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Abstract

The paper is concerned with a particular case of stress amplification
arising from the proximity of a spherical cavity to the boundary of a
loaded elastic solid. The performed approximate analysis yields dis-
tributions of stresses and displacements in the narrow region formed
between a spherical cavity and the faces of a thin flat layer subjected
to a far field uniform radial tension. The narrow region is modelled
as a circular plate of non-uniform thickness undergoing coupled mem-
brane and flexural deformation. Series solutions are obtained for both
membrane forces and bending moments leading to estimates for the
stress concentration factor at minimum thickness. These predictions
are found consistent with those obtained from both the exact analytical
solution and finite element modelling of the problem. Cross-validated
results from the two latter methods also provide trends for the stress
amplification due to the narrowness of the region.

Keywords: voids, narrow regions, stress concentrations

1 Introduction

Stress concentrations and amplifications around holes and cavities are im-
portant indicators of possible material failure in engineering components
and structures. They are also linked to void growth and coalescence in
porous continua. In the latter case, three-dimensional models of solids with
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spherical or ellipsoidal cavities are certainly more representative of the phys-
ical problem rather than the two-dimensional ones for plates or discs with
holes. This paper presents approximate solutions for stress concentration
and amplification of one such three-dimensional elasticity problem.

Analytical studies of stress concentrations arising from holes or cylindri-
cal cavities in two-dimensional regions can be found in classical Elasticity
literature [1]. More recently, attention has turned to the effects of holes in
close proximity to each other or to the boundary of a body thus giving rise to
narrow regions labelled as ligaments. Approximate solutions [2, 3] exist for
such cases yielding the stress concentration factor according to its conven-
tional definition, namely as the ratio of the maximum stress developing at
the boundary of the hole to the nominal, mean stress σ0 over the weakened
cross sectional area of the ligament. The mean stress itself is significantly
amplified as the width of the ligament tends to zero and recent studies have
focused on the order of such amplification for various two-dimensional con-
figurations involving circular holes or cylindrical cavities near the boundaries
of stressed regions [4].

In statically determinate problems, the ligament mean stress σ0 is easily
obtained in terms of the far field tension T and the minimum ligament
thickness h0. An interesting, statically indeterminate case arises from the
presence of a hole near the straight boundary of the infinite half space. The
exact solution of this problem [5, 6] has been studied to provide additional
insight into the relation between ligament nominal stress and thickness as
the hole approaches the half space boundary [7].

Analytical solutions for solids with spherical cavities, especially when
the latter form narrow regions by being very close to the boundary or to
each other, are less common due to the complexity of the respective three-
dimensional problem. An approximate solution for the stress concentration
factor has been obtained in the case of a spherical cavity in a cylindrical
bar subjected to remote uniform axial tension as shown in Fig.1 [2]. The
narrow region in this problem is a cylindrical shell of variable thickness. The
mean stress over the section of minimum thickness can be easily obtained
by applying force equilibrium in the axial direction; this gives

σ0 =
(R+ h0)

2

(R+ h0)2 −R2
T = ST, (1)

where S is the stress amplification factor associated with the narrowness of
the region between the cavity and the bar’s cylindrical surface.



Stress amplification in three-dimensional narrow zones... 73

Figure 1: Centrally located spherical cavity in a cylindrical bar under uni-
form axial tension

For δg = h0/R << 1,

S ∼=
R

2h0
=

1

2δ
; (2)

therefore, S in the thin shell is of the same order of magnitude as in the
ligament between a central hole and the edges of a flat strip [4]. The nominal
stress is further amplified according to

σmax = Kσ0, (3)

where K is the conventional stress concentration factor. Approximate anal-
ysis [2] located σmax at the surface of the cavity and produced the expression

K =
(6− 4ν)(1 + ν)

5− 4ν2
, (4)

where ν is the Poisson’s ratio of the material.
In principle, stress amplification arising from reducing the thickness of

the region between voids can be identified by studying the corresponding
trends in an existing solution adopting a strategy similar to that employed
for the two-dimensional Mindlin problem [8]. A three-dimensional elasticity
problem with a known solution to which such a strategy would be applicable
is that of two cavities in an infinite elastic medium under remote uniform
tri-axial tension [9]; the respective stress and displacements fields are given
as infinite series with coefficients obtained from systems of infinite equa-
tions. However, it was numerically shown through the solution of truncated
systems [9] that the convergence of the stress results is becoming extremely
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slow and is eventually lost as the two cavities approach each other; hence
it is practically impossible to identify explicit stress magnification trends
from that particular analysis. Various such formal, infinite series solutions
of other three-dimensional stress concentration problems are cited and dis-
cussed in the main body of the paper.

