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Abstract. It has been customary in the last few decades to
employ stochastic models to represent complex data sets en-
countered in geophysics, particularly in hydrology. This arti-
cle reviews a deterministic geometric procedure to data mod-
eling, one that represents whole data sets as derived distribu-
tions of simple multifractal measures via fractal functions. It
is shown how such a procedure may lead to faithful holistic
representations of existing geophysical data sets that, while
complementing existing representations via stochastic meth-
ods, may also provide a compact language for geophysical
complexity. The implications of these ideas, both scientific
and philosophical, are stressed.

1 Introduction

The study of complex data sets is at the core of geophys-
ical research. This has resulted in the use of a variety of
techniques aimed at characterizing and modeling such sets.
With the development of ideas, a variety of qualifiers (e.g. au-
tocorrelation function, power spectrum, multifractal spec-
trum, probability distribution function, information function,
chaotic invariant properties, etc.) have been used for such
purposes, and the model’s goodness has been defined in their
ability to preserve such quantities.

As illustrated in Fig. 1, many data sets (e.g. rainfall and
runoff time series in hydrology) exhibit high irregularity,
non-trivial intermittency, long-term persistence, power-law
power spectrum scaling and altogether “intrinsic random-
ness,” which suggest, in a natural way, the usage of stochastic
models, such as multiplicative cascades with random mul-
tipliers, to represent such “1/fβ noises” (e.g. Lovejoy and
Schertzer, 1990; Veneziano et al., 2000). The ability of the
stochastic models to reasonably represent important (statisti-
cal) characteristics of these data sets and the reasonably good
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predictions reported on their underlying evolutions have fur-
ther strengthened our view on the usefulness and appropri-
ateness of such models.

This article argues that, given the irregularity present in
geophysical data sets, such stochastic modeling may be sup-
plemented with chaotic and other deterministic modeling to
provide a more complete representation of the records and
processes at hand. Besides the now classical use of phase-
space reconstruction techniques (e.g. Packard et al., 1980;
Takens, 1981) developed in nonlinear dynamics to qualify
the intrinsic dimensionality of sets (e.g. Rodriguez-Iturbe
et al., 1989; Tsonis et al., 1993; Sivakumar, 2000, 2004;
Sivakumar et al., 2001), this article makes a case for a ge-
ometric representation of geophysical records as derived dis-
tributions of deterministic multifractal measures via simple
deterministic fractal functions (Puente, 1992, 1994a), a novel
deterministic procedure that may be useful in archiving data
and in elucidating their dynamics.

2 The fractal-multifractal procedure and geophysical
applications

This deterministic geometric procedure was inspired by the
simply quantized layering of energy dissipation in fully de-
veloped turbulence (Meneveau and Sreenivasan, 1987) and
by the automatic generation of the inherent multiplicative
cascade while constructing fractal interpolating functions
(Barnsley, 1988).

As illustrated in Fig. 2, the fractal-multifractal procedure
transforms a turbulence-related measure overx, saydx (i.e.,
a multifractal one found via a cascade and, hence, one with-
out a density), into the unique measuredy, overy, defined as
the derived distribution ofdxvia a fractal functionf (Puente,
1992, 1994a). The ideas turned out to provide, in a way remi-
niscent of Plato’s notions of “reality” as “shadows”, a host of
interesting patterns overy, whose peculiar shapes suggested,
also in a natural manner, their usage as suitable geometric
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Fig. 1. A prototypical complex data set made of 212 data points, followed by its autocorrelation function and its (log-log) power spectrum,
with scaling exponentβ=1.27.

Fig. 2. An example of the fractal-multifractal procedure. The mea-
suredy is obtained adding the corresponding values ofdx for hori-
zontal crossings of the mappingf .

models for geophysical data sets, including rainfall (Puente,
2004).

It so happens that the time series in Fig. 1 corresponds to
dy in Fig. 2. Specifically, such a complex set is found, at
any resolution, as the unique invariant measure overy (at a
projection angle of zero degrees) generated by the two simple
affine mappings, from the plane to the plane,

w1(x, y) = (
1

2
x, −0.51x + d1y) (1)

w2(x, y) = (
1

2
x +

1

2
, 0.03x + d2y − 0.35) (2)

with the scaling parametersd1 = –0.8 andd2 = –0.6, when
such mappings are iterated in an independent fashion accord-
ing to a biased coin such thatw1 is used 30% of the time and
w2 the remaining 70%. As illustrated in Fig. 2, these notions
also define a fractal function that passes by the three points

{(0,0), (1/2, –0.35), (1, –0.2)} whose graph has a fractal di-
mension of 1.485, and the invariant (and hence deterministic)
measuredx, as identified in turbulence studies (Puente and
Obreǵon, 1999). As a way of clarification, it should be em-
phasized that although it may appear to a casual reader that
the obtained patterns may depend on the “coin” mentioned
above, such is not the case, since the successive iterations are
just a suitable Monte Carlo approach that always converges
to the same deterministic pattern (Barnsley, 1988).

By varying the parameters of the geometric construction,
that is, the points by which a given fractal function passes
(which could contain more than three points), the scaling pa-
rameters that determine the fractal dimension of the transfor-
mation, the iteration frequencies that define a parent (multi-
nomial) multifractal overx, and the projection angle (other
than zero degrees in they direction), one may indeed find
a plethora of interesting patterns sharing the observed fea-
tures of natural data sets (Puente, 2004). These resemble
geophysical sets such as rainfall records and width functions
of natural channels (usually modeled via stochastic cascades;
e.g. Veneziano et al., 2000), among others (e.g. Puente and
Obreǵon, 1996; Obreǵon et al., 2002; Puente and Sivaku-
mar, 2003) and both chaotic and stochastic signals (with 1/fβ

power spectra), as classified via phase-space reconstruction
techniques (Puente et al., 2002).

