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Józef Myjak

ANDRZEJ LASOTA’S SELECTED RESULTS

Abstract. In this article we recall Andrzej Lasota’s selected results which either indicated
new directions of research, or layed the foundations for new approaches, or solved inter-
esting problems. The area of mathematical interests of Professor Andrzej Lasota was very
large: ordinary differential equations, partial differential equations, dynamical systems, mul-
tifunctions, differential inclusions, functional differential equations, equations with retarded
arguments, ergodic theory, invariant measures, chaos, stochastic differential equations, con-
trol theory, fixed point theory, theory of Markov operators, theory of fractals, theory of
dimensions, biomathematics. In all these branches he obtained original and essential results.

1. INTRODUCTION

The area of mathematical interests of Prof. Andrzej Lasota was very large: ordi-
nary differential equations, partial differential equations, dynamical systems, mul-
tifunctions, differential inclusions, functional differential equations, equations with
retarded arguments, ergodic theory, invariant measures, chaos, stochastic differential
equations, control theory, fixed point theory, theory of Markov operators, theory
of fractals, theory of dimensions, biomathematics. It is surprising that in all these
branches he obtained original and essential results. Moreover, his papers are very well
written, inventive, smart and simple. Here we recall some selected results which either
indicated new directions of research, or layed the foundations for new approaches, or
solved interesting problems. We also recall some ideas of the proofs. For a deeper
discussion of Lasota’s contributions to and influence on the ergodic theory of stochas-
tic operators, we refer the reader to article by W. Bartoszek [2], for an account of
his contribution to engineering problems to article by P. Rusek [33] and for very
important contributions to biomathematics to the nice and very personal article by
Michael C. Mackey [29].
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2. BOUNDARY VALUE PROBLEM
FOR ORDINARY DIFFERENTIAL EQUATIONS

Consider a system of ordinary differential equations

x′ = f(t, x) (1)

and a boundary value condition
Lx = r, (2)

where x(t) ∈ Rm, f : (a, b) × Rm → Rm is a continuous function and L is a linear
operator from the space of all differential functions C1(a, b) into Rm. By a solution
of (1), (2) we mean a continuously differentiable function on (a, b) satisfying (1) and
(2) for every t ∈ (a, b).

If for t ∈ (a, b), f(t, · ) is a linear transformation, then it follows from Fredholm’s
alternative that uniqueness of the solution of the boundary value problem implies the
existence of the solution of this problem. In general, it is not true in the nonlinear
case. Since uniqueness is usually easier to prove than existence, the question when
the uniqueness implies the existence is of large importance and has been studied by
several authors.

There are in general two approaches to this question. The first approach is to
consider problem (1) with f from some family of functions and with fixed boundary
condition (2). We assume that for any f of this family, the boundary value problem
has at most one solution. Then, under appropriate conditions, we may show that for
every f from this family the problem has a solution.

In the second approach the function f is fixed and the boundary value operator L
belongs to a certain family. We assume that for any L of this family the problem has
at most one solution. Then, under suitable condition, we show that for every L from
this family the problem has a solution.

By using the Brouwer open mapping theorem, domain invariance theorem or some
related technique, A. Lasota established several generalizations of Fredholm alterna-
tive. We recall some examples of such results (see [10,10,12–24]).

Theorem 1. Let f : (a, b) × Rm → Rm be a continuous function. Suppose that for
every (t0, u) ∈ (a, b)×Rm there exists the unique solution x of equation (1) satisfying
initial condition x(t0) = u. Let U be an open (in the norm topology) subset of the
space of all bounded linear operators from the space C1(a, b) into Rm. If for every
L ∈ U and every r ∈ Rm problem (1), (2) has at most one solution, then for every
L ∈ U and every r ∈ Rm problem (1), (2) has exactly one solution.

Proof. For u∈Rm, let ϕ( · ;u) denote the solution of problem (1) such that ϕ(t0;u)=u.
It is sufficient to show that for every L ∈ U and r ∈ Rm there exists u ∈ Rm such
that Lϕ( · ;u) = r.

Fix L ∈ U and define χ : Rm → Rm by χ(u) = Lϕ( · ;u). Clearly, χ is a continuos
injection. It is sufficient to show that χ(Rm) = Rm. Suppose that χ(Rm) 6= Rm. By
Brouwer’s open mapping theorem, χ(Rm) is open. Consequently, there exist a point
u ∈ Rm \χ(Rm) and a sequence {uk} ⊂ Rm such that χ(uk) → u. Since the sequence
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{uk} cannot be convergent, then, passing to the subsequence if necessary, we may
assume that there is an ε > 0 such that for every k ∈ N there is j = j(k) such that
|uk+j − uk| ≥ ε. Now put ψk = ϕ( · ;uk+j) − ϕ( · ;uk) and define a linear operator
Lk : C1 → Rm such that Lkψk = −Lψk , ‖Lk‖ = |Lψk|/‖ψk‖1. (Here ‖x‖1 =
sup

{
|x(t)|+ |x′(t)| : t ∈ (a, b)

}
). It is routine to see that ‖Lk‖ → 0 as k →∞. Thus

for k sufficiently large, Lk + L ∈ U . Consequently, (Lk + L)
(
ϕ( · , ψk)− ϕ( · , u)

)
= 0,

which means that equation (1) with the boundary value problem (Lk + L)x = 0 has
two solutions: ϕ( · , uk+j) and ϕ( · , uk). This contradiction completes the proof.

In a similar way, one can prove the following

Theorem 2. Let f : (a, b) × Rm → Rm be a continuous function. Suppose that for
every (t0, u) ∈ (a, b)×Rm there exists the unique solution x of equation (1) satisfying
the initial condition x(t0) = u. Let A be an open subset of the space of m×m-matrices.
Assume that for every A ∈ A and r ∈ Rm there exists at most one solution of equation
(1) satisfying

m∑
j=1

aijxj(ti) = ri, i = 1, . . . ,m. (3)

Then problem (1), (3) has exactly one solution.

Now consider the iteration problem

x(n) = f(t, x, x′, . . . , x(n−1)), (4)

x(ti) = ri, i = 1, . . . , n, (5)

where t1, . . . , tn ∈ (a, b) and r1, . . . , rn ∈ R.

Theorem 3. Let f : (a, b)×Rn → Rn satisfies the inequality

|f(t, x0, x1, . . . , xn−1)| ≤M +
n−1∑
i=0

Li|xi|, M ≥ 0, Li > 0.

Suppose that for every sequence t1, . . . , tn ∈ (a, b) the function x ≡ 0 is the unique
solution of the inequality

|x(n)(t)| ≤
n−1∑
i=0

Li|x(i)(t)|

satisfying the condition
x(ti) = 0, i = 1, . . . , n.

Then for every sequence t1, . . . , tn ∈ (a, b) and r1, . . . , rn ∈ R, problem (4), (5) has at
least one solution.

To give the idea of this result, we show the proof of Theorem 3 in the linear case,
i.e., when the equation has the form

x(n) =
n−1∑
i=1

pi(t)x(i) + q(t),
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where p0, . . . , pn−1, q are continuous functions on (a, b) and |pi(t)| ≤ Li, t ∈ (a, b),
i = 1, . . . , n− 1. Obviously, the solution of the last equation is of the form

x(t) =
n∑

i=1

Ciui(t) + w(t),

where u1, . . . , un is the fundamental system of solutions of the associated homogeneous
equation and w is a particular solution of the nonhomogeneous equation. Since the
Jacobian of such solutions is different from zero, for every sequence r1, . . . , rn ∈ R the
system

ri =
n∑

i=1

Ciui(ti) + w(ti), i = 1, . . . , n

with respect to C1, . . . , Cn has a unique solution. This completes the proof.

Theorem 4. Suppose that a function f : (a, b)×Rn → R satisfies the condition

|f(t, x0, x1, . . . , xn−1)| ≤M +
n−1∑
i=0

Pi(t)|xi|,

where M ≥ 0 and P0, . . . , Pn−1 are continuous functions on (a, b).
Assume that there exists an ε > 0 such that for an arbitrary sequence of functions

p0, . . . , pn defined on (a, b) and satisfying the conditions

|pi(t)| ≤ Pi(t) + ε, t ∈ (a, b), i = 0, . . . , n− 1,

the problem

x(n) = p0(t)x+ . . .+ pn−1(t)xn−1, x(t1) = . . . = x(tn) = 0,

where a < t1 < . . . < tn < b, has the trivial solution only. Then problem (4), (5)
admits at least one solution.