A general strategy, potentially applicable to both two- and three-dimen-
sional problems, was proposed [10] whereby two separate solutions are de-
veloped, one for the narrow region, which can be considered as a thin plate
or shell, and another for the rest of the solid. The two solutions should
be kinematically compatible at the interface between the two regions. This
concept has been applied to the problem of assessing stress amplification in
the neighbourhood of a large eccentric hole in a strip under tension [3].

In this paper, a particular three-dimensional problem is considered and
approximate solutions are obtained for displacements and stresses in its nar-
row region in the form of infinite series. The narrow region is modelled as
a circular plate of variable thickness. The analysis leads to an approximate
expression for the stress concentration factor due to the presence of a spheri-
cal cavity near the solid boundary. A mathematically rigorous infinite series
solution of the overall problem as well as its finite element modelling provide
further insight into the validity of theoretical assumptions and results; they
also allow the assessment of stress amplification trends as the thickness of
the narrow region goes to zero.

2 Description of the problem

An infinite plate with a symmetrically located spherical cavity of radius
R is shown in Fig.2 with the origin of the adopted cylindrical frame of
reference located at the centre of the cavity. The geometry of the problem
can also be considered as representative of a small cavity placed between two
large ones with infinite radiuses. The plate is subjected to uniform radial
tension at infinity. The presence of the cavity creates two narrow regions,
symmetrically located with respect to the r − θ plane. With the minimum
thickness of each narrow region denoted by h0, the thickness of the plate is
2a = 2(R+h0). The problem is obviously axisymmetric as well as statically
indeterminate.

A formal solution of this problem under much more general loading con-
ditions has been obtained [11] considering an infinite flat layer uniformly



Stress amplification in three-dimensional narrow zones... 75

Figure 2: Centrally located spherical cavity in an infinite plate under uni-
form radial tension

compressed on both faces and also subjected to arbitrary coupled kinematic
and traction conditions on the surface of the cavity. This general solution
is very complex and does not seem to have been numerically implemented.
More tractable solutions have been obtained in the case of uniform radial
tension at infinity. Ling [12] derived the appropriate stress function satis-
fying the biharmonic equation for axisymmetric elasticity [13] in the form
of an infinite series. Fox [14] represented the displacement vector also in
the form of an infinite series and adopted an iterative procedure whereby
each term was constructed from its predecessor. Neither of these solutions
can be mathematically manipulated to relate explicitly the stress factors
S and K to the minimum thickness h0. Ling’s solution was numerically
implemented here in order to examine the trends for both σ0 and σmax as
h0 approaches zero. Such calculations contributed to the validation of an
approximate expression for the limit value of the stress concentration factor
K, whose derivation was the main objective of this paper. They also con-
firmed finite element results for σ0 thus providing confidence in the proposed
approximation for the amplification factor S.

The adopted methodology for obtaining K is similar to Koiter’s approx-
imate approach [2] with the simple beam or cylindrical shell theory here
replaced by the Kirchhoff plate theory. The weakened part of the infinite
plate (0 ≤ r ≤ R) can be considered as two, symmetrically positioned cir-
cular plates of radius R and variable thickness

h = h0 +R−
√
R2 − r2. (5)



76 Stavros Syngellakis

For r << R, Eq.(5) is simplified to

h ∼= h0 +
r2

2R
. (6)

The stress and deformation fields near the centre of each narrow region are
determined by solving the partial differential equations governing in-plane
resultant forces Nr, Nθ and bending moments Mr, Mθ within that region.

3 Governing equations

The applied theory is based on Kirchhoff’s thin plate hypothesis. A schematic
view of a section by a plane through the axis of symmetry is shown in Fig.3.
Referring to the notation of that figure, the axisymmetric displacement com-

Figure 3: Enlarged view of a section of the narrow region by a plane through
its axis of symmetry.

ponents û(r, z) and ŵ(r, z) can be assumed as given by

û(r, z) = u(r) + ψ(r)

[
z − h(r)

2

]
, ŵ(r, z) = w(r), (7)
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where u is the radial displacement over the mid-surface of the plate and ψ
the rotation of the cross section normal to the radial direction satisfying

ψ = −dw
dr
,

so that the shear strain relative to the adopted frame of reference vanishes.
Thus, the non-vanishing normal strain components are given by

εr =
du

dr
+

(
z − h

2

)
dψ

dr
− 1

2

dh

dr
ψ, εθ =

u

r
+

(
z − h

2

)
ψ

r
. (8)

