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ABSTRACT

A new dynamical core for numerical weather prediction (NWP) based on the spectral element method is
presented. This paper represents a departure from previously published work on solving the atmospheric primitive
equations in that the horizontal operators are all written, discretized, and solved in 3D Cartesian space. The
advantages of using Cartesian space are that the pole singularity that plagues the equations in spherical coordinates
disappears; any grid can be used, including latitude–longitude, icosahedral, hexahedral, and adaptive unstructured
grids; and the conversion to a semi-Lagrangian formulation is easily achieved. The main advantage of using
the spectral element method is that the horizontal operators can be approximated by local high-order elements
while scaling efficiently on distributed-memory computers. In order to validate the 3D global atmospheric spectral
element model, results are presented for seven test cases: three barotropic tests that confirm the exponential
accuracy of the horizontal operators and four baroclinic test cases that validate the full 3D primitive hydrostatic
equations. These four baroclinic test cases are the Rossby–Haurwitz wavenumber 4, the Held–Suarez test, and
the Jablonowski–Williamson balanced initial state and baroclinic instability tests. Comparisons with four op-
erational NWP and climate models demonstrate that the spectral element model is at least as accurate as spectral
transform models while scaling linearly on distributed-memory computers.

1. Introduction

Because of the changing trends in high-performance
computers, from large vector machines to distributed-
memory architectures, numerical methods that decom-
pose the physical domain into smaller pieces have been
receiving significant attention. This new focus on local
methods is especially true in the atmospheric sciences,
where very large models covering the entire globe are
run in timescales ranging from days (in numerical
weather prediction) to thousands of years (in climate
simulations). Finite-difference and finite-element meth-
ods are two such methods that decompose the domain
locally, thereby facilitating their implementation on dis-
tributed-memory computers. However, one of the big-
gest disadvantages of these methods is that traditionally
they have not been able to compete, in terms of accu-
racy, with spectral transform methods, which are typi-
cally used operationally in numerical weather prediction
(NWP) and climate modeling. For example, spectral
transform models are used by the National Centers for
Environmental Prediction (NCEP; Sela 1980), the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF; Simmons et al. 1989), the National Center
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for Atmospheric Research (NCAR; Hack et al. 1992),
and the U.S. Navy (Hogan and Rosmond 1991).

Spectral element methods combine the local domain
decomposition property of finite-element methods with
the high-order accuracy of spectral transform methods.
In other words, spectral elements are as local as finite-
element methods and thereby can be used as efficiently
on distributed-memory computers while sustaining the
same level of accuracy obtained with spectral transform
methods. Spectral element methods have been used suc-
cessfully for the shallow water equations on the sphere
(Giraldo 2001; Giraldo et al. 2002; Taylor et al. 1997)
and have shown to be promising for ocean and climate
modeling (Iskandarani et al. 2002; Loft et al. 2001;
Thomas et al. 2002). These methods are essentially
high-order finite-element methods where the grid points
are chosen to be the Legendre–Gauss–Lobatto (LGL)
points. This choice of grid points allows for stable high-
order interpolations and results in efficient numerical
integration strategies because the LGL points are also
used as the quadrature points in the numerical integra-
tion required by the weak integral formulation common
to all Galerkin methods.

In this paper we extend the 3D Cartesian spectral
element method for the spherical shallow water equa-
tions introduced in Giraldo (2001) to the full 3D prim-
itive hydrostatic equations governing the motion of the
atmosphere. This method represents a radical departure
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from all previous numerical methods for flow on spher-
ical geometry in that the horizontal operators are writ-
ten, discretized, and solved completely in 3D Cartesian
space. By doing so, we avoid the pole singularity prob-
lem associated with the governing equations in spherical
coordinates. For a spherical shell, described by the co-
ordinates (l, w), of radius a, the divergence of a vector
field, F 5 f 1 g , is given asl̂ ŵ

1 ] f ]g cosw
= · F 5 1 .1 2a cosw ]l ]w

At the poles (i.e., w 5 6p/2), this is a source of nu-
merical problems, caused by the specific coordinate for-
mulation rather than the nature of the primitive equa-
tions and its solutions. While the use of a local Cartesian
coordinate system has been used to overcome these
problems in the past (Taylor et al. 1997), we have, guid-
ed by the results of previous work (Giraldo 2001; Gir-
aldo et al. 2002), chosen to maintain the Cartesian for-
mulation everywhere.

Therefore, in our formulation the poles are treated as
any other point in Cartesian space. Because the nu-
merical method is constructed independently of the grid,
this then implies that any grid can be used within this
framework including icosahedral, hexahedral, lat–lon,
and adaptive unstructured grids. The option of using
adaptive unstructured grids will facilitate the coupling
of this dynamical core with the Naval Research Labo-
ratory’s (NRL) mesoscale model (Hodur 1997). The in-
dependence of our numerical methodology from the grid
also means that we can change the basis functions from
continuous to discontinuous, as we showed in Giraldo
et al. (2002), or the elements on which these functions
are constructed from quadrilaterals to triangles (War-
burton et al. 2000), which then simplifies the construc-
tion of adaptive solutions. This independence from the
grid is not shared by any of the existing and newly
proposed global atmospheric models, including the
spectral element model in Taylor et al. (1997), Loft et
al. (2001), and Thomas et al. (2002) and the icosahedral
model in Randall et al. (2002). In fact, the formulations
of all these models are bounded on a specific class of
grids. Furthermore, the Cartesian formulation simplifies
the addition of semi-Lagrangian schemes. In this paper,
we refer to our current model as Eulerian in order to
distinguish it from the semi-Lagrangian version we are
currently testing in other work. In brief, the objective
of this paper is to show the feasibility of the Cartesian
spectral element formulation for constructing hydro-
static primitive equation models that are as accurate as
current spectral transform models and more efficient on
distributed-memory computers.

The remainder of the paper is organized as follows.
Section 2 contains a description of the governing equa-
tions of motion used in numerical weather prediction
models, along with a detailed definition of the prog-
nostic and diagnostic variables used in our model. Sec-

tion 3 contains the description of the numerical ap-
proximation of the equations, including, the horizontal,
vertical, and temporal discretization methods. In section
4 we describe the tessellation of the sphere into the
quadrilateral elements used by the spectral element
method to construct the local element matrix operations.
This leads directly into section 5, which contains a dis-
cussion on the domain decomposition of the sphere and
how it translates into the implementation of the model
on distributed-memory computers using the Message-
Passing Interface. In section 6 we present the results for
the seven test cases used to validate our model. Finally,
in section 7 we summarize the key findings of this re-
search and discuss the direction of future work.

2. Atmospheric equations

The dynamics of a hydrostatic atmosphere (i.e., dy-
namical core) are governed by

]p ]
1 = · (pu) 1 (pṡ) 5 0, (1)

]t ]s

]u ]u 2vz
1 u · =u 1 ṡ 5 2 (x 3 u) 2 =f

2]t ]s a

]P
2 c u =p 2 mx, (2)p ]p

]u ]u
1 u · =u 1 ṡ 5 0, and (3)

]t ]s

]f
5 2c u, (4)p]P

where the prognostic variables are the surface pressure,
p, the three Cartesian velocity components, u 5 (u, y,
w), and the potential temperature, u. The diagnostic var-
iables are the vertical velocity , pressure p, and geo-ṡ
potential height f.

In Eq. (2), a and v are the earth’s radius and angular
velocity, and m is a Lagrange multiplier used to con-
strain the fluid particles to remain on each spherical shell
defined by the vertical coordinate s [we shall describe
the role of the Lagrange multiplier in detail in section
3d(1)]. The independent variables in this coordinate sys-
tem are (x, y, z, s, t), where the triple (x, y, z) represents
the grid point on the sphere defined by the spherical
coordinates (l, w) and are related by

x 5 a cosl cosw,

y 5 a sinl cosw,

z 5 a sinw.