3 Scientific and philosophical implications

As the advent of chaos theory has resulted in a debate of
determinism vs. stochasticity as possible competing mecha-
nisms to model natural data sets (e.g. Osborne and Proven-
zale, 1989; Koutsoyiannis and Pachakis, 1996; Sivakumar,
2000; Schertzer et al., 2002; Sivakumar et al., 2002a, b), it is
pertinent to explain where the geometric ideas herein may fit
within such a debate.

It ought to be stressed first that the fractal-multifractal pro-
cedure was not conceived as a means to endorse determin-
ism and hence disprove randomness, but rather as a possi-
ble new framework for geophysical (hydrologic) complex-
ity. The idea was developed as the first author attempted to
employ extensions of fractal interpolating functions to rep-
resent mountain profiles from which to study the evolution
of river networks (unsuccessfully) and when he later realized
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that the natural measure generated via the iterations over x
correspond to the spiky measures found in atmospheric tur-
bulence and generated via deterministic multiplicative cas-
cades. Such realization triggered the question: if turbu-
lence along one line is just a permutation of a rather sim-
ple multiplicative cascade, could it be that rainfall and other
turbulence-driven processes are also simple enough to be
transformations (fractional integrations) of such turbulence?
As seen in Fig. 2, and as illustrated in the diverse applica-
tions already mentioned and in others, the ideas turned out
to be sensible indeed in one and higher dimensions (Puente
1994b; Puente et al., 2001a, b), even if a complete physical
explanation for the procedure remains a challenge.

It should also be noted that the Platonic approach has
not been developed to add to the aforementioned determin-
ism vs. stochasticity debate, although the label of deter-
minism may suggest otherwise. That the outcomes of the
fractal-multifractal approach are deterministic is unquestion-
able; but they may also be interpreted, again in a natural
way, as specific realizations of existing stochastic processes,
as soundly developed elsewhere (e.g. Lovejoy and Schertzer,
1990; Veneziano et al., 2000). In this context, the geometric
approach provides an alternative way of generating interest-
ing sets, which may be used as simulations to drive a variety
of water resource applications.

Clearly, however, there are noticeable differences between
such stochastic approaches and the geometric methodology
explained herein. While the latter, as applied to one data
set, naturally tries to find an underlying multiplicative (multi-
nomial) process which when fractally transformed provides
a representation of a whole normalized set, stochastic ap-
proaches, by construction, concentrate on relevant statistical
properties (e.g., power spectrum, multifractal spectrum, co-
dimension function) to find a suitable cascade mechanism
that may generate them as a realization. While the classi-
cal approaches can not control the specific realization and
instead concentrate on relevant statistics of the sets, the ge-
ometric procedure, once an inverse problem is solved, aims
at the overall geometry of the sets, one that if properly cap-
tured includes also its statistics. This makes the geometric
procedure all the more ambitious.

Although producing similar outcomes, there are two po-
tential features of the geometric procedure (absent by defi-
nition from the more classical approaches) that we believe
deserve further study as they may result in relevant method-
ological breakthroughs.

First, a Platonic methodology (similar to the one herein
but defined possibly via alternative transformations not us-
ing affine mappings) furnishes us with the real possibility of
encoding holistically complete data sets, with rather substan-
tial compression ratios. This can be readily noticed in Fig. 2,
as the rather complex set therein is totally described by only
9 parameters. For, even if it is argued that the geometric ap-
proach uses “many more” parameters than the stochastic rep-
resentations based on faithful fittings of co-dimension func-

tions, the latter, in its “characterization” of the record’s in-
termittency structure, can not uniquely define a given real-
ization, which the geometric approach can in principle do,
including records that may be termed chaotic or stochastic
(Puente et al., 2002), as mentioned earlier.

Second, a geometric approach may open new vistas to
study the dynamics of geophysical processes. The evolution
of records may perhaps be discerned in the compressed pa-
rameter space of subsequent sets, as has been found in a con-
tamination problem when the geometric ideas are extended
to produce complex patterns over two dimensions (Puente
et al., 2001a, b). Notwithstanding the difficulties involved
in thinking in a surrogate space as done in other disciplines
(e.g. strings in theoretical physics), the notions may perhaps
provide a dual representation for understanding dynamics,
one that may prove useful as it has the potential of captur-
ing the ever important details (i.e., timing and magnitude)
present in the data sets at hand.

Whether simplicity can be found at the root of complex-
ity remains a tremendous challenge in science (see, however,
Wainright and Mulligan, 2004; for a similar issue in environ-
mental modeling). Undoubtedly, geophysical complexity is
very hard to quantify and as such there are, no doubt, oppor-
tunities for further improvement. In regards to the geometric
ideas herein, more research is needed in trying to solve a
complex inverse optimization problem and in finding ways
by which physical knowledge, as defined via conservation
principles and differential equations, may be coupled with
the geometric ideas. It is our hope that such issues will have
a successful ending.

4 Conclusions

A geometric procedure aimed at modeling complex geophys-
ical data sets as derived distributions of multifractal measures
via fractal functions has been reviewed. It has been argued,
both scientifically and philosophically, that such an approach
may provide a suitable language for geophysical complex-
ity, one that may be useful to simulate distinct phenomena
of diverse types and one that one day may lead to a new vi-
sion to study geophysical dynamics. We envision that this
fractal-based approach and other procedures aiming to cap-
ture mathematical morphology (e.g. Maragos, 1989) would
result in improved understandings of complex natural pat-
terns, thresholds and their dynamics.
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