Theorem 5. Suppose that for every (t0, x0) ∈ [a, b] × Rm there exists exactly one
solution of equation (1) defined on [a, b] such that x(t0) = x0. Suppose that A and B
are subsets of the space of all m ×m- matrices, endowed with the supremum norm,
and such that at least one of these sets is open. Assume that for each A ∈ A, B ∈ B
and r ∈ Rm there is at most one solution of equation (1) satysfying the boundary
condition

Ax(a) +Bx(b) = r. (6)

Then for each A ∈ A, B ∈ B and r ∈ Rm, problem (1), (6) has exactly one solution.

3. METHOD OF MULTIVALUED FUNCTIONS

Let E be a Banach space and c(E) the family of all convex nonempty subsets of E.
For u ∈ E and A ⊂ E, let ρ(u,A) denote the distance from u to A. A map H from
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E into c(E) is called homogeneous if H(λu) = λH(u) for u ∈ E, λ ∈ R; closed graph
if the set graphF =

{
(u, v) : v ∈ H(u), u ∈ E

}
is closed in E ×E; compact if the set

F (B) is relativly compact for every bounded subset B of E and completely continuous
if it is continous and compact.

Let I ⊂ R be an interval. As usual, C(I, E) denotes the space of all continuous
functions from I into E, endowed with the supremum norm.

Recall also that a multifunction F : I → E is called measurable, if for every open
subset U of E, the set F−(U) = {t ∈ I : F (t) ∩ U 6= ∅} is Borel measurable.

Theorem 6. Let a map H from E into c(E) be homogeneous and completely conti-
nous and let a function h : E → E be completely continuous. Suppose that

lim
‖u‖→∞

ρ(h(u),H(u))
‖u‖

= 0. (7)

Then, if u ∈ H(u) holds for u = 0 only, then h admits at least one fixed point.

Proof. Observe that there exists K > 0 such that

u+ v ∈ H(u) implies ‖u‖ ≤ K‖v‖.

Indeed, if the opposite is true, there are {un}, {vn} such that un + vn ∈ H(un) and
‖un‖ > n‖vn‖. Put

wn = un/‖un‖.

Obviously

wn + vn/‖un‖ ∈ H(wn), ‖wn‖ = 1, ‖vn‖/‖un‖ < 1/n.

Since H is compact and closed graph, without loss of generality, we may assume that
wn → w∗ ∈ H(w∗), ‖w∗‖ = 1. A contradiction.

From (7) it follows that there exists r > 0 such that

sup
‖u‖=1

ρ(h(u),H(u)) < r/K.

We claim that h admits a fixed point in the ball B(0, r). Indeed, by virtue of the
antipodal theorem it suffices to show that

u− h(u) 6= λ(u− h(−u)) for λ ∈ [0.1], ‖u‖ = r.

On the contrary, suppose that that are u0, ‖u0‖ = r, and λ0 ∈ [0, 1] such that

u0 − h(u0) = λ0

(
− u0 − h(−u0)

)
. (8)

Since H is compact valued, there are v0 ∈ H(u0) and w0 ∈ H(−u0) such that

ρ(h(u0),H(u0)) = ‖v0 − h(u0)‖, ρ(h(−u0),H(−u0)) = ‖w0 − h(−u0)‖.
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Now we can rewrite equality (8) in the form

u0 +
1

1 + λ0

(
v0 − h(u0)

)
− λ0

1 + λ0

(
w0 − h(−u0)

)
=

1
1 + λ0

v0 −
λ0

1 + λ0
w0. (9)

Since H is homogeneous and convex valued,

1
1 + λ0

v0 −
λ0

1 + λ0
w0 ∈ H(u0).

By (9) and the definition of the constant K, there is

‖u0‖ ≤
K

1 + λ0
‖
(
v0 − h(u0)

)
− λ0

(
w0 − h(−u0)

)
‖ ≤

≤ K

1 + λ0

[
‖(v0 − h(u0)‖+ λ0‖w0 − h(−u0)‖

]
<

K

1 + λ0

( r
K

+ λ0
r

K

)
= r,

a contradiction, since ‖u0‖ = r.

Theorem 7. Let U be a neighbourhood of zero in the space E and let H : U → E be
a completely continuous multifunction. Suppose that

u ∈ H(u), u ∈ U, implies u = 0. (10)

Then every continuous mapping h : E → E satisfying the condition

h(u)− h(v) ∈ H(u− v) for u− v ∈ U,

has exactly one fixed point.

Proof. Put U(u) = U + u. Choose ε > 0 such that B(u, 2ε) ⊂ U(u). From (10) it
follows that T = I − h is a one-to-one mapping on U(u) for arbitrary u ∈ E. Let
S(u, ε) denote the boundary of the ball B(u, ε). It is easy to see that there is a δ > 0
such that

‖T (v)− T (u)‖ ≥ δ for every v ∈ S(u, ε).

From (10) it follows that h is completely continuous. Thus, by the last inequality, for
arbitrary u ∈ E we have{

v : ‖v − T (u)‖ ≤ δ
}
⊂ T

(
B(u, ε)

)
.

This means that T (E) is open in E. To complete the proof, it suffices o show that
T (E) = E.

Remark 1. Observe that the continuity of the mapping h can be dropped if we assume
that H(0) = {0}. Indeed, using the compactness of H, one can deduce that h must be
continuous.

Theorems 6 and 7 became useful and very popular tools in the existence results
for boundary value problem for differential equations. The idea of such applications
is described in the next theorem.
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Theorem 8. Let F be a multifunction defined on I × Rm with closed convex values
and such that F (t, · ) is continuous (with respect to the Hausdorff distance) for every
t ∈ I and F ( ·, x) is measurable for every x ∈ Rm. Moreover, assume that F is
homogeneous with respect to the second variable and

|F (t, x)| ≤ ϕ(t), (t, x) ∈ I ×Rm,

where ϕ is an integrable function on I.
Let f : I ×Rm → Rm be a Carathéodory function such that

lim
n→∞

1
n

∫
I

sup
|p|≤n

ρ
(
f(t, p), F (t, p)

)
dt = 0.

Suppose that L is a continuous and homogenous mapping from C(I) into Rm.
If the problem

x′ ∈ F (t, x), Lx = 0

admits only the trivial solution x = 0 in I, then for any r ∈ Rm problem (1), (2)
amits at least one solution defined on I.

Sketch of a proof. Let E = C(I,Rm) × Rm. Consider the function h and the multi-
function H defined on E by the formulas:

h(x, p) =
( ∫ t

t0

f(s, x(s))ds, Lx+ p− r
)

and

H(x, p) =
{(∫ t

t0

g(s)ds+ p, Lx+ p
)

: g(s) ∈ F (s, x(s)), g measurable
}
.

To complete the proof, it suffices to verify that h and H satisfy the assumptions of
Theorem 6.

To describe other simple applications of the above results, consider the boundary
value problem for the differential inequality

|x′| ≤ p(t)|x|, Lx = 0, (11)

where p is an integrable function and L : C([0, h], Rm) → Rm is a linear operator
such that x = 0 is the unique solution of the problem

x′ = 0, Lx = 0.

It can be proved that there exists a constant M such that if∫ h

0

p(t)dt < M, (12)

then problem (11) has the trivial solution x = 0 only.
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Denote by ML the best constant for which the above assertion holds. It is well
known that for the initial value problem (Lx = x(t0)), the constant ML = ∞, for the
Nicoletti problem (Lx = (x(t), . . . , x(tn))), ML = π/2 and for the Floquet problem
(Lx = x(0) + λx(h)), ML =

√
π2 + ln2 λ if λ > 0, and ML = | ln |λ|| if λ < 0 (see

[5, 16]). Below we recall a simple example of such a type of result.

Theorem 9. Consider equation (1) with boundary value problem

x(0) + λx(h) = r (λ > 0), (13)

where f : [0, h] → Rm is a Carathéodory function and r ∈ Rm. Suppose that

|f(t, x)| ≤ p(t)|x|+ q(t), (t, x) ∈ [0, h]×Rm,

where p and q are integrable functions on [0, h]. Assume that condition (12) holds
with ML =

√
π2 + ln2 λ. Then problem (1), (13) admits at least one solution.

If in addition
|f(t, x)− f(t, y)| ≤ p(t)|x− y|,

then problem (1), (13) has exactly one solution.