Thus in Eqs. (1), (2), and (3), = is defined as
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] 

]x ]
= 5  

]y

] 
]z 

at constant s.
The surface pressure variable, p, in the governing

equations is defined as

p 5 p 2 p ,s t

where ps is the true surface pressure, and pt is the pres-
sure at the top of the atmosphere. The potential tem-
perature u is defined as

T
u 5 ,

P

where T is the temperature, and P is the Exner function.
The Exner function is defined as

kp
P 5 ,1 2po

where k is the air constant Rd/cp, Rd 5 287 J/kg K is the
gas constant of dry air, cp 5 1004 J/kg K is the specific
heat of dry air at constant pressure, and po 5 1000 hPa
is the standard surface pressure. The vertical velocity is
defined as 5 ds/dt, where s is given byṡ

p 2 pts 5 ,
p

which yields a value of 0 at the top of the atmosphere
and 1 at the surface, and d/dt is the Lagrangian deriv-
ative.

3. The numerical scheme

To solve Eqs. (1), (2), and (3), we split the spatial
operators into their horizontal and vertical components.
Therefore for a given s value, we discretize the hori-
zontal operators defined on a constant s spherical shell,
as was done in Giraldo (2001) using the spectral element
method. The vertical operators are discretized by a
mass- and energy-conserving flux-form finite-difference
method. We begin with the horizontal discretization of
the equations by the spectral element method.

a. Approximating the solution in the horizontal
direction

1) BASIS FUNCTIONS AND INTEGRATION

To define the local operators that shall be used to
construct the global approximation of the solution, we
begin by decomposing the spherical domain V into Ne

nonoverlapping quadrilateral elements such that

Ne

V 5 w V .e
e51

To perform differentiation and integration operations,
we introduce the nonsingular mapping x 5 Y(j ), which
defines a transformation from the physical Cartesian co-
ordinate system x 5 (x, y, z) defined in Ve to the ref-
erence coordinate system j 5 (j, h, z ) defined in each
element, where (j, h) ∈ [21, 11]2 in each element,
and z 5 1 on the surface of the sphere.

Associated with the local mapping, Y, is the trans-
formation Jacobian, J 5 ]x/]j, and the determinant

]x ]x ]x
|J | 5 · G, G 5 3 ,

]z ]j ]h

where G represents the surface-conforming component
of the mapping [see Giraldo (2001) for further details].

We can now use this mapping to define the local
representation of the solution, q 5 (p, u, u), and the
approximation of operations such as differentiation and
integration. For simplicity, we assume z to be unity in
what remains and denote j 5 (j, h).

The simple structure of the reference element, I,
spanned by j ∈ [21, 1]2, makes it natural to represent
the local elementwise solution q by an Nth-order poly-
nomial in j as

2(N11)

q (x) 5 c (x)q (x ), (5)ON k N k
k51

where xk represents (N 1 1)2 grid points, and ck(x) is
the associated multivariate Lagrange polynomial. The
logical square structure of I simplifies matters in that
we can express the Lagrange polynomial by a tensor
product as

c (x) 5 h [j(x)] h [h(x)],k i j (6)

where i, j 5 0, . . . , N, and k 5 1, . . . , (N 1 1)2. In
Eq. (6), h are the one-dimensional Lagrange polyno-
mials

21 (1 2 j )P9 jNh (j) 5 2 ,i N(N 1 1) (j 2 j )P (j )i N i

where PN(j ) is the Nth-order Legendre polynomial. For
the grid points (j i, h j), we choose the LGL points, given
as the tensor product of the roots of

2(1 2 j )P9 (j ) 5 0.N

This choice simplifies the construction of the algorithm
because the LGL points are also used as the sampling
points in the Gaussian quadrature rule required by the
numerical integration that we shall describe shortly.

The choice of the LGL points enables the straight-
forward approximation of local element integrals, that
is,
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FIG. 1. The contributions of the local element matrices are summed
across all elements in order to construct the corresponding global
matrices; this is the global assembly procedure. The local element
matrix values at the local grid points 4, 3, 2, 1 of elements E1, E2,
E3, E4, respectively, are summed to obtain the value of the global
matrix at the global grid point G1. These local grid points are in fact
the exact same point that in the global indexing is referred to as G1.

q(x) dx 5 q(j )|J(j ) | djE E
V le

N

. v(j )v(h )q(j , h )|J(j , h ) |,O i j i j i j
i, j50

where | J | represents the local Jacobian for the trans-
formation between Ve and I, and v(j i) and v(h j) are
the Gaussian quadrature weights,

2
2 1

v(j ) 5 ,i [ ]N(N 1 1) P (j )N i

associated with the one-dimensional LGL quadrature.
Let us represent the governing equations by the sim-

plified form

]q
1 = · F 5 S(q), (7)

]t

where F represents the flux tensor, and S represents the
source terms that we define explicitly in the appendix.
Taking the weak form of Eq. (7) with respect to global
basis functions C gives

]q
C 1 = · F 2 S(q) dx 5 0, (8)E [ ]]t

V

and substituting for q and F by the global polynomial
approximation similar to Eq. (5) yields the global Gal-
erkin projection of the governing equations

]qJC C 1 C (=C · F ) 2 C S(q) dx 5 0, (9)E I J I j J I]t
V

where I, J 5 1, . . . , Np, with Np representing the number
of grid points in the horizontal. We shall return to the
discussion on the construction of the global solution in
section 3a(2). Because the global operators given in Eq.
(9) are never explicitly defined, we begin by defining
the local operators that are in fact constructed and then
used to construct the action of these global operators
on the state vector.

Before discussing the construction of the global so-
lution, let us first describe the local elementwise operators
that are used to construct the global solution. Let

eM 5 c (x)c (x) dx (10)i j E i j

Ve

represent the mass matrix, and

eD 5 c (x)=c (x) dx (11)i j E i j

Ve

the differentiation matrix, where c(x) are the local el-
ement basis functions given in Eq. (6), i, j 5 1, . . . ,
(N 1 1)2 are the number of grid points within each
element Ve, and D 5 (Dx, Dy, Dz) is a vector of matrices

corresponding to the three spatial directions. The role
of these local element matrices are described below.

2) SATISFYING THE EQUATIONS GLOBALLY

To satisfy the equations globally requires assembling
the global solution by virtue of an elementwise con-
struction. This elementwise construction is based on the
summation of the local element matrices to form their
global representation. This summation procedure is
known as the global assembly or direct stiffness sum-
mation and is depicted graphically in Fig. 1. In this
figure, the local element matrices given in Eqs. (10) and
(11) are constructed inside each of the four elements
(E1, . . . , E4), and then each element contributes its
local approximation to the global sum. For example, the
element matrix contributions at the local grid points 4,
3, 2, and 1 of elements E1, E2, E3, and E4 are summed
in order to construct the value of the global matrix at
the global grid point G1. It should be understood that
the local grid points (4, 3, 2, 1) are the same grid points
that are claimed by different elements (and possibly
processors), and which is G1 in the global indexing. Let
us represent this global assembly procedure by the sum-
mation operator

Ne∧
, (12)

e51

with the mapping (i, e) → (I), where i 5 1, . . . , (N 1
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1)2 are the local element grid points, e 5 1, . . . , Ne are
the spectral elements covering the spherical shell, and
I 5 1, . . . , Np are the global grid points. Applying the
global assembly operator to the local element matrices
results in the following global matrices:

Ne∧
eM 5 M (13)

e51

for the mass matrix and

Ne∧
eD 5 D (14)

e51

for the differentiation matrix.
With these operators defined and by denoting the

global grid vector for the surface pressure as pG, the
wind velocity as uG, the potential temperature as uG,
and the geopotential height as fG, we can now write
the semidiscrete approximation to Eqs. (1), (2), and (3)
as follows:

]p ]G TM 1 D (p u ) 1 M (pṡ) 5 0, (15)G G 5 6]t ]s G

]u ]uG TM 1 u Du 1 M ṡG G 5 6]t ]s G

2vz ]PG5 2M (x 3 u ) 2 Df 2 c u Dp ,G G G p G G2 1 2[ ]a ]p
G

(16)

]u ]uG TM 1 u Du 1 M ṡ 5 0, (17)G G 5 6]t ]s G

where the superscript T denotes the transpose operation,
and the terms { }G denote the global grid vector of the
quantities inside the brackets after they have been ver-
tically discretized. It should be noted that the mass ma-
trix, M, is diagonal and thereby trivial to invert. The
diagonal property of this matrix is due to the dual role
of the LGL points, which are used both as grid points
and quadrature points. Furthermore, the global matrix
D is never actually constructed, but rather only its action
on the state vector q is computed by virtue of the local
element matrix and the global assembly procedure. We
now address the discretization of the vertical operators.

b. Approximating the solution in the vertical
direction

The equations are discretized in the vertical direction
using a conservative flux-form finite-difference method.
This is the same vertical differencing method used in
the Navy Operational Global Atmospheric Prediction
System (NOGAPS), which is the U.S. Navy’s current
global atmospheric NWP model (Hogan and Rosmond
1991; Rosmond 2000). NOGAPS is used by the Navy

for medium-range weather forecasts worldwide. This
model is used to drive the Navy’s mesoscale model
(Hodur 1997) and is used as a coupled ocean–atmo-
sphere system (Rosmond et al. 2002). NOGAPS uses
the spectral transform method in the horizontal, a flux-
form finite-difference in the vertical, and a semi-implicit
leapfrog scheme in time. The horizontal resolution of
NOGAPS recently increased from T159 with 24 vertical
levels to T239 with 30 vertical levels (Hogan et al.
2002).