Using the stress-strain relations of plane stress elasticity and the definition
of the membrane forces leads to the constitutive relations

Nr =
Eh

1− ν2

(
du

dr
+ ν

u

r
− 1

2

dh

dr
ψ

)
,

Nθ =
Eh

1− ν2

(
u

r
+ ν

du

dr
− ν

2

dh

dr
ψ

)
,

(9)

where E is the Young’s modulus. Similarly, expressions of the bending
moments are obtained in terms of the deflection gradient as

Mr =
Eh3

12(1− ν2)

(
dψ

dr
+ ν

ψ

r

)
,

Mθ =
Eh3

12(1− ν2)

(
ψ

r
+ ν

dψ

dr

)
.

(10)

The equilibrium equations

dNr

dr
+
Nr −Nθ

r
= 0, (11)

dMr

dr
+
Mr −Mθ

r
+
Nr

2

dh

dr
= 0, (12)

can be derived by considering the equilibrium of an infinitesimal plate ele-
ment with sides normal to co-ordinate directions or by integrating the stress
equations of axisymmetric elasticity through the plate thickness.

Eqs.(11) and (12) are transformed into ones for the mid-surface radial
displacement u and deflection gradient ψ using constitutive relations (9)
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and (10) and accounting for the approximation represented by Eq.(6). This
process leads to the coupled differential equations(

h0 +
r2

2R

)
d2u

dr2
+

(
h0 +

3r2

2R

)
1

r

du

dr
−

[
h0 + (1− 2ν)

r2

2R

]
u

r2

=
1

2R

(
h0 +

r2

2R

)[
r
dψ

dr
+ (2− ν)ψ

]
+

r2

2R2
ψ,

(13)

−
(
h0 +

r2

2R

)2(
d2ψ

dr2
+

1

r

dψ

dr
− ψ

r2

)
− 3r

R

(
h0 +

r2

2R

)(
dψ

dr
+ ν

ψ

r

)
+

3r2

R2
ψ =

6r

R

(
du

dr
+ ν

u

r

)
.

(14)

Defining length parameter b =
√
2h0R and introducing the dimensionless

variable

ρ =
r

b
,

Eqs.(13) and (14) are transformed to

ρ2(1 + ρ2)u′′+ ρ(1 + 3ρ2)u′ − [1 + (1− 2ν)ρ2]u

= h0(1 + ρ2)[ρψ′+ (2− ν)ψ] + 2ρ2ψ,
(15)

− (1 + ρ2)2
(
ψ′′ +

1

ρ
ψ′ − ψ

ρ2

)
− 6ρ(1 + ρ2)

(
ψ′ + ν

ψ

ρ

)
+ 12ρ2ψ =

12

h0
(ρu′ + νu),

(16)

where dashes represent derivatives with respect to ρ.

Solution trends are sought from the coupled system of differential equa-
tions (15) and (16) as h0 becomes arbitrarily small. The form of these
equations suggests an iterative solution process whereby Eq.(15) is initially
solved with its right-hand side neglected. The mid-surface radial displace-
ment thus obtained can then be substituted to Eq.(16) to yield an initial
solution for the deflection gradient. The latter can be introduced back to
the right-hand side of Eq.(15) and a second iteration attempted to improve
solution accuracy.
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4 Mid-surface membrane problem

As explained in the previous section, only the complementary function for
Eq.(15) is initially sought; the particular integral depends on h0 and there-
fore its significance diminishes as h0 → 0. Since u(0) = 0, only a regular
series solution is sought in the form [15]

u =

∞∑
k=0

ckρ
ℓ+k. (17)

Substituting Eq.(17) into the left-hand side of Eq.(15) leads to the charac-
teristic equation

∞∑
k=0

[(ℓ+ k)2 − 1]ckρ
ℓ+k +

∞∑
k=2

[(ℓ+ k − 2)(ℓ+ k)− (1− 2ν)]ck−2ρ
ℓ+k = 0.