Finally observe that presented approch of Lasota works by dint of the following
general fact (see [3]).

Theorem 10. Let E be a Banach space. Assume that a function h : E → E, a
multifunction H : E → c(E), a subset D of E and a number α ∈ [0, 1] are such that:

(i) H(λu) = λH(u) for u ∈ E, λ ∈ R;
(ii) H(u+ v) ⊂ H(u) +H(v) for u, v ∈ E;
(iii) H(D) ⊂ αD, B(0, 1) ⊂ D, H(D) is bounded;
(iv) h(u)− h(v) ∈ H(u− v), for u, v ∈ E.

Then there exists a norm ‖ · ‖H equivalent to the norm ‖ · ‖ and such that h is a
strict contraction with respect to ‖ · ‖H .

4. PERIODIC SOLUTIONS
A similar relationship between the existence and uniqueness of periodic solutions for
ordinary differential equations was investigated by A. Lasota and Z. Opial in [19].
The authors established a general theorem which permits to obtain the existence of
solutions for equations of various types. The main idea consits in compariting a given
nonlinear system of differential equations with suitably chosen linear homogeneous
system of equation. This approach has been repeatedly used by several people and
this paper has frequently been cited.

To formulate this results we need some further notation. Let Lω denote the space
of all ω-periodic functions from R into R, integrable on [0, ω]. We say that a sequence
{an} ⊂ Lω converges weakly to a function a ∈ Lω if∫ t

0

an(s)ds→
∫ t

0

a(s)ds

uniformly in [0, ω].
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Let A denote the set of all m × m-matrices A = (aij), where aij ∈ Lω, i, j =
1, . . . ,m. We say that a sequence of matrices {An}, An = (an

ij), converges weakly
to a matrix A = (aij), if for every i, j ∈ {1, . . . ,m} the sequence {an

ij} converges
weakly to aij .

Consider now the system of equation

x′i =
m∑

j=1

aij(t, x1, . . . , xm)xj + bi(t, x1, . . . , xm), i = 1, . . . ,m, (14)

where functions aij , bi : Rm+1 → Rm satisfy the Carathéodory conditions, i.e. they
are measurable with respect to t and continuous with recpect to x1, . . . , xm.

Parallelly consider the homogeneous system

x′i =
m∑

j=1

αij(t)xj , i = 1, . . . ,m, (15)

where αij , i, j = 1, . . . ,m, are integrable functions on R.

Theorem 11. Let A be a bounded weakly closed subset of A. Suppose that for every
A ∈ A , A = (αij), the only ω-periodic solution of problem (15) is the trivial (null)
ω-periodic solution.

Assume that functions aij, bi : Rm+1 → Rm are ω-periodic with respect to the
first variable, satisfy the Carathéodory conditions, and for every ω-periodic function
x : R → Rm the matrix (αij(t, x(t)) ∈ A. Moreover, assume that

lim
n→∞

1
n

∫ ω

0

supPm
i=1 |xi|≤n

m∑
i=1

|bi(t, x1, . . . , xm)|dt = 0.

Then problem (14) admits at least one ω-periodic solution.

Sketch of a proof. We begin with proving that for every matrix A ∈ A, A = (αij),
and for every sequence b1, . . . , bm ∈ Lω, the system

x′i =
m∑

j=1

αij(t)xj + bi(t), i = 1, . . . ,m, (16)

has only one solution satisfying conditions xi(0) = xi(ω), i = 1, . . . ,m. Moreover,
such solution satisfies the inequality

|x(t)| ≤ λ

∫ ω

0

m∑
i=1

|bi(s)|ds, t ∈ [0, ω],

where λ is independent of the choice of matrix A ∈ A and functions b1, . . . , bm.
Now consider a map T : C([0, ω]) → C([0, ω]) (here C([0, ω]) stands for the space

of continuous functions from [0, ω] to Rm), which maps a function z ∈ C([0, ω]) to
the (unique) solution of the problem

y′i =
m∑

j=1

aij(t, z(t)) yj + bi(t, z(t)), yi(0) = yi(ω), i = 1, . . . ,m.
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To complete the proof, it suffices to verify that all hypotheses of Schauder Theorem
are satisfied. Clearly, the fixed point of T is the required solution.

Now we recall some application of Theorem 11. Consider the equation of the
second order

x′′ + P (t, x, x′)x = Q(t, x, x′) (17)

and the associated homgeneous equation

x′′ + p(t)x = 0 (18)

with the boundary condition

x(ω) = x(0), x′(ω) = x′(0). (19)

Assume that functions P and Q are ω-periodic with respect to t, satisfy the
Carathéodory conditions and

p(t) ≤ P (t, x, y), |P (t, x, y)| ≤ q(t) for t ∈ [0, ω], x, y ∈ R.

Moreover, assume that p and q are integrable on [0, ω], p 6= 0,∫ ω

0

p(s)ds ≥ 0,
∫ ω

0

|q(s)|ds ≤ 16/ω,

and
lim

n→∞

1
n

∫ ω

0

sup
|x|+|y|≤n

|Q(t, x, y)|dt = 0.

Under the above assumptions, equation (17) has at least one ω-periodic solution.
By virtue of Theorem 11, it suffices to verify that problem (18), (19) admits the

trivial solution only, if ω-periodic function p satisfies conditions:∫ ω

0

p(s)ds ≥ 0,
∫ ω

0

|p(s)|ds ≤ 16/ω.

5. A TOPOLOGICAL APPROACH TO DIFFERENTIAL INCLUSIONS

The topological argument, in particular fixed point theorems of various type, for a
long time been used in the theory of differential equations. In their pioneer paper [20],
A. Lasota and Z. Opial proposed an analogous theory for differential inclusions. More
precisely, they used Kakutani-Ky Fan Fixed Point Theorem to prove the existence of
solutions of boundary value problem for differential inclusions. This idea has been
largely developed by several authors and the above mentioned results is frequently
still quoted.

Consider a boundary value problem for nonlinear differential inclusion

x′ = A(t)x+ F (t, x), Lx = r, (20)
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where x : I → Rm, A(t) is m ×m integrable matrix, r ∈ Rm, F is a multifunction
from I ×Rm into Rm with nonempty convex closed values and L is a linear operator
from C(I,Rm) into Rm.

Apart from problem (20), consider the associated linear homogeneous problem

x′ = A(t)x, Lx = r. (21)

By a solution of problem (20) (resp. (21)) we mean an absolutely continuous
function x ∈ C(I,Rm) such that (20) (resp. (21)) holds for a.e. t ∈ I.

Recall that a multifunction F : I → Rm is called measurable if for every open
subset U of Rm the set F−(U) = {t ∈ I : F (t) ∩ U 6= ∅} is Borel measurable.
A multifunction F : Rm → Rm is called closed graph if the graph of F is a close
subset of Rm ×Rm.

Theorem 12. Assume that x = 0 is the unique solution of problem (21). Then
there exists β0 (depending on A(t) and L only) such that for every multifunction F
satisfying the conditions:

(i) F (·, x) is measurable for every x ∈ Rm;
(ii) F (t, ·) is closed graph for every t ∈ I;
(iii) There are integrable functions α, β such that

|F (t, x)| ≤ α(t) + β(t)|x|, (t, x) ∈ I ×Rm

and ∫
I

β(t)dt ≤ β0,

problem (20) has at least one solution for every r ∈ Rm.

Sketch of a proof. Observe that for u ∈ L1(I,Rm) the solution of the problem

x′ = A(t)x+ u, Lx = r

is given by the formula
x = Γu+Hr,

where Γ is a linear compact continuous mapping from L1(I,Rm) into C(I,Rm) and
H is a linear mapping from Rm into C(I,Rm).

Consider now a multivalued map T : L1(I,Rm) → L1(I,Rm) given by

T (x) = ΓF(x) +H(x),

where, for a given x ∈ L1(I,Rm), F(x) denotes the set of all measurable selections
of multifunction F (· , x(·)). It is routine to see that T satisfies the hypotheses of
Kakutani-Ky Fan Fixed Point Theorem, whence the statement of Theorem 12 follows.
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In order to illustrate Theorem 12, consider Nicoletti’s classical problem

x′ ∈ F (t, x), xi(ti) = ri, i = 1, . . . ,m. (22)

Since the corresponding homogeneous problem

x′ = 0, xi(ti) = ri, i = 1, . . . ,m,

has a unique solution x = 0, from Theorem 12 it follows that for every F satisfying
condition (i)-(iii) and for every r ∈ Rm, problem (22) has at least one solution. Note
that to use Theorem 12 in this case it is sufficient to take β0 < 1.