Although we could also discretize the vertical oper-
ators in the spectral element Eulerian atmospheric model
(SEE-AM) with the spectral element method, we have
chosen to use the finite-difference method in order to
remain as similar as possible to NOGAPS. This will
ensure that any differences in the results are due only
to discrepancies in the discrete horizontal operators be-
tween the two models. We hope to report on a spectral
element vertical discretization in future work.

To simplify the proceeding discussion, let us define
the vertical integration of the global gridpoint solution
vector qG 5 (pG, uG, uG) to be

K

q ds 5 (q ) Ds , (18)OE G G L L
L51sK

where K denotes the number of vertical levels to be
integrated across, and

Ds 5 s 2 sL L11/2 L21/2

represents the thickness of the vertical layer.
To discretize the equations in the vertical direction, we

begin by integrating Eq. (15) across all the vertical levels
of the atmosphere. Applying no-flux boundaries at the
top and bottom levels of the atmosphere results in

Nlev]pG 21 T5 2M D (p u ) Ds , (19)O G G K K]t K51

where Nlev denotes the total number of vertical levels.
Once the surface pressure tendency ]pG/]t is computed,
the vertical velocity at each vertical level is obtainedṡ
by integrating Eq. (15) from the top of the atmosphere
(s 5 0) to the desired vertical level K, thus giving

]pG(p ṡ ) 5 2 sG G K11/2 K11/2]t
K

21 T2 M D (p u ) Ds , (20)O G G K K
L51

where K denotes a full level and K 6 1/2 denote the
half levels of this staggered sigma coordinate system.
The prognostic variables and f all reside at the full
levels, while the diagnostic variables reside at the half
levels. The top and bottom of the atmosphere are at the
half levels K 5 1/2 and K 5 Nlev 1 1/2, respectively.
Figure 2 illustrates the sigma coordinate system and the
location of the prognostic and diagnostic variables.

The vertically differenced terms (]/]s) of the globalṡ
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solution vector qG are computed in the following man-
ner:

]q (q ) 2 (q )G G K11/2 G Kṡ 5 ṡK11/21 2 [ ]]s s 2 sK11/2 KK

(q ) 2 (q )G K G K21/21 ṡ , (21)K21/2 [ ]s 2 sK K21/2

where

1
(u ) 5 [(u ) 1 (u ) ], andG K11/2 G K11 G K2

P 2 PK11/2 K(u ) 5 (u )G K11/2 G K1 2P 2 PK11 K

P 2 PK11 K11/21 (u ) .G K111 2P 2 PK11 K

These interpolation stencils are chosen in order to en-
force the numerical scheme to conserve energy. Finally,
the hydrostatic equation, Eq. (4), is discretized as fol-
lows:

f 2 f 5 c (u ) (P 2 P )K K11 p G K K11/2 K

1 c (u ) (P 2 P ), (22)p G K11 K11 K11/2

where the Exner functions used are

kpK11/2P 5 andK11/2 1 2po

k11 k111 1 p 2 pK11/2 K21/2P 5 . (23)K k1 2 1 2k 1 1 p p 2 po K11/2 K21/2

c. Temporal discretization

Discretizing the semidiscrete system, Eqs. (19), (20),
(16), and (17), in time by an explicit Eulerian leapfrog
method yields

Nn11 n levp 2 pG G nTM 5 2 D (p u ) Ds , (24)O G G K K2Dt K51

n11 np 2 pG Gn(p ṡ ) 5 2 sG G K11/2 K11/22Dt
K

n21 T2 M D (p u ) Ds , (25)O G G L L
L51

n11 nu 2 u ]uG G TM 5 2 u Du 1 M ṡG G 5 672Dt ]s G

n
2vzG1 M (x 3 u )G G2 8[ ]a

n
]P

2 Df 1 c u Dp , (26)G p G G1 2[ ]]p
G

nn11 nu 2 u ]uG G TM 5 2 u Du 1 M ṡ . (27)G G 5 61 22Dt ]s G

Because the leapfrog method is an explicit time-dif-
ferencing scheme, it does require a stringent time step
restriction. In order to maintain stability throughout long
time integrations (up to 1200 days for the Held–Suarez
test case), we use a Courant number of 1/2. We base
this time step on the following definition of Courant
number:

L DtmaxC 5 ,
Ds

where

2 2 2Ds 5 ÏDx 1 Dy 1 Dz

is the physical spacing of the grid, and Lmax is the max-
imum wave speed of the atmospheric equations (see the
appendix for a derivation of this characteristic velocity).
The physical spacing of the grid Ds scales as

1
Ds } ,

2N Ne

where Ne is the number of spectral elements comprising
the grid, and N is the order of the polynomial approx-
imation inside each element.

Because this temporal discretization method produces
a computational mode, we apply the time-averaged As-
selin filter (Asselin 1972),

n n21n n11 nq 5 q 1 0.02(q 2 2q 1 q ),G G G G G

to the global solution vector qG at the end of each time
step. Although this is not the most sophisticated time-
discretization method available, we have used it in order
to keep our model as similar to NOGAPS as possible.
NOGAPS uses a semi-implicit time discretization, but
this is applied as a correction to the explicit leapfrog
scheme. Future research involves the addition of semi-
implicit Eulerian and fully implicit semi-Lagrangian
methods to the current formulation, which will hopefully
allow an increase in the time step by a factor of 10.

d. Lagrange multiplier and the high-pass filter

1) CONSTRAINING THE MOMENTUM

Because we are using Cartesian rather than spherical
coordinates, we must carry three momentum equations
(in addition to the equation of vertical motion); however,
because flow on a spherical shell is really only two-
dimensional (at each s level), the fluid particles are
allowed an extra degree of freedom. This degree of free-
dom will manifest itself in fluid particles flying off the
spherical shell. Mollifying this undesirable situation re-
quires constraining the velocity field to be tangential to
the sphere. At each grid point we apply the following
constraint
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n11 n11u 5 u 1 mx,c u (28)

where the subscripts c and u denote the constrained and
unconstrained horizontal wind velocities, respectively
[see Côté (1988) for further details]. For a fluid particle
to remain on the spherical shell, the wind velocity must
be orthogonal to the position vector of its grid point;
that is,

u · x 5 0,

which results in the Lagrange multiplier

n11x · uum 5 .
2a

Equation (28) can now be written as

n11 n11u 5 Pu ,c u

where

2 2a 2 x 2xy 2xz 
1  

2 2P 5 2xy a 2 y 2yz (29) 2  a
2 22xz 2yz a 2 z 

is the projection matrix that constrains vector quantities
to be tangential to the sphere. It should be pointed out
that using this Cartesian formulation introduces no ap-
proximation from the original governing equations in
spherical coordinates. Swarztrauber et al. (1997) have
shown that the equations in Cartesian coordinates with
this type of projection are in fact identical term by term
to the equations in spherical coordinates.