(18)
Setting the coefficients of equal powers of ρ equal to zero yields the condition

[(ℓ+ k)2 − 1]ck + [(ℓ+ k − 2)(ℓ+ k)− (1− 2ν)]ck−2 = 0, (19)

which is valid for k ≥ 2. For k = 0 and k = 1, Eq.(18) is satisfied if

(ℓ2 − 1)c0 = 0, (20)

[(ℓ+ 1)2 − 1]c1 = 0, (21)

which are simultaneously satisfied for either ℓ = ±1 and c1 = 0 or ℓ = 0, ℓ =
−2 and c0 = 0. Adopting the first combination of values, it is immediately
obvious that k must be even. It is also noted that, for k = 2, Eq.(19)
becomes

[(ℓ+ 2)2 − 1]c2 + [ℓ(ℓ+ 2)− (1− 2ν)]c0 = 0,

which can be solved for c2 only if ℓ = 1. Thus, the radial displacement can
be expressed as

u = ρ

∞∑
m=0

c2mρ
2m (22)

with the coefficients c2m obtained from the recurrence relation

c2m = −2m2 − 1 + ν

2m(m+ 1)
c2m−2, (23)
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which follows from Eq.(19).
If the combination c0 = 0, ℓ = 0 and ℓ = −2 is adopted, then k is shown

to be odd and condition (19) for k = 3:

[(ℓ+ 3)2 − 1]c3 + [(ℓ+ 1)(ℓ+ 3)− (1− 2ν)]c1 = 0

can be solved for c3 only if ℓ = 0. Thus, the resulting solution for u is
identical to that given by Eq.(22).

It is worth noting that c2m are independent of h0; thus, the series rep-
resented by Eq.(22) can be expressed as a function of ρ and ν:

u = c0f(ρ, ν). (24)

It is obvious from Eq.(23) that c2m form a slowly decaying sequence, there-
fore the series solution (22) converges for ρ < 1. Since

r

R
<

√
2h0
R

within that range, the approximation represented by Eq.(6) is valid provided
h0 << R.

Substituting the solution for the displacement given by Eq.(22) into the
first of Eqs.(9) gives

Nr =
Eh0

b(1− ν2)
(1 + ρ2)

∞∑
m=0

c2m(2m+ 1 + ν)ρ2m. (25)

Thus the membrane force at the centre is given by

N0 = Nr(0) =
Eh0c0
b(1− ν)

. (26)

Re-arranging,

c0 =
b(1− ν)

E

N0

h0
=
b(1− ν)

E
σ0. (27)

4.1 Mid-surface bending problem

Substitution of the solution for u, given by Eq.(22), transforms the right-
hand side of Eq.(16) to

12

h0
(ρu′ + νu) =

12

h0

∞∑
m=0

c2m(2m+ 1 + ν)ρ2m+1,
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which suggests a series solution for Eq.(16) of the form

ψ =

∞∑
m=0

β2mρ
2m+1(1 + ρ2)−2m−1. (28)

The solution given by Eq.(28) is similar to that adopted for Koiter’s stress
concentration problems [2]; it satisfies the symmetry condition ψ(0) = 0
and tends to zero for large ρ. The latter condition is consistent with the
expectation of a clamped edge away from the z axis. Coefficients β2m can
be determined from the characteristic equation obtained by substituting the
assumed solution for ψ , given by Eq.(28), namely,

− 2

∞∑
m=1

β2mm(m+ 1)ρ2m−2(1 + ρ2)−2m+1

+
∞∑

m=0

β2m[(4m+ 1)(2m+ 1)− 3ν]ρ2m(1 + ρ2)−2m

− 4

∞∑
m=0

β2m(2m− 1)(m+ 2)ρ2m+2(1 + ρ2)−2m−1

=
6

h0

∞∑
m=0

c2m(2m+ 1 + ν)ρ2m.

(29)

Introducing the expansion

(1 + ρ2)–k = 1− kρ2 +
k(k + 1)

2
ρ4 − k(k + 1)(k + 2)

6
ρ6 + . . .

into Eq.(29) and setting the coefficients of same powers of ρ equal to zero
generates a system of infinite equations for β2m. Retaining only the first
two terms of the series in Eq.(28), the infinite system of equations derivable
from Eq.(29) reduces to

(1− 3ν)β0 − 4β2 = A, (30)

8β0 + (19− 3ν)β2 = −3 + ν

4
A, (31)

where

A =
6(1 + ν)

h0
c0.
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The above system of equations provides the following solution for β0:

β0 =
4(4− ν)

3(1− ν)(17− 3ν)
A,

Substituting Eq.(28) into the first of expressions (10) gives

Mr =
Eh30

12(1− ν2)b

∞∑
m=0

β2m

[
(2m+ 1 + ν)(1 + ρ2)

− 2(2m+ 1)ρ2
]
ρ2m(1 + ρ2)−2m+2.

Hence, at the centre of the plate,

Mr(0) =M0 =
Eh30

12(1− ν2)b
(1 + ν)β0. (32)

Substituting the expression for β0 into Eq.(32) gives

M0 =
2(1 + ν)(4− ν)

3(1− ν)(17− 3ν)
h0N0.