6. GENERIC PROPERTIES OF DIFFERENTIAL EQUATIONS

The study of generic properties of differential equations originats from an old paper
by W. Orlicz [30], which apperaed in 1932. He proved that the set of all continuous
functions f : [0, a]×Rm → Rm for which the initial problem for a differential equation
x′ = f(t, x) does not have the uniqueness property, is a set of the first category.
Similar result for hyperbolic equations was proved by A. Aleksiewicz and W. Orlicz
[1] in 1952. However, the real interest in these type of results started with paper by
A. Lasota and J. Yorke [25], which apperaed in 1973.

Recall that a subset A of a complete metric space X is called a set of the first
Baire category, if it is union of a countable family of nowhere dense sets and it is
called residual if its complement is of the first Baire category. A space X is called
a Baire space if the intersection of any countable family of open dense sets is dense
in X. It is well known that every complete metric space is a Baire space. In a Baire
space, the intersection of any countable family of residual sets is residual. If the set
of all elements of X satisfying some property P is residual in X, then the property P
is called generic or typical.

To elucidate the ideas contained in Lasota and Yorke’s paper, we confine ourselves
to the operator formulation of problem under consideration. For this purpose, denote
by C(X) the space of all continuous mappings from X into itself, endowed with the
usual supremum metric.

For F ∈ C(X), consider the equation

x = F (x). (23)

As usual, {Fn(x)} stands for the sequence of successive approximations starting from
a point x.

We begin with the following simple but extremaly useful observation, indirectly
contained in [25].

Proposition 1. Let (X, d) be a complete metric space and let D be a dense subset
of X. Let ϕ : X → [0,+∞) be a function such that ϕ(xn) → 0 for every {xn} ⊂ X,
xn → x ∈ D. Then X0 = {x ∈ X : ϕ(x) = 0} is a residal subset of X.
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Proof. Since X \ X0 =
⋃∞

n=1Xn, where Xn = {x ∈ X : ϕ(xn) > 1/n} it suffices
to show that for every n ∈ N, Xn has the empty interior. On the contrary, suppose
that for some n0 the set Xn0 has a nonempty interior. Then there exists a ball
B(x, δ) ⊂ Xn0 . Clearly ϕ(x0) = 0 for some x0 ∈ B(x, δ)∩D. Observe that there exists
ρ > 0 such that B(x0, ρ) ⊂ B(x, δ) and ϕ(x) < 1/n0 for x ∈ B(x0, ρ). Otherwise, for
ρ = 1/k there is a point xk ∈ B(x0, 1/k) such that ϕ(xk) ≥ 1/n0. Obviously, xk →
x0 ∈ D, contrary to the assumption. Consequently, x0 /∈ Xn0 , a contradiction.

Theorem 13. Let X ⊂ C(X) be a complete metric space. Suppose that there is a
dense subset D ⊂ X such that:

(i) For every H ∈ D, problem (23) has exactly one solution xH ;
(ii) For every H ∈ D and x ∈ X, Hnx→ xH ;
(iii) For every sequence {Fn} ⊂ X such that Fn → H ∈ D and every sequence {xn}

such that xn = Fnxn, we have xn → xh.

Then the set X0 of all F ∈ X such that equation (23) has exactly one solution
and this solution depends continuously upon the data (i.e. if the sequence {Fn} ⊂ X
converges to F and xn is a fixed point of Fn, then {xn} converges to x) is a residual
subset of X .

Proof. Define ϕ : X → [0,+∞] by

ϕ(F ) = lim sup
δ→0

{
d(x1, x2) : x1 = F1x1, x2 = F2x2, F1, F2 ∈ B(F, δ)

}
.

One can see that ϕ(F ) = 0 implies that equation (23) has exactly one solution and
this solution depends on initial data. Since ϕ(H) = 0 for H ∈ D, the statement of
Theorem 13 follows from Proposition 1.

Theorem 14. Let X ⊂ C(X) be a complete metric space. Suppose that the assump-
tion of Theorem 13 are satisfied with condition (iii) replaced with:

(iii’) For every H ∈ D and ε > 0, there exists a δ > 0 such that d(Hnx, Fnx) < ε
for F ∈ B(H, δ), x ∈ X, n ∈ N.

Then the set X0 of all F ∈X such that equation (23) has exactly one solution, and
moreover, for every x∈X the sequence {Fnx} converges to x, is a residual subset of X .

Sketch of a proof. Define

X̃ =
∞⋂

k=1

⋃
H∈D

B
(
H, δH(1/k)

)
,

where δH(1/k) is taken according to assumption (iii’). Note that X̃ , as a dense Gδ set,
is residual in C(X). To complete the proof it suffices to show that for every F ∈ X̃ ,
there exists a unique solution of equation (23) and for arbitrary x ∈ X the sequence
{Fnx} converges to this solution.
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Now we recall the classical result due to A. Lasota and J. Yorke. Let U ⊂ R× E
be an open set with (t0, x0) ∈ U . Consider the problem

x′ = f(t, x), x(t0) = x0, (24)

where f : U → E is continuous. Note that examples of continuous f are known for
which problem (24) has no solution in any neighborhood of t0.

Theorem 15. Let U ⊂ R × E be a countable union of compact sets. Let M be the
set of all continuous functions f : U → E. Let M0 be the set of all f ∈M for which
there is (t0, x0) ∈ U such that problem (24) has no solutions. Then M0 is a set of
first Baire category in M.

7. INVARIANT MEASURE. ULAM’S CONJECTURE

Let (X,A) be a measurable space and µ a measure defined on A. The measure µ is
called invariant under a measurable function f : X → X if

µ(A) = µ
(
f−1(A)

)
for A ∈ A.

It is easy to see that for a function f : [0, 1] → [0, 1] there does not exist an
absolutely continuous invariant measure if the graph of f is too flat (the shape is
small). For example, for the mapping f(x) = rx(mod 1) with |r| < 1 an invariant
measure does not exist.

In 1957 S. Ulam [34] posed the problem of the existence of an absolutely continuous
invariant measure for the function defined by a sufficiently simple function (e.g., a
broken line function or a polynomial) the graph of which does not cross the line
y = x with a slope of absolute value less than 1. The literal answer to this question
is negative. For example, it is easy to see that an absolutely continuous measure
invariant under transformation

f(x) =
{

1− 2x, 0 ≤ x ≤ /12,
(2− 2x)/7, 5/12 < x ≤ 1,

does not exist. Note that this transformation crosses the line y = x at the point
x = 1/3 with slope f ′(1/3) = −2.

Several results concerning the existence of absolutely continuous invariant mea-
sures for some classes of point transformations of the unite interval [0, 1] into itself
have been proved (A. Rényi [32], Parry [31], Krzyżewski/Szlenk [6]). However, the
best result in this direction was obtained by A. Lasota and J. Yorke [26].

Theorem 16. Let f : [0, 1] → [0, 1] be a C2 piecewise function satisfying the condition

inf
x∈[0,1]

∣∣∣ d
dx
f ′(x)

∣∣∣ > 1.

Then there exists an absolutely continuous measure invariant under f .
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Recall that a function f : [0, 1] → [0, 1] is called C2 piecewise function if there exist
a partition 0 = x0 < x1 < · · · < xp = 1 of the interval [0, 1] such that f restricted to
each of the interval (xi−1, xi) is a C2 function. Function f need to be continuous at
the points xi.

The Lasota/Yorke method of the proof is quite different from previous works.
First they use the fact that the Frobenius–Perron operator corresponding to the point
transformation under consideration has the property of shrinking the variation of the
function. Then they prove the existence of invariant meaure using Kakutani–Yoshida
Theorem.

We also recall another interesting result of A. Lasota and J. Yorke [27], which
says that the existence of a periodic point of period three implies the existence of
continuous invariant measure.

Let f : [0, 1] → [0, 1] be a continuous function. For any x0 ∈ X, the set γf (x0) =
{(x0, f(x0), f2(x0), . . .} is called the trajectory starting from x0. If γ(x0) is a finite
set, the point x0 is called periodic. For any trajectory γ, the set

L(γ) =
∞⋂

n=1

cl
(
fn(γ)

)
(cl = closure)

is called the limit set of γ. A trajectory γ is called strictly turbulent if L(γ) is a com-
pact nonempty set which does not contain periodic points. From Krylov–Bogoluboff
Theorem there easily follows

Proposition 2. Let f : [0, 1] → [0, 1] be a continuous function and let γ(x0) be a
strictly turbulent trajectory. Then there exists a notrivial measure µ supported on
L(γ) and invariant under f .