2) HIGH-PASS FILTER

Like any high-order method, the spectral element
method is susceptible to aliasing errors. In order to pre-
vent these high-frequency waves from contaminating
the solution through the introduction of nonphysical os-
cillations, a high-pass filter is used. We use the filter
outlined in Boyd (1998), which is applied as follows.
In one dimension, we expand the state vector q in the
j direction as follows:

q 5 Lq̃(j ), (30)

where

 P (j ) P (j ) P (j ) 2 P (j ) · · · P (j ) 2 P (j ) · · · P (j ) 2 P (j )0 0 1 0 2 0 0 0 i 0 i22 0 N 0 N22 0

_ _ _ _ _ 
L 5 P (j ) P (j ) P (j ) 2 P (j ) · · · P (j ) 2 P (j ) · · · P (j ) 2 P (j ) (31) i j 0 j 1 j 2 j 0 j i j i22 j N j N22 j

_ _ _ _ _ 
P (j ) P (j ) P (j ) 2 P (j ) · · · P (j ) 2 P (j ) · · · P (j ) 2 P (j )0 N 1 N 2 N 0 N i N i22 N N N N22 N 

is the the Legendre transform matrix, Pi are the Nth-
order Legendre polynomials, and q̃ are the Legendre
modal coefficients. To filter the local solution q, we
transform them to modal space via the inverse of Eq.
(31), apply the filter-weighting diagonal matrix L and
then transform back to nodal (gridpoint) space. This can
be written as

1q 5 Fq,F (32)

where
21F 5 LLL (33)

is the filter operator that is an (N 1 1) 3 (N 1 1) matrix.
The success of the filter hinges on the weighting matrix
L. Following the idea of P. F. Fischer (2002, personal
communication), we write

1 for i , iF
2L 5 ∀i ∈ [0, N ],i  i 2 iFm for i $ i F1 2N 1 1 2 iF

(34)

where i 5 iF, . . . , N denotes the modes curtailed by

the filter. In this paper we use iF 5 N, with m 5 0.05,
which represents only filtering the highest mode by 5%.

The reason for constructing the Legendre transform
as Pi 2 Pi22 for i 5 2, . . . , N and the weighting matrix
L 5 1 for i 5 0, 1 is to avoid affecting the local element
boundary values. By using this Legendre polynomial
construction, only the first two modes (P0 and P1) affect
the element boundary values; the remainder of the
modes only affect the element interior values. This way
we can apply the filter in an element-by-element sense
without violating the C 0 continuity condition at the el-
ement interfaces (boundaries). This eliminates the need
for global assembly of the local element filter matrix.
The global assembly operation incurs communication
costs on distributed-memory computers, and these costs
must be minimized to achieve good performance.

In 2D, the filter is applied as follows:

Te eq 5 Fq F ,F (35)

where FT is the transpose of F, and qe is an (N 1 1) 3
(N 1 1) matrix containing the solution vector of the
element Ve.
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FIG. 2. The equally spaced sigma coordinate system used in the
vertical discretization. The prognostic variables reside at the full lev-
els (solid lines) and the diagnostic variables are at the half levels
(dashed lines). No-flux boundary conditions are used at the top and
bottom of the atmosphere.

4. Grid generation on the sphere

One of the advantages of using Cartesian coordinates
is that any grid can be used with our spectral element
atmospheric model. Although we can use any grid what-
soever, at the moment the grids must be conforming and
quadrilaterally shaped. Using the discontinuous basis
functions as in Giraldo et al. (2002) will permit using
nonconforming grids, and the spectral element basis in
Warburton et al. (2000) will allow the use of triangles,
which we reserve for future work. In order to show the
grid independence of our model, in this paper we show
results on icosahedral and hexahedral grids.

a. Icosahedral grids

Icosahedral grids are constructed by subdividing the
20 triangular faces of the icosahedron by a Lagrange
polynomial of order nI, as described in Giraldo et al.
(2002). Prior to mapping these elements onto the sphere,
it is convenient to map the triangles onto a gnomonic
space. The most unbiased mapping is obtained by map-
ping about the centroid of the triangles.

Let (lc, wc) be the centroid of the triangle we wish
to map. The gnomonic mapping is then given by

a cosw sin(l 2 l )cx 5 ,
sinw sinw 1 cosw cosw cos(l 2 l )c c c

a[cosw sinw 2 sinw cosw cos(l 2 l )]c c cy 5 . (36)
sinw sinw 1 cosw cosw cos(l 2 l )c c c

To simplify matters a bit, we first apply the rotation
mapping R, whereby Eq. (36) becomes

x 5 a tanl , y 5 a tanw secl (37)R R R

in the new coordinate system, with the coordinates (l,
w) located at (0, 0). The rotation mapping, R, is defined
as follows:

cosw sin(l 2 l )cl 5 arctan ,R [ ]sinw sinw 1 cosw cosw cos(l 2 l )c c c

w 5 arcsin[cosw sinw 2 sinw cosw cos(l 2 l )].R c c c

Once the triangular icosahedral grid is constructed,
we subdivide each triangular element into three quad-
rilateral elements. Upon dividing the triangles into quad-
rilaterals, one can construct the higher-order LGL grid
points inside each element, resulting in a quadrilateral
grid with the following properties:

2N 5 60(n N ) 1 2, (38)p I

2N 5 60(n ) , (39)e I

where Np and Ne denote the total number of grid points
and elements composing the icosahedral grid, and N is
the polynomial order of the elements. Examples of cor-
responding grids for nI 5 2, N 5 8 and nI 5 4, N 5
8 are illustrated in Fig. 3.

b. Hexahedral grids

Hexahedral grids are constructed by subdividing the
six faces of a hexahedron into the desired number of
quadrilateral elements and then mapping these onto the
sphere. We begin by constructing a spectral element grid
on the gnomonic space G, which is defined by the square
region jG 5 [2p/4, 1 p/4]2 in a 2D Cartesian space
(Komatitsch and Tromp 2002; Ronchi et al. 1996). This
region is divided into the elements and inside each ele-
ment we construct the LGL grid points. Upon construct-
ing this grid, we then map the gnomonic coordinates to
the corresponding spherical coordinates, lG, via

l 5 j ,G G

tanhGw 5 arcsin .G 1 22 2Ï1 1 tan j 1 tan hG G

It should be noted that lG only gives the spherical co-
ordinates of one of the six faces of the hexahedron.
Therefore, we have to rotate this face to the six faces
of the hexahedron by the rotation mapping R

cosw sinlG Gl 5 l 1 arctan ,c 1 2cosw cosl cosw 2 sinw sinwG G c G c

w 5 arcsin(sinw cosw 1 cosw cosl sinw ), (40)G c G G c

where the centroids, (lc, wc), of the six faces are located
at (lc, wc) 5 ([c 2 1]p/2, 0) for c 5 1, . . . , 4, and
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FIG. 3. The icosahedral grid for (a) nI 5 2, N 5 8 and (b) nI 5 4, N 5 8.

FIG. 4. The hexahedral grid for (a) nH 5 4, N 5 8 and (b) nH 5 8, N 5 8.

(l5, w5) 5 (0, p/2), (l6, w6) 5 (0, 2p/2). This approach
results in the construction of the hexahedral grid with
the following properties:

2N 5 6(n N ) 1 2, (41)p H

2N 5 6(n ) , (42)e H

where Np and Ne denote the number of grid points and
elements composing the grid. The parameter nH refers
to the number of quadrilateral elements in each direction
(jG and hG) contained in each of the six faces of the
hexahedron, and N is the polynomial order of the ele-
ments. Figure 4 shows the grids nH 5 4, N 5 8 and nH

5 8, N 5 8. The hexahedral resolution H, where

H 5 n N,H (43)

has approximately the same number of grid points as
the spectral triangular truncation T on a Gaussian lat–

lon grid; these two different grid resolutions are related
by the expression

H ; T 1 1. (44)

To derive this relation requires a few definitions. Let the
number of grid points in a spectral model be given by

2N 5 N · N [ 2N ,p lon lat lat

where Nlon and Nlat denote the number of points in the
longitudinal and meridional directions in a Gaussian
grid. In addition, let the spectral triangular truncation
be given by T 5 (2/3)Nlat 2 1, which results in the
number of grid points being

9
2N 5 (T 1 1) .p 2

Equating this expression to Eq. (41) yields H ; ( /2)Ï3
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FIG. 5. The communication stencil required by the elements P1,
. . . , P9 in processor PROC. The dashed box represents the perimeter
values that each processor sends to its neighbors, and N1, . . . , N9
represent the elements of the eight neighboring processors (NBR).

(T 1 1), which we approximate by Eq. (44). Of course,
there are other ways of relating the resolution of dif-
ferent grids but certainly using the number of grid points
is the most logical approach. With this relationship be-
tween spectral triangular truncation, T, and hexahedral
resolution, H, we can obtain the equivalent hexahedral
resolution for the NOGAPS operational resolution of
T239 with nH 5 30 and N 5 8 (yielding H240).

