyway, for operational purposes, it is im-
portant to look at QDF to evaluate the effects of the assimi-
lation. Therefore, in Fig. 4, forecasted hydrographs are pre-
sented: observed, calculated by the deterministic model and
with assimilation. Improvements are quite evident for all the
cross section. Table 1 synthetically reports the results: it is
important to highlight the good results for Candoglia, which
indirectly takes advantage of the assimilation.

4.2 Assimilation of flood volume observation at catchment
outlet

The second experiment is complementary to the first. Flood
volume at Candoglia is assimilated and data for tributaries
are used for verification. In fact, from an operational point
of view, it often happens that data on the tributaries, espe-
cially for little and mountain streams, are scarcely reliable
and suffer a larger number of problems during heavy flood
than measurements on the main rivers do. In this context, it
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Table 1. Comparison of the results from the deterministic model and from the assimilation of flood volumes along tributaries. Higher values
in bold. Model: A, with assimilation; D, Deterministic.

Model Diveria a Isorno a Bogna a Melezzo a Ovesca a Toce a RMSE
Crevola Pontetto Pontecaddo Masera Villadossola Candoglia

Max absolute A 323.6 53.4 588.0 127.2 145.2 1071 –
error [m3/s] D 1062.2 75.7 442.8 129.8 356.8 1543 –
Relative A −0.04 0.04 0.58 −0.61 0.10 0.17 0.35
peak error D −1.23 0.13 0.50 0.36 −0.57 −0.30 0.62
Relative A 0.15 0.00 −0.08 −0.39 −0.50 0.29 0.29
volume error D −0.50 0.19 −0.14 0.17 −1.02 0.08 0.48

Table 2. Comparison of the results from the deterministic model and from the assimilation of flood volume at “Toce a Candoglia”. Higher
values in bold. Model: A, with assimilation; D, Deterministic.

Model Diveria a Isorno a Bogna a Melezzo a Ovesca a Toce a RMSE
Crevola Pontetto Pontecaddo Masera Villadossola Candoglia

Max absolute A 523.77 111.86 560.95 137.35 169.33 888.12 –
error [m3/s] D 1062.21 75.68 442.80 129.84 354.59 1543 –
Relative A −0.57 0.23 0.67 0.45 −0.22 0.09 0.43
peak error D −1.23 0.13 0.50 0.36 −0.57 −0.30 0.63
Relative A −0.28 0.31 0.01 0.28 −0.87 0.23 0.42
volume error D −0.50 0.19 −0.14 0.17 −1.08 0.09 0.50

is important to understand if discharge data on the main rivers
can give useful information on the hydrological response of
the minor subcatchments.

Details given in show that the assimilation of the basin
outlet can have positive effect also on the tributaries QDF.
The poorer performance with respect to the former experi-
ment is justified taking into account that here much less data
are assimilated. Furthermore, information retrieved by the
catchment outlet is averaged on the whole and heterogeneous
catchment. For the smallest catchments a worsen is noticed.
Nevertheless, Diveria and Ovesca forecasts show significant
improvements probably because their catchments are quite
similar to the complete one and they are the main tributaries
contributing to the Toce flood at Candoglia.

5 Conclusion

In this work, a simple scheme is proposed to exploit dis-
charge data in the assimilation of the hydrological state of the
catchment, an important feature for real-time operational hy-
drological forecasts for little and medium sized catchments.

The infiltration model is based on the SCS-CN method; the
state variableS is updated with a kalman filter scheme assim-
ilating rainfall and discharge observations, in terms of flood
volume and run-off coefficient. The scheme proves to be sta-
ble from a numerical point of view with a very slight com-
putational time request. The assimilation procedure allows a
general and significant improvement in discharge forecasts.

The results show that discharge observations on the main
tributaries can produce great benefits to the discharge fore-
casts in the tributaries themselves as well as for the whole
catchment outlet.

In one experiment, only the catchment outlet was assimi-
lated to simulate not well-surveyed catchments. Also in this
case, an improvement can be noticed either related to the clo-
sure section and to some of the tributaries, in particular those
mainly contributing to the flood.

In conclusion, its possible to state that the simple scheme
proposed can have an effective implementation in a hydrom-
eteorological forecasting system.

A further important result, which will be better analysed
in future work, is the fact that the assimilation scheme eval-
uates also the uncertainties of the state variable estimate.
This should allow building up scenario forecasts, which are
very interesting for the decision makers who have to analyse
model forecasts and issue alerts.
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