Using the last proposition, one can prove the following:

Theorem 17. Let f : X → X be a continous mapping. Assume that there exist
compact disjoint subsets A and B of X such that f(A) ∩ F (B) ⊃ A ∪ B. Then
there exists a strictly turbulent trajectory γ and, consequently, a nontrivial invariant
measure supported on L(γ).

Using Theorem 17, it is possible to prove the existence of continuous invariant
measures for transformations on the real line. Namely, the following theorem holds:

Theorem 18. Let f be a continous mapping of an interval of the real line into itself.
Then the existence of a periodic point of period 3n for some integer n implies the
existence of a continuous invariant measure.

8. INVARIANT MEASURE FOR MARKOV OPERATORS

Let (X, ρ) be a complete metric space. By M we denote the space of all finite Borel
measures on X and by M1 we denote the space of all µ ∈ M such that µ(X) = 1.
As usual, by B(X) we denote the space of all bounded Borel measurable functions
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f : X → R, by C(X) the subspace of all continuous functions and by C0(X) the
subspace of all continuous functions with compact support.

For f ∈ B(X) and µ ∈M, we write

〈f, µ〉 =
∫

X

f(x)µ(dx).

We say that a sequence {µn} ⊂ M converges weakly to the measure µ ∈ M if
〈f, µn〉 → 〈f, µ〉 for every f ∈ C0(X).

The weak convergence can be metrized by Fortet–Mourier metric given by

dFM (µ, ν) = sup
{
|〈f, µ〉 − 〈f, ν〉| : f ∈ L

}
,

where L is the set of all nonexpansive f ∈ C(X) such tht |f(x)| ≤ 1.
An operator P : M→M is called a Markov operator if:

(i) P (λ1µ+ Pλ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ∈ R, µ1, µ2 ∈M;
(ii) Pµ(X) = µ(X) for µ ∈M.

A Markov operator P is called Markov-Feller operator if there exists an operator
U : B(X) → B(X) (called dual) such that Uf ∈ C(X) for f ∈ C(X) and

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X) and µ ∈M.

A Markov oparator P is called nonexpansive if

dFM (Pµ, Pν) ≤ dFM (µ, ν) for µ, ν ∈M1.

A measure µ is called invariant or stationary with respect to P if Pµ = µ. A Markov
operator P is called asymptotically stable if there exists a stationary measure µ∗ ∈M1

such that Pnµ→ µ∗ for every µ ∈M1.
The existence of an invariant measure was well known in the case of compact

space and a proof goes as follows. First we construct a positive invariant functional
defined on the space of all continuous and bounded functions f : X → R, and then
using the Riesz representation theorem, one can define an invariant measure. The
case of locally compact spaces requied some caution. The first existence result was
established by J. Yorke and A. Lasota [28] by using the concept of nonepansiveness
and lower bounde technique. When X is a Polish space, this approach fails, since
tno measure may correspond to a positive functional. However, combining the above
nonexpansivveness argument with the concept of tightness and suitable concentration
properties of Markov operators, a student of A. Lasota, T. Szarek, established the
existence results also in the case of Polish spaces.

Recall that a linear funcional ϕ : C(X) → R is called positive if ϕ(f) ≥ 0 for f ≥ 0.
According to Riesz Theorem, for every linear positive functional ϕ : C0(X) → R there
is a unique measure µ ∈M1 such that ϕ(f) = 〈f, µ〉.

Lemma 1. Let P be a Feller operator. Assume that there exists a linear positive
functional ϕ : C(X) → R such that ϕ(1X) = 1 and

ϕ(Uf) = ϕ(f) for f ∈ C0(X), (25)
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where U is dual to P . Further, let µ∗ ∈M be the unique measure satisfying

ϕ(f) = 〈f, µ∗〉 for f ∈ C0(X). (26)

Then µ∗ ∈M∗ and Pµ∗ = µ∗.

Proof. Fix x0 ∈ X and for n ∈ N define Bn = B(X0, n). By (25), there is

µ∗(Bn) = 〈1Bn
, µ∗〉 = ϕ(1Bn

) ≤ ϕ(1X) ≤ 1,

which implies µ∗(X) = limn→∞ µ∗(Bn) ≤ 1. Thus µ∗ ∈ M. Consider now the
functional on C(X) given by

ϕ̃(f) = 〈f, µ∗〉 for f ∈ C(X).

We claim that ϕ̃(f) ≤ ϕ(f) for f ∈ C(X), f ≥ 0. Indeed, let f ∈ C(X), f ≥ 0.
Using the Tietze Extension Theorem, one can construct an increasing sequence of
nonnegative functions fn ∈ C0(X) such that fn(x) → f(x) for x ∈ X. Since ϕ is
positive,

〈fn, µ∗〉 = ϕ̃(fn) = ϕ(fn) ≤ ϕ(f).

Passing with n to ∞, by virtue of Monotone Convergence Theorem, we get

〈f, µ∗〉 ≤ ϕ(x),

which completes the proof of claim.
According to the last observation and condition (25), we infer

ϕ̃(Uf) ≤ ϕ(Uf) = ϕ(f) = ϕ̃(f) for f ∈ C0(X), f ≥ 0,

which in turn implies

〈f, Pµ∗〉 =< Uf, µ∗. = ϕ̃(Uf) ≤ ϕ̃(f) = 〈f, µ∗〉 for f ∈ C0(X), f ≥ 0.

As above, we can verify that the last inequality holds for f ∈ C(X), f ≥ 0. Conse-
quently, Pµ∗ ≤ µ∗. Since P preserves the measure, Pµ∗ = µ∗.

Theorem 19. Let P : M→M be a Markov–Feller operator. Assume that there is
a compact set A ⊂ X and a distribution µ0 such that

lim inf
n→∞

( 1
n

n∑
j=1

P jµ0(A)
)
> 0. (27)

Then P has a stationary distribution.

Proof. Using (27) one can find a sequence {nk} and ε > 0 such that

1
nk

nk∑
j=1

P jµ0(A) ≥ ε, k = 1, 2, . . . .
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Let L0 be a Banach limit. Then the operator L given by

L({aj}) = L0

( 1
nk

nk∑
j=1

aj

)
for {aj} ∈ l∞

is also a Banach limit and L
(
Pnµ0(A)

)
≥ ε. Define ϕ : C(X) → R by

ϕ(f) = L
(
〈f, Pnµ0〉

)
.

Clearly ϕ is a positive linear functional. Observe that

ϕ(1X) = L
(
〈1X , P

nµ0〉
)

= L(1, 1, . . .) = 1

and
ϕ(Uf) = L

(
〈Uf, Pnµ0〉

)
= L

(
〈f, Pn+1µ0〉

)
= L

(
〈f, Pnµ0〉

)
= ϕ(f).

Thus hypotheses of Lemma 1 are satisfied, whence the statement of Theorem 19
follows immediately.

Theorem 20. Let P : M1 →M1 be a nonexpansive Markov operator. Assume that
for every ε > 0 there is a Borel set A with diamA ≤ ε and a number α > 0 such that

lim inf
n→∞

Pnµ(A) ≥ α for µ ∈M1.

Then P is asymptotically stable.

Sketch of a proof. First note that a nonexpansive Markov operator is a Feller opera-
tor. Moreove, since P satisfies condition (27) with Y equal to the closure of A, it has
an invariant distribution µ∗. Thus, to prove that P is asymptotically stable it suffices
to show that

lim
n→∞

‖Pn(µ1 − µ2)‖ = 0 for µ1, µ2 ∈M1.

Fix A and α according to hypotheses of Theorem 20 and choose σ ∈ (0, α). By
induction argument define a sequenece of integers {nk} and sequences of distributions
{µk

i }, {νk
i }, i = 1, 2, k ∈ N, in the following way. We set ν0

i = µ0
i = 0. If k ≥ 1 and

nk−1, νk−1
i , µk−1

i are given, we choose a number nk such that

Pnkµk−1
i (A) ≥ σ for i = 1, 2

and we define
νk

i (B) = Pnkµk−1
i (B ∩A)/Pnkµk−1

i (A),

µk
i (B) = 1/(1− σ)

[
Pnkµk−1

i (B)− σνk
i (B)

]
.