5. Parallel implementation

In this section we discuss the issues concerning the
implementation of SEE-AM on distributed-memory
computing platforms. Let us begin by describing the
domain decomposition strategy.

a. Domain decomposition

Because our implementation of the spectral element
method is completely independent from the grid, we are
free to choose any grid; however, in order to simplify
the discussion of our model we describe the domain
decomposition as it pertains to hexahedral grids only.
To construct a hexahedral grid, we map the six faces of
a hexahedron onto a sphere. Therefore, the logical par-
titioning of the domain is the decomposition of the
spherical domain into the six faces of the hexahedron.
In keeping with this simple decomposition strategy we
then further subdivide the domain into perfectly square
regions. In other words, the following partitions are pos-
sible

2N 5 6(n ) ,proc P (45)

where Nproc is the total number of processors and nP

represents the partitioning of processors in each of the
two Cartesian directions on each of the six faces of the
hexahedron. In addition, we require the following con-
straint on nP:

n # n ,P H

which states that the number of processors cannot ex-
ceed the number of spectral elements.

This is by no means the only possible partitioning
strategy. A more sophisticated approach is to use the
Metis graph partitioning software (Karypis and Kumar
1998) or the space-filling-curves strategy presented in
Dennis (2003). We merely present this ad hoc hexa-
hedral grid domain decomposition strategy as a proof
of concept that SEE-AM performs efficiently on dis-
tributed-memory computers. In the future, we plan on
implementing the space-filling-curves strategy, which
will simplify the domain partitioning and allow us to
use any grid whatsoever.

b. Communication

From the description of the global assembly proce-
dure given in section 3a(2), it should be apparent that

the communication in the spectral element method re-
sults from the summation of the local element matrices
to construct the global matrices. In order to better un-
derstand the communication that takes place across
neighboring processors, let us look at only one face of
the hexahedral grid. For the sake of argument, let us
assume that nP 5 3, meaning that there are nine pro-
cessors per face. This situation is illustrated in Fig. 5.
Furthermore, let us assume that nH 5 9; that is, there
are 81 elements per face. From the figure it is evident
that there will then be nine elements inside each pro-
cessor denoted by N1, . . . , N9 for the neighbors, and
P1, . . . , P9 for the on-processor elements. The pro-
cessors are denoted by the thick lines, while the thin
lines represent the spectral elements. However, in order
to keep the discussion as general as possible, we shall
not define the order of the polynomial, N, inside each
element.

Because of the C 0 continuity condition required by
the spectral element method, the four corner points of
processor PROC in Fig. 5 are each shared by four pro-
cessors: PROC plus three neighboring processors. Sim-
ilarly, edge points are shared by two processors. This
continuity condition is satisfied by the global assembly
procedure that is executed across processors as follows.
In processor PROC the on-processor right-hand-side
(rhs) vectors of Eqs. (24), (26), and (27) are constructed.
For the interior grid points of PROC, these rhs vectors
represent the globally assembled rhs vectors of the equa-
tions; however, for the boundary grid points they are
only a portion of the global rhs vectors. Thus, processor
PROC requires the boundary gridpoint rhs vectors from
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processors NBH1, . . . , NBH8 to complete the global
assembly of its rhs vectors. Once these global rhs vec-
tors are constructed, each processor can then solve in-
dependently for the global solution via Eqs. (24), (26),
and (27). Note that Eq. (25) is solved on-processor with-
out communication after Eq. (24) is solved.

As an example of how the global solutions of the
processor corner points are obtained, let us describe the
procedure for the bottom-left grid point of PROC in
Fig. 5. To construct the global solution at this grid point
requires knowing the contribution of the on-processor–
assembled rhs vectors from the neighbors NBR1, NBR2,
and NBR8. Therefore, each processor computes its on-
processor–assembled rhs vectors locally and then sends
its perimeter values to its eight neighboring processors.
This results in a message approximately of the size

20(N 1 1)N a,lev (46)

where the ratio

nHa 5 (47)
nP

represents the number of elements per processor in each
of the two Cartesian directions on each of the six faces
of the hexahedron. Using Eqs. (42) and (45), we can
rewrite Eq. (47) as

Nea 5 . (48)!Nproc

Equation (46) illustrates that the message size scales
linearly with N, Nlev, and a; the constant in Eq. (46)
arises from each processor having four edges and the
primitive equations, in Cartesian coordinates, having
five prognostic variables. Thus at every time step the
perimeter values of the full 3D rhs vectors of each pro-
cessor are sent to its neighbors.

The communication described above is exact for all
processors that do not contain one of the eight corner
points of the hexahedron. In Fig. 5, processor NBH5
only has seven neighboring processors to communicate
with because of the topology of the hexahedron. In ad-
dition, for the special case nH 5 1, each processor has
only four neighbors.

c. Performance

1) MODEL SCALABILITY

One of the main advantages of using spectral element
methods over spectral transform methods is that for an
equivalent resolution the spectral element method al-
lows the use of far more processors. As an example let
us compare SEE-AM with NOGAPS, which uses the
spectral transform method in the horizontal. The most
efficient decomposition for NOGAPS is through a 1D
decomposition along latitude rings. It should be noted,
however, that in general 2D decompositions are more
efficient for spectral transform models, as shown in Fos-

ter et al. (1992). We shall only be comparing the op-
erational version of NOGAPS with SEE-AM, and it
should be understood that the discussion in this section
does not necessarily extend to all spectral transform
models, but it should provide some reasonable esti-
mates.

Using a 1D domain decomposition, the maximum
number of processors that NOGAPS can use is

3
TN 5 N ø T, (49)proc lat 2

where Nlat denotes the number of latitude rings, and T
the resolution of the spectral triangular truncation. In
contrast, the maximum number of processors that SEE-
AM can use is

6
H 2N 5 N [ H , (50)proc e 2N

where we have used Eqs. (42) and (43) in order to
simplify the expression and write it as a function of
hexahedral resolution, H. In other words, SEE-AM can
use as many processors as there are elements. Thus for
fixed N the number of processors allowed by SEE-AM
increases quadratically with resolution, H, while only
linearly for NOGAPS. At the operational T239 reso-
lution NOGAPS can use 360 processors, whereas SEE-
AM (assuming nH 5 30 and N 5 8) can use 5400 pro-
cessors; a 15-fold increase in the number of processors.
Equation (50) shows that if we wish to further increase
the number of processors with SEE-AM, we simply in-
crease nH while decreasing N accordingly in order to
maintain the horizontal resolution. Therefore we could
use nH 5 60 and N 5 4 for a total of 21 600 processors;
a 60-fold increase in the number of processors. How-
ever, decreasing N will impact the solution accuracy and
the issue of efficiency versus accuracy must be carefully
weighed. The point here is that the spectral element
method offers this flexibility to increase either the ac-
curacy or efficiency—a luxury not shared by the spectral
transform method. We leave the detailed discussion of
the issue of efficiency versus accuracy to future work,
but at this point we anticipate using N 5 8; even with
N 5 8, SEE-AM accommodates many more processors
than NOGAPS.

2) COMPARISON WITH NOGAPS

The rate of floating point operations for SEE-AM
increases as

2 3O(n N N ),H lev (51)

which corresponds to the construction of derivatives and
the application of the filter in the spectral element meth-
od. In contrast, the rate of floating point operations for
NOGAPS increases as

3O(N N ),lat lev (52)
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which corresponds to the computation of the Legendre
transform involving the meridional direction. The Le-
gendre transform has been the bottleneck of the spectral
transform method because of the lack of a fast trans-
form, such as the fast Fourier transform (FFT) of Cooley
and Tukey (1965), for the zonal direction.

In order to compare the rates of operations between
SEE-AM and NOGAPS, we rewrite Eqs. (51) and (52)
as functions of resolution, H and T, as follows:

2O(H N N),lev (53)

3O(T N ),lev (54)

for SEE-AM and NOGAPS, respectively. Thus the cost
increases cubically with resolution, T, for NOGAPS,
while it only increases quadratically for SEE-AM, H,
provided that N remains fixed.