The extreme values of the radial stress at the centre of the narrow region
are therefore given by

σr|±δ/2 =
N0

h0
± 6M0

h20
=

[
1± 4(1 + ν)(4− ν)

(1− ν)(17− 3ν)

]
σ0. (33)

According to the notation of Fig.3, maximum σr occurs at the bottom face
of the narrow region, hence the stress concentration factor there is given by

K =
(11 + ν)(3− ν)

(1− ν)(17− 3ν)
. (34)

The approximation for K, provided by Eq.(34), can be further improved
by retaining additional terms of the series in Eq.(28) and generating from
Eq.(29) a consistent system of equations governing the respective coefficients
β2m.
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5 Mean stress at minimum thickness

5.1 Exact solution

As already pointed out, Ling [12] derived the stress function of this axisym-
metric problem in the form of infinite series; all stress components can be
obtained by introducing this stress function into the respective differential
operators [13]. The expression for σr(r = 0, z) = σθ (r = 0, z) is of partic-
ular interest here since it provides σmax = σr (r = 0, z = R) as well as the
mean stress

σ0 =
N0

h0
=

1

h0

a∫
R

σr(0, z)dz, (35)

which allow the evaluation of both the amplification and concentration fac-
tors. The evaluation of σz (r = 0, z) is also a useful validation result. This
stress satisfies σz(0, R) = σz (0, a) = 0; therefore, it becomes very small as
h0 = a−R approaches zero. As such, it provides an additional criterion for
assessing the reliability of the truncated solution.

The coefficients of the series solution satisfy a system of infinite linear
algebraic equations and are implicit functions of

λ =
R

a
=

1

1 + δ
.

These coefficients were evaluated through the solution of truncated systems
implemented via a FORTRAN program using double precision accuracy. For
a given λ, the accuracy of the solution depended on the order of truncation
of the infinite series. The number of terms required to achieve a specified
degree of accuracy increased sharply as λ approached 1 or δ approached 0.
Eventually, for very small values of δ, convergence could not be achieved
whatever the order of truncation.

5.2 Solution for zero minimum thickness

The apparent divergence of the exact solution as h0 → 0 is an indication of
a possible singular stress field at r = 0. Such singularity is easily detected in
statically determinate stress concentration problems such as that described
in Fig.1 for which stress amplification is governed by Eq.(2). In the case
of a circular hole near a free surface, σ0 was shown to grow with (R/h0)

1/2

as h0 → 0 [8, 16]. Since, in the present problem, the exact solution fails
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to provide the limit value of σ0 as h0 → 0, this limit is sought by resorting
to the equations of the approximate analysis presented in Section 3. Thus,
σ0 is determined from Eq.(13) with h0 set equal to zero, that is, from the
solution of the differential equation

r2
d2u

dr2
+ 3r

du

dr
− (1− 2ν)u =

r2

2R

[
r
dψ

dr
+ (4− ν)ψ.

]
(36)

Since ψ(0) = 0, it is reasonable to assume a power series expansion for ψ in
the form

ψ =
∞∑
k=1

ψkr
k.

Then, the general solution of Eq.(36) is easily obtained as

u = Arα +

∞∑
k=1

bkr
k+2, (37)

where 0 < α =
√

2(1− ν)− 1 < 1 for 0 ≤ ν < 0.5 and

bk =
k + 4− ν

2R(k2 + 6k + 7 + 2ν)
ψk.

Substituting Eq.(37) into the first of constitutive relations (9) gives

σr =
Nr

h
=

E

1− ν2

[
A(α+ ν)rα−1 +

∞∑
k=1

1− ν2

2R(k2 + 6k + 7 + 2ν)
ψkr

k+1

]
.

This solution confirms that σr is singular at r = 0, therefore σ0 = σr(0)
must also go to infinity as h0 approaches zero. The rate of growth of σ0 with
diminishing h0 is not however revealed. Such information is not provided by
the approximate solution represented by Eq.(22) since its range of validity
vanishes as h0 becomes zero.

5.3 Finite element modelling

Finite element (FE) modelling was attempted as a possible means of obtain-
ing σ0 and σmax for values of λ even closer to 1 than those causing divergence
of the exact series solution. FE results would also provide further insight
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into the stress and displacement distributions of the problem and contribute
to the validation of the obtained approximate analytical results.