Now, by an induction argument one can show that

‖Pn1+...+nk(µ1 − µ2)‖ ≤ ε+ 2(1− σ)k for n ≥ n1 + . . .+ nk.

Since ε > 0 and k > 0 are arbitrary, the statement of the theorem follows.
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9. FRACTALS AND SEMIFRACTALS

An Iterated Function System (briefly IFS) is given by a family of continuous functions

wi : X → X, i ∈ I = {1, . . . , N}.

For A ⊂ X, set

F (A) =
N⋃

i=1

wi(A). (28)

Obviously, F maps compact sets to compact sets. If all wi are strictly contractive,
then there exists a unique compact set such that

K =
N⋃

i=1

wi(K). (29)

Moreover, for every compact set A ⊂ X, Fn(A) → K in Hausdorff distance. The set
K is called the attractor or fractal corresponding to IFS {wi : i ∈ I}.

The family {(wi, pi) : i ∈ I}, where wi : X → X, pi : X → (0, 1), i ∈ I, are
continuous functions and

∑
i∈I pi(x) = 1 for all x ∈ X, is called an IFS with

probabilities.
Given an IFS {(wi, pi) : i ∈ I}, we can define a Markov operator P : M1 →M1

by

Pµ(A) =
∑
i∈I

∫
w−1(A)

pi(x)µ(dx), A ∈ B(X).

A measure µ∗ ∈ M1(X) is called invariand with respect to operator P if Pµ∗ = µ∗.
If in addition∫

X

f(x)Pnµ(dx) →
∫

X

f(x)µ∗(dx) for every f ∈ C(X), (30)

then operator P is called asymptotically stable.

We say that an IFS {(wi, pi) : i ∈ I} is asymptotically stable if the corresponding
Markov operator P is asymptotically stable.

Remark 2. Assume that all functions wi are Lipschitzean with corresponding Lips-
chitz constants Li. If ∑

i∈I

piLi < 1,

then the IFS {(wi, pi) : i ∈ I} is asymptotically stable.

Remark 3. Let an IFS {(wi, pi) : i ∈ I} be such that all functions wi are strictly
contractive. Then

A∗ = suppµ∗,

where A∗ is the attractor of IFS {wi : i ∈ I} and µ∗ is the invariant measure with
respect to the IFS {(wi, pi) : i ∈ I}.



382 Józef Myjak

Now we will give a generalizaton of the above notion of attractor. For this purpose,
we recall the notion of convergence of sequence of sets in Kuratowski’s sense.

Let {An} be a sequence of subsets of a metric space X. The lower bound LiAn

and the upper bound LsAn are defined by the following conditions. A point x belongs
to LiAn if there exists a sequence {xn}, xn ∈ An, such that xn → x. A point x
belongs to LsAn if there exists a sequence {xnk

}, xnk
∈ Ank

, {nk} ⊂ {n}, such that
xnk

→ x. Obviously LiAn ⊂ LsAn. If LiAn = LsAn, we say that the sequence {An}
is topologically convergent and we denote this common limit by LtAn.

In the case when X is a compact set, LtAn = A if and only if {An} converges to
A in the Hausdorff distance.

Given an IFS {wi : i ∈ I}, we define

H(A) =
⋃
i∈I

wi(A).

A set A0 such thatH(A0) = A0 is called invariant with respect to the IFS {wi : i ∈ I}.
If in addition for every nonempty bounded subset A of X, LtHn(A) = A0, the IFS
is called asympotically stable (on sets) and the set A0 is called the attractor of IFS
{wi : i ∈ I}.

Note that if we consider H on the class of compact sets, this definition of attractor
coincides with that used before.

We say that an IFS {wi : i ∈ I} is regular if there is a nonempty subset I0 of I
such that the IFS {wi : i ∈ I0} is asymptotically stable. The attractor corresponding
to the IFS {wi : i ∈ I0} will be called a nucleus.

Theorem 21. Let {wi : i ∈ I} be a regular IFS and A0 be a nucleus of this system.
Let

A∗ =
∞⋃

n=1

Hn(A0).

Then:

(i) A∗ does not depend on the choice of the nucleus A0;
(ii) A∗ is the smallest nonempty set such that H(A∗) = A∗;
(iii) LtHn(A) = A∗ for every nonempty set A ⊂ A∗.

The set A∗ is called the semiattractor or semifractal corresponding to the regular
IFS {wi : i ∈ I}.

Theorem 22. Let X be a Polish space. Assume that an IFS {(wi, pi) : i ∈ I} is
asymptotically stable and {wi : i ∈ I} is regular. Then

A∗ = suppµ∗,

where A∗ is the semiattractor of the IFS {wi : i ∈ I} and µ∗ is the invariant measure
with respect to the IFS {(wi, pi) : i ∈ I}.
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The concept of semiattractor can be generalized to a large class of multifunctions.
Given a multifunction F : X → X, consider the set

C =
⋂

x∈X

LiFn(x).

If C 6= ∅, the multifunction F is called asymptotically semistable and the set C is
called the semiattractor of F .

Recall that a multifunction F : X → X is called lower semicontinuous (briefly
l.s.c.) if for every open subset U of X the set F−(U) = {x ∈ X : F (x) ∩ U 6= ∅} is
open, and F is called measurable if F−(U) is measurable in X.

Theorem 23. Assume that F is an asymptotically semistable, lower semicontinuous
multifunction. Let C be the semiattractor of F . Then:

(i) C ⊂ LiFn(A) for every A ⊂ X, A 6= ∅;
(ii) F (C) = C;
(iii) LtFn(A) = C for every A ⊂ C, C 6= ∅;
(iv) C ⊂ A for every nonempty closed subset A of X such that F (A) ⊂ A.

Proof. Condition (i) is obvious. To see (ii), note that

F (C) ⊂
⋂

x∈X

F
(
LiFn(x)

)
⊂

⋂
x∈X

LiFn(x) = C.

Since C is closed, F (C) ⊂ C. To see the opposite inclusion, observe that Fn(C) ⊂
F (C) for n ≥ 1 which, in turn, implies LiFn(C) ⊂ F (C). Since C ⊂ LiFn(C),
condition (ii) follows.

To prove (iii), observe that inclusion F (C) ⊂ C implies LsFn(C) ⊂ C. Thus for
an arbitrary set A ⊂ C, there is

C ⊂ LiFn(A) ⊂ LsFn(A) ⊂ LsFn(C) ⊂ C.

Condition (iv) can be verified as follows. Inclusion F (A) ⊂ A implies Fn(A) ⊂ A.
Consequently, C ⊂ LiFn(A) ⊂ A.

Theorem 24. Let F : X → X be a l.s.c. multifunction. Assume that there is
an l.s.c. multifunction F0 : X → X such that F0(x) ⊂ F (x), x ∈ X. Then F is
asymptotically semistable and its semiattractor is C = LtFn(C0), where C0 is the
semiattractor of F0.

For more details we refer the reader to [12, 13].

10. MARKOV MULTIFUNCTIONS

A mapping π : X ×B → [0, 1] is called a transition function if π(x, ·) is a probability
measure for every x ∈ X and π(·, A) is a measurable function for every A ∈ B.
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Having a transition function π, we can define the Markov operator P : M→M by
the formula

Pµ(A) =
∫

X

π(x,A)µ(dx)

and having a Markov operator P , we may define a transition function setting

π(x,A) = Pδx(A).

Given a Markov operator P and the corresponding transition function π, we define
the Markov multifunction Γ : X → X by

Γ(x) = suppπ(x, ·) = suppPδx.

It is easy to see that Γ is closed valued and measurable. Vice versa, the following
theorem holds true.

Theorem 25. Let F : X → X be a measurable, closed valued multifunction. Then
there exists a transition function π : X × B → [0, 1] such that F coincides with the
support of π.

Proof. According to the Kuratowski-Ryll Nardzewski Theorem, there exists a se-
quence {fn} of measurable functions fn : X → X such that

F (x) = cl{fn(x) : n ∈ N}.

We define the function π by

π(x,A) =
∞∑

n=1

pnδfn(x)(A),

where {pn} is a sequence of positive numbers such that
∑∞

n=1 pn = 1 and δu stands for
the δ-Dirac measure supported at u. A simple calculation shows that π is a transition
function and that F is equal to the support of π.