To understand why the spectral transform method be-
comes increasingly more expensive than the spectral
element method requires revisiting Eqs. (51) and (52).
For the spectral element method, the horizontal reso-
lution is governed by nH and N. Recall that nH governs
the number of spectral elements, while N is the order
of the polynomials. This last term is analogous to Nlat

in Eq. (54) for the spectral transform method. To in-
crease the horizontal resolution of a spectral transform
model requires increasing Nlat , which increases the cost
by its cube; there is no way around this. In contrast,
with the spectral element method one has the choice of
increasing either the number of elements or the order
of the polynomial. Since the cost increases cubically
with N and only quadratically with nH, then it makes
sense to keep the polynomial order fixed and increase
the number of elements to obtain higher resolutions.
This flexibility is due to the h–p nature of the spectral
element method. By keeping nH fixed (say nH 5 1) and
increasing N, we reach the spectral transform limit of
the spectral element method (known as the p-type meth-
od). On the other hand, by keeping N fixed (say N 5
1) and increasing nH, we obtain the linear finite-element
limit of the spectral element method (known as the h-
type method). On serial computers the optimal strategy
for selecting nH and N is usually to pick N in the range
[8, 16] and increase nH to yield the desired resolution.

The rates reported in Eqs. (53) and (54) are based on
a per time step basis; however, in practice the spectral
transform method admits a much larger time step than
the spectral element method. This is due to the time step
stability limits being different for the two models. For
NOGAPS the time step must be decreased linearly with
horizontal resolution T,

1
TDt } ,

T

while for SEE-AM the time step scales as

1 1 1
HDt } [ .

2n N N HH

Therefore, if we use the p version of the spectral element
method, then the time step must be decreased quadrat-
ically with resolution; however, if we keep N fixed then
we can achieve a linear decrease of the time step with
resolution that will allow spectral element models to
compete with spectral transform models. Let us now
compare how the time steps differ for NOGAPS and
SEE-AM.

The explicit leapfrog version of NOGAPS admits a time
step 3.5 times larger than the explicit leapfrog version of
SEE-AM, and the semi-implicit version of NOGAPS ad-
mits a time step 15 times larger than SEE-AM. Thus for
SEE-AM to be competitive with NOGAPS, it must be far
more efficient on a per grid point and per time step basis.
In Taylor et al. (1997), they show that the cost per grid
point of the spectral transform method is

4.25N 1 107 logN ,lat lat

and that of the spectral element is 192 for N 5 8. These
cost estimates are computed on a per processor basis.
Based on these cost estimates, the explicit SEE-AM
model will outperform the explicit NOGAPS beyond
resolutions of T108, and the semi-implicit NOGAPS
beyond T406. Currently, some spectral transform mod-
els are running beyond T406, such as the ECMWF mod-
el, which uses T511, and NOGAPS is expected to be
at or beyond this resolution in the near future. A semi-
implicit implementation of SEE-AM will outperform
the semi-implicit NOGAPS beyond a resolution of
T185, which is well below the current operational res-
olution of T239. This resolution is obtained by com-
paring the serial versions of our semi-implicit imple-
mentation of SEE-AM, in which we use a conservative
estimate of a factor of 2 increase in performance over
the explicit SEE-AM; however, this does not necessarily
guarantee that we will achieve this gain in the parallel
version, but it does provide a good estimate. Nonethe-
less, much work has been done regarding this issue, and
we hope to benefit from the volume of work in the
literature on this topic, most notably, the parallel elliptic
solvers of Tufo and Fischer (1999) for the Navier–
Stokes equations and the work by Loft et al. (2001) and
Thomas et al. (2002) for the multilevel shallow water
equations.

In Fig. 6 we show a performance comparison on an
IBM SP3 for the explicit NOGAPS and SEE-AM mod-
els; both models use a resolution of T159 with Nlev 5
24 vertical levels and the explicit SEE-AM time step,
Dt 5 35 s. The results of this figure are summarized as
follows. First, SEE-AM (spectral element) is much fast-
er than NOGAPS (spectral transform) on a per time step
and per processor basis. For an equal number of pro-
cessors, say 150, SEE-AM is more than 2 times faster
than NOGAPS. Second, SEE-AM can use many more
processors than NOGAPS. At a resolution of T159, NO-
GAPS can only use 150 processors effectively; note that
beyond 150 processors the performance of NOGAPS
decreases. In contrast, SEE-AM is able to use 600 pro-
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FIG. 6. The simulation days per wall clock time as a function of
processors, Nproc, for the explicit NOGAPS and SEE-AM, for T159
and Nlev 5 24. Both models use the maximum allowable time step
for SEE-AM.

FIG. 7. The simulation days per wall clock time as a function of
processors, Nproc, for the semi-implicit NOGAPS, explicit NOGAPS,
and SEE-AM, for T159 and Nlev 5 24. Each model uses its maximum
allowable time step.

cessors effectively, and it can accommodate up to 2400
processors. Finally, the results presented in Fig. 6 are
very reassuring because they show that SEE-AM scales
linearly for increasing processor number. At 600 pro-
cessors, both the model and the communication network
did not suffer any severe penalties. Although we should
not expect to get the same type of performance on 2400
processors, it is exciting to anticipate that it may be
possible.

The results in Fig. 6 clearly show that SEE-AM is
far more efficient than NOGAPS on a per time step
basis and per processor basis. However, NOGAPS can
use a time step much larger than SEE-AM. In Fig. 7
we plot the results for the semi-implicit NOGAPS, ex-
plicit NOGAPS, and explicit SEE-AM for a T159 hor-
izontal resolution with 24 vertical levels. The results
shown here are plotted using the maximum time step
that each model allows, and they are Dt 5 540, 120,
and 35 s for the semi-implicit NOGAPS, explicit NO-
GAPS, and SEE-AM, respectively.

The results of this study are summarized as follows.
For small processor numbers NOGAPS outperforms
SEE-AM. However, for processor numbers greater than
250 SEE-AM outperforms the explicit NOGAPS. If the
linear scalability of SEE-AM were to hold for increasing
processor numbers, we would expect SEE-AM to out-
perform the semi-implicit NOGAPS at around 900 pro-
cessors. However, if we could double the time step by
introducing a semi-implicit implementation, then SEE-
AM would outperform the semi-implicit NOGAPS be-
yond 500 processors. It is possible to further increase
the efficiency of SEE-AM because this model has not
yet been fully optimized. The results presented in this
section should not be taken as the optimal performance
of spectral element models but merely as a first attempt
at constructing fast and efficient NWP models. We hope

to benefit from the work of Thomas et al. (2002) and
Loft et al. (2001) on the optimization of spectral element
models.

6. Results

In this section we validate SEE-AM using barotropic
and baroclinic test cases. The barotropic cases are used
to confirm the exponential accuracy of the discrete spec-
tral element horizontal operators. The baroclinic cases
are used to validate the full 3D primitive hydrostatic
equation model. In order to judge the accuracy of the
model, we plot normalized L2 error norms defined as
follows:

2(q 2 q ) dxE exact G

V

\q \ 5 , (55)G L2 Î
2q dxE exact

V

where qG is the computed solution vector, qexact is the
exact solution, and the norm is computed as a broken
norm. All the results are computed using 64-bit arith-
metic precision.

a. Barotropic tests

To validate the spectral element discrete operators,
we run the model using the shallow water tests 1, 2,
and 3 in Williamson et al. (1992). Because these tests
admit exact solutions, we are able to plot normalized
geopotential, f, L2 error norms. Figure 8 shows that
SEE-AM achieves the expected exponential conver-
gence regardless of whether the icosahedral or hexa-
hedral grid is used. Case 1 will not yield exponential



146 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 8. Barotropic cases 1, 2, and 3: The geopotential, f, nor-
malized L2 error as a function of polynomial order, N, for the Wil-
liamson et al. (1992) shallow water tests 1, 2, and 3 using (a) ico-
sahedral and (b) hexahedral grids. The nI 5 1 icosahedral grid and
nH 5 1 hexahedral grid are used, and the results are reported for 12,
5, and 5 days for cases 1, 2, and 3, respectively.

FIG. 9. Barotropic case 1: The geopotential, f, normalized L2 error
as a function of horizontal resolution, H, for the Williamson et al.
(1992) shallow water case 1 after 12 days for SEE-AM (thick line),
the Jakob-Chien et al. (1995) (spectral transform), the Heikes and
Randall (1995) (finite difference), and the Taylor et al. (1997) (spec-
tral element) models. The SEE-AM model uses the nH 5 1 (Ne 5 6)
grid.