The numerical work was based on ANSYS, a general purpose FEM pack-
age [17]. The analyses were performed for δ = 10–n, with n taking four
integer values from 1 to 4. The finite element models were built using plane
8-node quadrilateral elements with the axisymmetric analysis option; a typ-
ical meshed model is shown in Fig.4 for the case δ = 10−2. The mesh was

Figure 4: Finite element model: x − y plane stress for the strip, x-
axisymmetric for the bar and y-axisymmetric for the plate problem.

refined until a stable solution was obtained. In all cases analysed, there
were 20 elements across the section of minimum thickness and a consistent
mesh density within the narrow zone. Systematic mesh control ensured a
gradual element size transition from the minimum at r=0 to the maximum
at the model periphery. The horizontal dimension of the model was chosen
such that the results would be insensitive to any further enlargement of the
model in that direction. As with the numerical implementation of the exact
series solution, the predicted variation of σz(0, z) provided further evidence
on the quality of the mesh.

6 Results and discussion

6.1 Validation

The particular ANSYS element type used can be easily adapted to plane
stress conditions, which are applicable to the problem of a flat strip with
symmetrically located hole [2, 4]. The same plate element can be used for
axisymmetric analyses; thus the model shown in Fig.4 was also applied to the
axisymmetric cylindrical bar problem [2] shown in Fig.1 by specifying the x-
axis of the frame of reference shown in Fig.4 as the axis of symmetry. Thus
the adopted FE modelling was initially validated through its application to



86 Stavros Syngellakis

these two problems. In the case of the strip problem, the theoretical values
for both S and K were almost exactly reproduced by FE for the initially
adopted δ value of 10−1. The corresponding results for the cylindrical bar
reached almost exactly the predictions from Eqs.(2) and (4) for δ = 10−2.

FE results were then obtained for the problem under consideration here,
that is, the axisymmetric problem shown in Fig.2 for which the y-axis in
Fig.4 becomes the z-axis of symmetry. These results were validated by their
comparison with those obtained from the exact series solution [12]. It was
thus necessary to duplicate first and then extend Ling’s results so that there
is greater overlap between them and the respective FE predictions; such
results also helped in establishing trends for the stress amplification and
concentration as λ approaches 1. The variation of σmax/T = KS with λ
for ν = 0.25 is shown in Fig.5. It is worth noting that σmax/T was given

Figure 5: Variation of maximum stress, concentration and amplification
factors with cavity radius

for only λ = 0.25 and λ = 0.5 in the original paper by Ling. The case of
λ = 0 corresponds to that of a cavity in an infinite medium for which the
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exact theoretical result σmax/T = 12/(7–5ν) applies. Ling’s series solution
is here extended over almost the complete range of λ, that is, for up to λ ∼=
0.999 corresponding to δ = 10−3; beyond this value, the existing FORTRAN
program could not produce convergent results. This could, perhaps, have
been achieved through additional programming and computational effort
but it was not pursued since it was not expected to yield information of
commensurate importance.

The stress ratio σmax/T was split into its two factors K and S using
Eq.(35) to compute the mean stress σ0. The plots of these new results, ex-
tracted from the series solution, are also shown on the graph of Fig.5. The
variation of K deserves particular attention since it contrasts the experience
from other well known stress concentration problems such as that of a hole
in a finite or semi-infinite plate or a spherical cavity in a cylindrical bar. In
those problems, K is largest for the infinite solid and drops to its minimum
value as the boundary of the hole or cavity approaches the solid boundary.
In the present problem, K initially drops for values of λ up to, approxi-
mately, 0.5 but then rises again towards a value greater than that for the
infinite solid. This may be due to the extremely slow growth rate of stress
amplification S with decreasing δ; while, in the case of the aforementioned
problems, S goes to infinity as δ−1 or δ−1/2.

The respective FE results for both S and K as well as σmax/T , also
shown in Fig.5, are in excellent agreement with and follow the trends of
those obtained from the analytical, series solution. As a further comparison
between the analytical and FE predictions, the variation of σz at r = 0,
that is, through minimum narrow zone thickness, is presented in Fig.6 for
λ ∼= 0.999 or δ = 10–3. Considering that the maximum σz is three orders
of magnitude smaller than the corresponding σmax, the agreement can be
considered satisfactory. The analytical solution was obtained by retaining
500 terms in the series but a small error at (0,R), where σz should vanish,
still persists while this is absent from the respective FE prediction, which was
obtained using 7,040 elements. In the case of δ = 10–4, it proved impossible
to reach a convergent series solution while FE modelling with a rational mesh
size distribution provided answers consistent with the established trends
shown in Fig.5 as well as a smooth variation for σz(0,z), similar to that
shown in Fig.6, but by one order of magnitude smaller.