Theorem 26. Let π : X × B → [0, 1] be a Fellerian transition function.Then the
corresponding Markov multifunction Γ is l.s.c..

Proof. Fix an x ∈ X and consider a sequence {xn} ⊂ X converging to x. Since π is
Fellerian, the corresponding sequence of measures {π(xn, ·)} converges weakly to the
measure π(x, ·). This implies that Γ(x) ⊂ LiΓ(xn), whence the statement of Theorem
26 follows.

Theorem 27. Assume that F : X → X is a l.s.c. multifunction with closed values.
Then there exists a Fellerian transition function π : X × B → [0, 1] such that F is
equal to the support of π.

Proof. Define a multifunction Φ : X →M1 by

Φ(x) =
{
µ ∈M1 : suppµ ⊂ F (x)

}
.
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Clearly Φ is convex and closed valued. It is easy to verify that Φ is l.s.c.. Observe
that M1 is a convex subset of the space of signed Borel meaures. Recall also that
M1 endowed with the Fortet–Mourier metric is complete. Thus, by Michael Selection
Theorem there exists a sequence {φn} of continuous functions φn : X → M1 such
that

Φ(x) = cl
{
φn(x) : n ∈ N

}
.

Now define π : X × B → [0, 1] by

π(x,A) =
∞∑

n=1

pnφn(x)(A),

where {pn} is a sequence of positive numbers such that
∑∞

n=1 pn = 1. It remains to
prove that π is a Fellerian transition function and F coincides with the support of π.

The following properties of support of measures, proved in [11], are very useful
(see [35]).

Proposition 3. Let P : M1 → M1 be a Fellerian Markov operator. If µ, ν ∈ M1

and suppµ ⊂ suppν, then suppPµ ⊂ suppPν.

Proposition 4. Let P : M1 → M1 be the Markov operator corresponding to a
Fellerian transition function π : X × B → [0, 1]. Further, let Γ be the support of π.
Then for every µ ∈M and n ∈ N, there is

suppPnµ = cl Γn(suppµ).

Theorem 28. If a Fellerian Markov operator P is asymptotically stable, then the
corresponding Markov multifunction Γ is asymptotically semistable and

C = suppµ∗,

where C is the semiattractor of Γ and µ∗ is the measure invariant with respect to
operator P .

Proof. Fix an arbitrary x ∈ X. Since P is asymptotically stable, {Pnδx} converges
weakly to µ∗. Consequently, suppµ∗ ⊂ Li suppPnδx = Li Γn(x). This implies
that suppµ∗ ⊂ C.

To prove the opposite inclusion, fix z /∈ suppµ∗ and choose ε > 0 such that
B(z, ε) ∩ suppµ∗ = ∅. Let x ∈ suppµ∗. By Proposition 3 and 4,

Γn(x) ⊂ suppPnδx ⊂ suppPnµ∗ = suppµ∗, n ∈ N.

Thus Γn(x) ∩B(z, ε) = ∅. It follows that z /∈ LiΓn(x) and consequently z /∈ C. This
completes the proof.
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Theorem 29. Let P be a Feller-Markov operator and let Γ be the corresponding
Markov set function. Assume that P has a unique invariant probability measure µ∗.
Then

µ∗(D) = 0 or µ∗(D) = 1

for every close set D ⊂ X such that Γ(D) ⊂ D.

Proof. Let U be the operator dual to P and π(x, ·) = Pδx. Let x ∈ D be arbitrary.
Since suppπ(x, ·) ⊂ D, then π(x,X \ D) = 0. From this and the equality
U1A = π(·, A) it follows that U1X\D(x) = 0. Define

µ0(A) = µ∗(A ∩D) for A ∈ B.

A simple calculation shows that µ0 is invariant with respect to P . If µ∗(D) = 0, the
assertion is obviously true. If µ∗(D) > 0, it can be proved that µ0 = µ∗ and
consequently µ∗(D) = µ0(X) = 1.

For further results, see [11,15].

11. CONCENTRATION AND THIN DIMENSION

In order to describe semifractals, A. Lasota proposed two new concepts of dimension:
concentration and thin dimension (see [10,14]). These dimensions have the advantage,
at least in the case of a fractal measure, of being relatively easy calculable. It is also
important that the concentration dimension is strongly connected with the Hausdorff
dimension, and the thin dimension with the fractal dimension.

Given a Borel measure µ ∈M1(X), the lower and upper concentration dimension
of µ are given by the formulae

dimLµ = lim inf
r→0

logQµ(r)
log r

, dimLµ = lim sup
r→0

logQµ(r)
log r

,

where
Qµ(r) = sup

x∈X
µ
(
B(x, r)

)
. (31)

If dimLµ = dimLµ then this common value is called concentration or Lasota
dimension of µ and denoted by dimLµ.

The function Qµ is called the Lévy concentration function and it is frequently used
in the theory of stochastic processes.

It is easy to verify that for every µ ∈M1(X),

dimLµ ≤ dimCµ ≤ 2dimLµ,

where dimC denotes the lower correlation dimension given by

dimCµ = lim inf
r→0

[
log

( ∫
X

µ
(
B(x, r)

)
µ(dx)

)/
log r

]
.

Analogous inequalities hold for the corresponding upper dimensions.
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Theorem 30. Let µ ∈M1(X) and let A ∈ B(X) be such that µ(A) > 0. Then

dimHA ≥ dimLµ,

where dimHA denotes the Hausdorff dimension of the set A.

Proof. Set d = dimLµ. Suppose d > 0. (If d = 0, the assertion is obvious). Choose
s ∈ (0, d). Then there exists r0 > 0 such that

µ
(
B(x, r)

)
≤ rs for r ∈ (0, r0) and x ∈ X.

According to Frostman Lemma, dimHA ≥ s. Since s < d was arbitrary, the statement
of theorem follows.

The concentration dimension of a closed set A is defined by the formula

dimLA = sup
{

dimLµ : µ ∈M1(X), suppµ ⊂ A
}
.

From Theorem 30, there immediately follows that

dimHX ≥ dimLX.

For µ ∈M1(X), we define the lower and upper thin dimension of µ by

dimTµ = lim inf
r→0

log Tµ(r)
log r

, dimTµ = lim sup
r→0

log Tµ(r)
log r

,

where
Tµ(r) = inf

{
µ
(
B(x, r)

)
: x ∈ suppµ

}
.

If dimTµ = dimTµ, then this common value is called the thin dimension of the
measure µ and denoted by dimTµ (see [10]).

The function Tµ : (0,∞) → [0, 1] is called the thin function corresponding to the
measure µ. Obviously, if suppµ is a compact set, the values of Tµ are positive. In
general, Tµ is only nonnegative. For convenience, we make log 0 = −∞.

The lower and upper fractal (or box ) dimension of the set A is defined by

dimFA = lim inf
r→0

logN(r)
−log r

, dimFA = lim sup
r→0

logN(r)
−log r

,

where N(r) denotes the smallest number of closed balls of radius r needed to cover A.
If dimFA = dimFA, this common value is called the fractal dimension.

Theorem 31. If A ⊂ suppµ, A ∈ B(X), then

dimFA ≤ dimTµ and dimFA ≤ dimTµ.
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Proof. Let d = dimTµ, A ⊂ suppµ, A 6= ∅, d < ∞. Choose s ∈ (d,∞). Obviously,
there exists a sequence {rn} of positive numbers such that rn → 0 and

Tµ(rn) ≥ rs
n, n ∈ N.

For a fixed n ∈ N, let In = NA(rn/2) be the smallest number of closed balls of radius
rn/2 needed to cover A. Let {B(xi, rn/2) : i ∈ In} be the corresponding covering.
Obviously, we can find yi ∈ A such that the family {B(yi, rn) : i ∈ In} covers A.
Let Jn ⊂ In be such that {B(xi, rn) : i ∈ Jn} are pairwise disjoint and the family
{B(xi, 4rn) : i ∈ Jn} covers A. Consequently, NA(4rn) ≤ cardJn. On the other
hand, ∑

i∈Jn

µ
(
B(yi, rn)

)
= µ

( ⋃
i∈Jn

B(yi, rn)
)
≤ 1.

Since yi ∈ A, then µ
(
B(yi, rn)

)
≥ Tµ(rn), which implies that Tµ(rn) · cardJn ≤ 1.

Consequently, NA(4rn) ≤ r−s
n . From the last inequality it follows that dimFA ≤ s.