FIG. 10. Barotropic case 2: The geopotential, f, normalized L2

error as a function of horizontal resolution, H, for the Williamson et
al. (1992) shallow water case 2 after 5 days for SEE-AM (thick line),
the Jakob-Chien et al. (1995) (spectral transform), the Heikes and
Randall (1995) (finite difference), the Taylor et al. (1997) (spectral
element), and the Tomita et al. (2001) (finite difference) models. The
SEE-AM model uses the nH 5 1 (Ne 5 6) grid.

convergence because of the nonsmooth nature of the
derivatives at the base of the cosine bell.

In Figs. 9, 10, and 11, we compare SEE-AM on hexa-
hedral grids with various other models. These models
are the Jakob-Chien et al. (1995) (spectral transform),
Heikes and Randall (1995) (finite difference), Taylor et
al. (1997) (spectral element), and the Tomita et al.
(2001) (finite difference) models. These models were
chosen because they are representative of the current
methods being explored for future NWP and climate
models. The Jakob-Chien et al. model uses the same
horizontal operators used in the NOGAPS (Hogan and
Rosmond 1991), ECMWF (Simmons et al. 1989), NCEP
(Sela 1980), and NCAR (Hack et al. 1992) spectral
transform models. The Heikes and Randall model uses
the same horizontal operators as those in the Colorado
State University geodesic grid climate model (Randall

et al. 2002; Ringler et al. 2000) and is similar to the
German Weather Service model (GME; Majewski et al.
2002). The Tomita et al. model uses the horizontal op-
erators expected to be used in the Japanese Earth Sim-
ulator project. Finally, the Taylor et al. model uses sim-
ilar horizontal operators to the NCAR spectral element
dynamical core (Loft et al. 2001; Thomas et al. 2002)
and the Rutgers University spectral element ocean mod-
el (Iskandarani et al. 2002). Although it is very difficult
to compare different models, we have chosen to use
equivalent horizontal resolutions based on the number
of grid points. Thus for gridpoint models we compute
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FIG. 11. Barotropic case 3: The geopotential, f, normalized L2

error as a function of horizontal resolution, H, for the Williamson et
al. (1992) shallow water case 3 after 5 days for SEE-AM (thick line),
the Jakob-Chien et al. (1995) (spectral transform), the Heikes and
Randall (1995) (finite difference), the Taylor et al. (1997) (spectral
element), and the Tomita et al. (2001) (finite difference) models. The
SEE-AM model uses the nH 5 1 (Ne 5 6) grid.

FIG. 12. Rossby–Haurwitz wavenumber 4: The surface (a) pressure (hPa), (b) temperature
(K), (c) zonal velocity (m s21); and (d) meridional velocity (m s21) for SEE-AM, with
H160 (nH 5 20, N 5 8) and Nlev 5 24, for a 5-day integration.

the equivalent hexahedral resolution by using Eqs. (41)
and (43) such that for a given number of grid points Np

we get

N 2 2pH 5 .! 6

The results for the horizontal operators are summa-
rized as follows. Figures 9 and 10 show that for cases
1 and 2 SEE-AM yields the best accuracy of all the
models including the high-accuracy Jakob-Chien et al.
(1995) and Taylor et al. (1997) models. For case 1, SEE-

AM is almost an order of magnitude more accurate than
the Taylor et al. model and is twice as accurate as the
Jakob-Chien et al. model. For case 2, SEE-AM is ap-
proximately eight orders of magnitude more accurate
than these two high-accuracy models. The plateauing of
the error for SEE-AM is due to the accuracy-reaching
machine precision. Finally, Fig. 11 shows that for case
3 SEE-AM gives better accuracy than all the other mod-
els except for the spectral transform model of Jakob-
Chien et al., which yields a slightly more accurate result
(0.7 3 1029 compared to 1 3 1029).

b. Baroclinic tests

Because there are no analytic solutions to the full
atmospheric equations, we cannot run test cases as in
the barotropic case and compare to exact solutions. In-
stead, we need to either use test cases in which the
outcome is a simple enough pattern that might be easily
discerned beforehand or we need to run benchmark test
cases run by a vast community. We have chosen to use
both types of test cases: the Rossby–Haurwitz wave and
the balanced initial state representing the former and the
Held–Suarez test and the baroclinic instability testing
the latter.

No diffusion operators are included in any of our
results for both NOGAPS and SEE-AM. At every time
step, the ⅔ triangular truncation is applied to NOGAPS
and the elementwise filter is applied to SEE-AM.

1) ROSSBY–HAURWITZ WAVENUMBER 4

In order to judge the accuracy of SEE-AM, we com-
pare it to NOGAPS for the Rossby–Haurwitz wave-
number 4. This test does not have an analytic solution,
and so we use it for qualitative comparisons. From Mon-
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aco and Williams (1975), we initialize the model as
follows: the wind velocity is

1
n11u(l, w, s) 5 2 [A sin(nl) cos w 2 nA sin(nl)

a
n21 2 23 cos w sin w 2 Ba cosw],

1
n21y(l, w, s) 5 [An sinw cos w 2 nA sin(nl) cos(nl)],

a

∀s ∈ [0, 1], where

50a 20
A 5 , B 5 ,

n a

where a is the earth’s radius, and n is the wave number.

The temperature field is based on the NACA standard
atmosphere and is defined as

T 5 288 2 0.0065z (K),

where

0.19023p
z 5 44 308 1 2 (m).1 2[ ]po

The terrain pressure is given as

5.2568
f

p 5 p 1 1 2 p ,o t1 2434 505.6

where the geopotential is

2 2 2 2f 5 a A 1 a B sin(nl) 1 a C [2 sin (nl) 2 1] andf f f

2 2B 1 A 2n
2 2n 2 2A 5 (2V 1 B) cos w 1 cos w (n 1 1) cos w 1 (2n 2 n 2 2) 2 ,f 2 21 2 [ ]2 4 a cos w

A
2(V 1 B)

2a
n 2 2 2B 5 cos w[(n 1 2n 1 2) 2 (n 1 1) cos w],f (n 1 1)(n 1 2)

21 A
2n 2C 5 cos w[(n 1 1) cos w 2 (n 1 2)].f 21 24 a

Surface contours of the prognostic variables after a
5-day integration for T159, Nlev 5 24 resolutions of
SEE-AM and NOGAPS, are shown in Figs. 12 and 13,
respectively. The results between the two models are
virtually indistinguishable. This means that both models
yield similar values for all of the prognostic variables
as well as similar phase speeds—an important property
for the successful tracking of tropical cyclones. It should
not be surprising that SEE-AM gives identical results
to NOGAPS. Both models use the same temporal and
vertical discretization methods. The only difference is
in the horizontal discretization methods. However, in
section 6a, using barotropic test cases, we showed that
the spectral element method gives almost identical ac-
curacy to the spectral transform method.

Having established the accuracy of the model, we now
turn to the stability of the spectral element model for
longer time integrations.

2) HELD–SUAREZ TEST CASE

This test case was introduced by Held and Suarez
(1994) and has been the most widely used test for dy-
namical cores. In essence, this test case provides a good
platform to assess the capabilities of the model in sim-
ulating a realistic climate circulation. Simple boundary

conditions are used in order to parameterize the radiative
forcing at the surface. The momentum and potential
temperature equations are slightly altered in order to
introduce an equilibrium temperature due to the subgrid-
scale physical processes, and a Rayleigh damping of the
low-level winds is included to represent boundary layer
friction. The momentum equation is now defined as fol-
lows:

]u
5 · · · 2 k u,y]t

and the potential temperature is

]u
5 · · · 2 k (u 2 u ),u eq]t

where the ellipses denote the usual terms in the mo-
mentum and potential temperature equations [see Held
and Suarez (1994) for the values of ky, ku, and ueq]. For
this test we use an equivalent resolution to that used in
Held and Suarez (1994), namely, H64 (nH 5 8 and N
5 8), with 20 vertical levels (Nlev). The mean zonally
averaged zonal velocity and temperature are shown as
a function of the vertical coordinate s in Fig. 14. These
plots are obtained from a 1200-day integration, with the
results sampled every 4 days beginning with day 200.
These results compare quite well with those obtained



JANUARY 2004 149G I R A L D O A N D R O S M O N D

FIG. 13. Rossby–Haurwitz wavenumber 4: The surface (a) pressure (hPa), (b) temperature
(K), (c) zonal velocity (m s21), and (d) meridional velocity (m s21) for NOGAPS, with
T159 and Nlev 5 24, for a 5-day integration.