Since the derivation of Eq.(34) for the concentration factor K depends,
according to Eq.(16), on the prior knowledge of the radial displacement
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Figure 6: Variation of σz through minimum thickness for h0/R = 0.001,
ν = 0.25

u(r), the accuracy of the approximate solution, Eq.(22), was also examined
by comparing its predictions with respective FE output. The variation of the
ratio u/c0 obtained from Eq.(22) and three FE analyses is plotted against
the dimensionless co-ordinate ρ in Fig.7. This figure shows the consistency
of the FE results as well as their excellent agreement with the predictions
of the present approximate analysis for low values of ρ, that is, for ρ < 0.2.
The increasing discrepancy between the two solutions for ρ > 0.2 can be
attributed to the influence of the right-hand side of Eq.(15), which was not
accounted for in the solution of that equation and should have affected the
higher-order terms of expansion (22).

6.2 Stress concentration factor

The estimates of stress concentration factor K using the approximate ex-
pression in Eq.(34) are plotted in Fig.8 against Poisson’s ratio ν together
with the predictions of the FE analyses for various δ. Results from the exact
series solution are not shown since they are almost identical to the FE pre-
dictions for any value of ν. It should also be noted that only the FE analysis
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Figure 7: Approximate analytical and FEM results for mid-surface radial
displacement (ν = 0.3)

Figure 8: Analytical and FEM results for the stress concentration factor
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produced results in the case of δ = 10−4. The FE predictions show a very
clear trend towards the approximate analytical result as δ approaches zero.
Considering the degree of approximation in the derivation of Eq.(34), its
consistency with FE results can be characterised as satisfactory. With the
confidence in FE results gained from their agreement with those obtained
from Ling’s solution, it may be concluded that formula (34) slightly under-
estimates K for ν < 0.3 and overestimates it for ν > 0.3. As pointed out in
Section 4.1, the approximation can be improved by generating and solving
a larger system of equations for β2m but this would be at the expense of
the simple, closed form solution (34). The stress concentration factor for a
cavity in an infinite solid is also plotted in Fig.8 noting again that it is lower
than that given by Eq.(34) in contrast to previous experience with other
well known stress concentration problems.

6.3 Stress amplification factor

Trends for the amplification factor S are detected by examining how the
results for N0 relate to changing h0. For this purpose, N0/(aT ) is plotted
against h0/a on a log-log scale for three values of ν, as shown in Fig.9. The

Figure 9: Variation of the central radial force with minimum narrow zone
thickness
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exact solution is included only for ν = 0.25 just to demonstrate again its
excellent agreement with the FE results. Only the latter are used system-
atically since they include an additional point along each of the curves in
Fig.9. The gradients of these curves appear to approach a value slightly less
than unity as h0/a goes to zero. If the limits of these gradients were equal
to unity, then the relation between N0 and h0 would have become linear
and σ0 would have a constant limiting value. This however contradicts the
earlier theoretical prediction that this stress should become infinite at h0
= 0. It is therefore reasonable to assume that, as h0/a goes to zero, the
dominant term in the expression for N0 in terms of h0 would have the form

N0

aT
∼= C

(
h0
a

)1−γ

. (38)

where γ is a small positive number depending on the Poisson’s ratio ν. From
Eq.(38), the stress amplification factor is obtained as

S =
σ0
T

∼= C

(
h0
a

)−γ

. (39)

It is understood that only approximate bounds for parameters C and γ can
be obtained from Fig.9. Such lower bounds for C and upper bounds for γ
for various values of ν are listed in Table 1. The curvature trends in Fig.9
clearly indicate that S is overestimated when the C and γ values from Table
1 are substituted in Eq.(39).

Table 1: Approximate values for the parameters appearing in Eqs.(38)
and (39)

ν C γ

0 1.444 0.0051

0.1 1.551 0.0090

0.2 1.677 0.0161

0.3 1.815 0.0289

0.4 1.943 0.0516

0.5 2.158 0.0806
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A numerical example is used to demonstrate the degree of singularity
arising from Eq.(39). For h0 = 1 Å, which is of the order of an atomic
diameter, and a = 1 m, Eq.(39) applied with C and γ values from Table 1
predicts S values ranging from 1.62 for ν = 0 to 13.80 for ν = 0.5. For all
practical purposes therefore, S can be considered as having a finite limit in
an elastic continuum; this limit would depend on the ratio of a characteristic
microstructural dimension to the cavity radius or the plate thickness.