Since s ∈ (d,∞) was arbitrary, the first inequality of Theorem 31 follows. The proof
of the second one is similar.

It is well known that the dimension of a measure allows us to estimate the di-
mension of its support. Moreover, the estimate for a set A can be obtained either as
the greatest lower bound or as the least upper bound of the dimensions of measures
supported on A. Such results are called variational principles. They are closely related
with Frostman Lemma and Mass Distribution Principle.

In particular, variational principles for the Hausdorff and packing dimension of
sets and the point dimension of measures were proved by C. Tricot and C.D. Cutler.
The variational principles for the Hausdorff dimension and packing dimension of sets
and Rényi dimension of measures were found by C.D. Cutler and L. Olsen. Here
we recall the variational principles for Hausdorff and fractal dimensions of sets and
concentration and thin dimension of measures (see [10,14])

Theorem 32. Let K ⊂ X be a nonempty compact set. Then

dimHK = sup dimLµ,

where the supremum is taken over all µ ∈M1(X) such that suppµ ⊂ K.

Proof. From Theorem 30 it follows that

dimHK ≥ sup dimLµ,

where the supremum is taken over all µ ∈M1(X) such that suppµ ⊂ K.
We need to prove the opposite inequality. Let d = dimHK. Suppose d > 0 (for

d = 0 the assertion is obvious). Choose s ∈ (0, d). Obviously, Hs(K) > 0 and by
Frostman Lemma there are a measure µ ∈ M1(X) and constants c > 0 and r0 > 0
such that

µ
(
B(x, r)

)
≤ crs for 0 < r < r0.

Consequently, dimLµ ≥ s. Since s ∈ (0, d) was arbitrary, dimHK ≥ d.
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Theorem 33. Let K be a nonempty compact subset of X. Then there exists a Borel
probability measure µ such that suppµ = K and

dimFK = dimTµ, dimFK = dimTµ.

A proof can be found in [10].

12. UPPER AND LOWER ESTIMATES OF CONCENTRATION DIMENSION

Lemma 2. Let αi, βi, Li ∈ (0, 1) for i ∈ J . Let Φ : R+ → R+ be a bounded increasing
function. Suppose that

Φ(r) ≥ sup
i∈J

αiΦ(r/Li) for r ∈ (0, a), a > 0. (32)

Then there exists c > 0 such that

Φ(r) ≥ crs for r ∈ (0, a),

where

s = min
i∈J

logαi

logLi
.

Proof. For i ∈ J , define
ci = a−siΦ(aLi),

where
si = logαi/(logLi).

We claim that for arbitrary n ∈ N, there is

Φ(r) ≥ cir
si for r ∈

[
Ln

i a, a
)
. (33)

Indeed, for r ∈
[
Lia, a

)
by the definition of ci, there follows

Φ(r) ≥ Φ(Lia) = cia
si .

Suppose that (33) holds for some n ≥ 1. Since r/Li ∈
[
Ln

i a, a
)

for r ∈
[
Ln+1

i a, Ln
i a

)
,

from (32), (33) and the definition of si, we infer

Φ(r) ≥ αiΦ(r/Li) ≥ αici
(
r/Li

)si = cir
si for r ∈

[
Ln+1

i a, Ln
i a

)
.

By virtue of the induction principle, condition (33) holds for every n ∈ N. Since
Li < 1, this implies

Φ(r) ≥ cia
si for r ∈ (0, a).

Since i ∈ J is arbitrary, the statement of Lemma 2 follows.
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Theorem 34. Suppose that an IFS {(wi, pi) : i ∈ I} has an invariant measure µ.
Assume that all functions wi are Lipschitzean with Lipschitz constants Li and the set
J = {i ∈ I : Li < 1} is nonempty. Then

dimLµ ≤ inf
i∈J

logαi

logLi
,

where
αi = inf

x∈X
pi(x).

Proof. Since the measure µ is invariant, for arbitrary i ∈ J there holds

µ
(
B(x, r)

)
≥ αiµ

(
w−1

i

(
B(x, r)

))
for x ∈ X, r > 0.

Substituting x = wi(y), we obtain

µ
(
B(wi(y), r)

)
≥ αiµ

(
B(y, r/Li)

)
for x ∈ X, r > 0.

This implies that
Qµ(r) ≥ αiQµ(r/Li) for r > 0, i ∈ J,

where Qµ is given by (31). Consequently, the function Qµ satisfies the inequality

Qµ(r) ≥ sup
J
αiQµ(r/Li) for r > 0.

From the last inequality and Lemma 2 it follows that

Qµ(r) ≥ crs,

for some c > 0. Consequently
dimLµ ≤ s,

which completes the proof of Theorem 34.

To obtain a lower estimate of concentration dimension of measure, we need more
restrictive assumptions on transformations wi. Let I1, . . . , Im be a partition of I and
let K ⊂ X be a nonempty set. Define

Kj =
⋃
i∈Ij

wi(K) for j = 1, . . . ,m. (34)

We say that the family {wi : i ∈ I} satsfies the mixed Moran condition with
respect to the set K and the partition I1, . . . , Im, if Kj ⊂ K for j = 1, . . . ,m and

dist
(
Kj1 ,Kj2

)
= inf

{
ρ(x, y) : x ∈ Kj1 , y ∈ Kj2

}
> 0

for arbitrary j1, j2 ∈ {1, . . . ,m} , j1 6= j2.
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Similarly as Lemma 2, one can prove the following lemma.

Lemma 3. Let mj ∈ (0, 1) and βj > 0 for j = 1, . . . ,m, be given. Suppose that
Φ : R+ → R+ be a bounded increasing function such that

Φ(r) ≤ max
1≤j≤m

Φ(r/mj) for r ∈ (0, a).

Then there is c > 0 such that

Φ(r) ≤ crs for r ∈ (0, a),

where
s = min

1≤j≤m

log βj

logmj
.

Theorem 35. Suppose that an IFS {(wi, pi) : i ∈ I} has an invariant measure µ.
Assume that the family {wi : i ∈ I} satisfies the mixed Moran condition with respect
to the set K = suppµ and a partition I1, . . . , Im. Moreover, assume that the functions
wi satisfy the condition

ρ
(
wi(x), wi(y)

)
≥ liρ(x, y) for x, y ∈ X, i ∈ I, (35)

where li are constants such that

0 < inf
i∈Ij

li < 1 for j = 1, . . . .m.

Then
dimLµ ≥ min

1≤j≤m

log βj

logmj
,

where
βj =

∑
i∈Ij

sup
x∈X

pi(x) and mj = inf
i∈Ij

li.

Proof. Let

a = min
{

dist
(
Kj1 ,Kj2

)
; j1, j2 ∈ {1, . . . ,m}, j1 6= j2

}
,

where Kj are given by (35).
Obviously

w−1
i (x) ∩K = ∅ for i /∈ Ij and x ∈ X such that ρ(x,Kj) < a. (36)

Since µ is invariant, it follows that

µ(A) ≤
m∑

j=1

∑
i∈Ij

γiµ
(
w−1

i (A)
)

for A ∈ B(X), (37)
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where γi = supx∈X pi(x). Set

A0 = X \
m⋃

j=1

Kj .

From (36) it follows that µ
(
w−1

i (A0)
)

= 0 for i ∈ I. Thus A0 ∩ K = ∅ and so
K ⊂

⋃m
j=1Kj .

Let A ∈M(X) be such that diamA ≤ r < a and µ(A) > 0. Then A ∩Kj = ∅ for
some j ∈ {1, . . . ,m}. Since diamA < a, by virtue of (36), there is

w−1
i (A) ∩K = ∅ for i /∈ Ij .

Consequently, inequality (37) reduces to

µ(A) ≤
∑
i∈Ij

γiµ
(
w−1

i (A)
)

for A ∈ B(X),

From (35) it follows that diamw−1
i (A) ≤ li diamA ≤ r/mj for i ∈ Ij . Thus for

A ∈ B(X) with diamw−1
i (A) ≤ r < a there is j ∈ {1, . . . ,m} such that

µ(A) ≤
∑
i∈Ij

γiQµ(r/mj) = βjQµ(r/mj).

Consequently
Qµ(r) ≤ max

1≤j≤m
βjQµ(r/mj) for r ∈ (0, a)

and by Lemma 3
Qµ(r) ≤ crs,

where
s = min

1≤j≤m

log βj

logmj
.

From the last inequality the statement of Theorem 35 follows immediately.
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