FIG. 14. Held–Suarez test: Plots of the (a) mean zonally averaged zonal velocity (m
s21) and (b) mean zonally averaged temperature (K) for SEE-AM after 1200 days for
H64 (nH 5 8, N 5 8) and Nlev 5 20.

with the spectral transform model in Held and Suarez
(1994), where the midlatitude jets in the upper atmo-
sphere are clearly visible (Fig. 14a) and a realistic tem-
perature stratification is maintained (Fig. 14b).

3) JABLONOWSKI–WILLIAMSON TEST CASES

The following two cases represent a new set of tests
for judging the accuracy and stability of dynamical
cores. These tests are introduced in Jablonowski and
Williamson (2002).

The surface pressure is initially given as ps(l, w) 5
1000 hPa, and the initial wind velocities are defined as

3/2 2u(l, w, s) 5 u cos s sin (2w),0 y

y(l, w, s) 5 0,

where u0 5 35 m/s, sy 5 (s 2 s0)p/2, s0 5 0.252,

and s is the vertical coordinate. The horizontally av-
eraged temperature is

R G/gdT s for s $ s0 tT(s) 5
R G/g 55 dT s 1 DT(s 2 s) for s , s ,0 t t

where T0 5 288 K, G 5 0.005 K m21, g 5 9.806 m
s22, DT 5 4.8 3 105 K, and st 5 0.2 is the tropopause
level. Defining the following functions

1 10
6 2A 5 22 sin w cos w 1 1 ,c 1 2[ ]3 63

8 2 p
3 2B 5 1av cos w sin w 1 2 ,c 1 2[ ]5 3 4

we can now write the potential temperature as follows:
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FIG. 15. Jablonowski–Williamson balanced initial state: The nor-
malized surface pressure, p, L2 error as a function of days for SEE-
AM H160 (nH 5 20, N 5 8), with 24 vertical levels.

FIG. 16. Jablonowski–Williamson baroclinic instability: The min-
imum surface pressure (hPa) as a function of days for the NASA
(finite volume), GME (finite difference), NCAR (spectral transform),
and SEE-AM (spectral element, with nH 5 20 and N 5 8) models
using 26 vertical levels. (The data for the first three models are cour-
tesy of C. Jablonowski.)

u(l, w, s) 5 P(l, w, s)T(s)

3 spu01 P(l, w, s)
4 Rd

1/2 3/23 sins cos s [2u cos (s )A 1 B ],y y 0 y c c

where P is the Exner function and (a, v) are the radius
of the earth and its angular velocity, respectively. The
surface geopotential is

p
3/2f (l, w) 5 u cos (s 1 s )s 0 s 0[ ]2

p
3/23 u cos (s 2 s ) A 1 B ,0 s 0 c c5 6[ ]2

where ss 5 1. We compare SEE-AM with three well-
established models using these test cases:

• Balanced initial state. For this test case, the atmo-
sphere is initially balanced by the above equations for
surface pressure, ps; wind velocities, (u, y); potential
temperature, u; and surface geopotential, fs. Using
these initial conditions, the equations should remain
balanced for an indefinite amount of time. Figure 15
shows the normalized surface pressure, p, L2 error
norm as a function of time for a 30-day period for
SEE-AM with H160 horizontal resolution and 24 ver-
tical levels. Note that while the error oscillates with
time it remains bounded, which confirms that the ini-
tial balanced state is maintained.

• Baroclinic instability. This case is similar to the bal-
anced initial state except that now a perturbation is
added to the initial zonal velocity. This perturbation
is given by

2r
û(l, f) 5 exp 2 ,1 2[ ]R

where

r 5 a arccos[sinw sinwc

1 cosw cosw cos(l 2 l )],c c

and (lc, wc) 5 (p/9, 2p/9) and R 5 a/10 are the
location of the perturbation and its radius.

This perturbation grows until a baroclinic instability
develops and then breaks near day 9. Figure 16 shows
the minimum surface pressure ps as a function of time
for SEE-AM against various models including the
NCAR spectral transform model (Hack et al. 1992), the
National Aeronautics and Space Administration
(NASA) Goddard finite-volume model (Yeh et al. 2002),
and the German Weather Service icosahedral finite-dif-
ference model (Majewski et al. 2002) known as GME;
the results of the latter three models are courtesy of C.
Jablonowski (2003, personal communication). Figure 17
shows a zoomed in version of Fig. 16. For the gridpoint
models, we use the definition of equivalent hexahedral
resolution, H, which we defined for the barotropic test
cases. The results of this case are summarized as fol-
lows. Figure 16 shows that all four models are in com-
plete agreement until day 8, at which point the two
lower-order models, NASA and GME, diverge from the
NCAR and SEE-AM models. NASA and GME compare
well with each other throughout the 14-day integration.
There are some slight deviations between days 12 and
13 (Fig. 17), but overall they both follow the same pat-
tern. The two higher-order models, NCAR and SEE-
AM, compare extremely well with each other through-
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FIG. 17. Jablonowski–Williamson baroclinic instability: A zoomed-
in view of Fig. 16.

out the 14-day integration. This can be seen more clearly
in Fig. 17, where the pressure curves are directly on
top of each other.

7. Conclusions

A new dynamical core constructed using the spectral
element method based on 3D Cartesian coordinates is
presented. The advantages of using Cartesian coordi-
nates are the elimination of the polar singularity; the
flexibility to use any grid, including adaptive unstruc-
tured grids; and the ease with which the Eulerian model
can be converted to a semi-Lagrangian form. The ad-
vantage of using the spectral element method is that it
achieves the same order of accuracy as the spectral
transform method while taking better advantage of dis-
tributed-memory computers.

In this paper we show results for icosahedral and
hexahedral grids, and in future work we expect to report
on the use of adaptive unstructured grids. The expo-
nential accuracy of the spectral element method is il-
lustrated using analytic solutions to barotropic test cas-
es, which confirms that the spectral element method
yields at least the same level of accuracy obtained with
the spectral transform method. Using baroclinic test cas-
es, we demonstrate that our spectral element atmospher-
ic model gives similar results to spectral transform mod-
els, including the U.S. Navy’s NWP model and the
NCAR climate model. Finally, the performance of the
spectral element model is shown to scale linearly with
increasing processors—a trait not shared by spectral
transform models. Through our comparison of NO-
GAPS and SEE-AM, we show why the spectral element
model will outperform spectral transform models for the
types of horizontal resolutions required by future NWP
applications.

The results confirm that SEE-AM offers an attractive
alternative strategy for constructing future NWP and

climate models on parallel computers. In order to make
SEE-AM competitive with operational NWP spectral
transform models, we are extending the explicit Eulerian
model to semi-implicit Eulerian and fully implicit semi-
Lagrangian, and we hope to report our findings in the
future.
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APPENDIX

Characteristic Velocity of the Atmospheric
Equations

The atmospheric equations can be written in the fol-
lowing conservation form:

]q
1 = · F 5 S(q),

]t

where

p 

pu 
q 5 py , 

pw 
pu 

 0

2vz ]p
2 p(yw 2 zy) 1 f 2 mx

2a ]x 2vz ]p ]
S(q) 5 2 p(zu 2 xw) 1 f 2 my 2 (qṡ), 

2a ]y ]s

2vz ]p
2 p(xy 2 yu) 1 f 2 mz

2a ]z 
0 

F 5 f i 1 gj 1 hk,

where i, ĵ, k̂ denote the Cartesian directional vectors,
and the fluxes are
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pu py   
2pu 1 pf pyu   

2f 5 pyu , g 5 py 1 pf ,   
pwu pwy   
puu puy   

pw 
puw 

h 5 pyw . (A1) 
2pw 1 pf 
puw 

The eigenvalues of ]F/]q are

 U 1 Ïf

U 2 Ïf 
L 5 U , 

U 
U 

where U 5 n · u, and the maximum wave speed of the
atmospheric equations is Lmax 5 U 1 .Ïf
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