A similar problem that may provide clues about plausible, practical limit
values for S is the case of a centrally located cylindrical cavity in a plate
of thickness 2a, as shown in Fig.10. The cavity is capped by two circular

Figure 10: Centrally located cylindrical cavity in an infinite plate under
uniform radial tension

membranes of uniform thickness h0 and its axis is aligned with the z axis
of the cylindrical frame of reference so that its length is 2(a− h0). Keller’s
approach [10] is easily applicable to this simpler problem. If h0 is considered
infinitesimally small, the end caps would have negligible stiffness and the
radial displacement at their periphery should be the same as that of the
lateral surface of the cavity where the hoop stress is equal to 2T , while the
caps themselves are under uniform stress σr = σθ = σ0, apart from the
stress concentration in a small volume around their periphery.

Compatibility of displacement at the cap periphery gives

Scc =
σ0
T

=
2

1− ν
. (40)

It is worth noting that the amplification factor Scc for the cylindrical cavity,
given by Eq.(40), is an exact upper limit as h0 approaches zero. The values
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of Scc obtained from Eq.(40) are plotted in Fig.11 together with the respec-
tive FE estimates for the spherical cavity problem. Stress amplification in

Figure 11: Analytical and FEM results for the stress amplification factor

the latter case is intuitively expected to be less than predicted by Eq.(40)
due to the greater rigidity of the circular plates with non-uniform thickness.
This is confirmed by the FEM results of Fig.11 for ν < 0.4. However, as
the material becomes less compressive, stress amplification in the spheri-
cal cavity problem becomes more pronounced and the respective S factor
eventually exceeds Scc for relatively high h0/a ratios.

7 Concluding remarks

The attempted derivation of an approximate solution for a three dimen-
sional stress concentration problem illustrated the differences between this
and similar two dimensional problems. A basic difficulty arises from the
static indeterminacy of the problem. The approximate model for the nar-
row region, a circular plate of variable thickness in the present case, is
certainly more complex than the beam approximation employed earlier in
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two-dimensional problems.

These difficulties were partially overcome and it was possible to obtain
a reasonable approximation for the conventional stress concentration factor.
Trends for the stress amplification resulting from diminishing thickness of
the narrow region were identified through the numerical implementation of
an exact, series solution and a finite element analysis. These solutions also
provided stress and displacement results consistent with those predicted by
the proposed approximate method. The interesting outcomes of the exact
solution implementation and FE modelling are that (i) the limit value of the
stress concentration factor as the minimum thickness of the narrow region
goes to zero is higher than that for a cavity in an infinite medium in con-
trast to experience with other two or three-dimensional stress concentration
problems and (ii) the singularity of stress amplification with diminishing
minimum thickness is very mild to the extent that the amplified stress can
be considered finite within the context of a continuum theory.

There is a multitude of three-dimensional configurations of cavities in
solids under uni-axial and multi-axial tension. As in two-dimensional prob-
lems, the analysis of various configurations may lead to a wide range of
stress concentration and amplification factors, even to solutions with more
pronounced singularities as the minimum thickness of the narrow zones con-
sidered approaches zero. The trends identified from the results presented
in this paper should not therefore be generalised but there is scope for the
modelling methodology to be adapted to other geometrical arrangements
leading to a broader spectrum of answers.

The presented methodology can be easily extended to axisymmetric cav-
ity problems for which exact solutions are available such as that for a plate
under circular bending [18] and a semi-infinite space [19] or an infinite space
with two cavities [19, 20] under remote radial tension. Solutions also exist
for plate problems with non-axisymmetric loading such as uniaxial tension
[21, 22, 23] and plane bending [24, 25] for which modified approximate solu-
tions need to be developed. Finally, another interesting recent development
in the analysis of stress concentration problems is the consideration of sur-
face stress effects [26, 27], which would be quite relevant in the study of
stresses in three dimensional narrow regions with the slow rate of stress
amplification identified in the present paper.
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Amplifikacija napona u trodimenzionalnim uskim zonama
izazvanih šupljinama

U radu se tretira naponska amplifikacija izazvana prisustvom sferičnog ma-
terijalnog otvora u blizini konture elastično opterećenog čvrstog tijela. Predložena
aproksimativna analiza daje raspored napona i pomeranja u uskoj zoni lig-
amenta usled ravnomernog istezanja. Analiza je bazirana na modelu kružne
ploce neravnomerne debljine, koja poseduje membransku i savojnu krutost.
Izvedeni izraz za faktor koncentracije napona u dobroj je saglasnosti sa
rezultatima egzaktne analize i metode konačnih elementa.
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