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Abstract. A data-driven method for extracting temporally
persistent information, at different spatial scales, from rain-
fall data (as measured by radar/satellite) is described, which
extends the Empirical Mode Decomposition (EMD) algo-
rithm into two dimensions. The EMD technique is used here
to decompose spatial rainfall data into a sequence of high
through to low frequency components. This process is equiv-
alent to the application of successive low-pass spatial filters,
but based on the observed properties of the data rather than
the predetermined basis functions used in traditional Fourier
or Wavelet decompositions. It has been suggested in the liter-
ature that the lower frequency components (those with large
spatial extent) of spatial rainfall data exhibit greater tempo-
ral persistence than the higher frequency ones. This idea is
explored here in the context of Empirical Mode Decompo-
sition. The paper focuses on the implementation and devel-
opment of the two-dimensional extension to the EMD algo-
rithm and it’s application to radar rainfall data, as well as
examining temporal persistence in the data at different spa-
tial scales.

1 Introduction

Spatial rainfall data contain information at a broad range
of spatial scales (Schertzer and Lovejoy, 1987; Harris et
al., 2001; Pegram and Clothier, 2001). It has been sug-
gested in the literature (Seed, 2003; Turner et al., 2004)
that the lower frequency components exhibit more tempo-
ral persistence than the higher ones; this premise is used here
to prepare the data for nowcasts based on the evolution of
the lower frequency components of space-time rainfall se-
quences. Examination of the (radially averaged) power spec-
trum (Fig. 1b) derived from a typical instantaneous estimate
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of rainfall rate obtained by weather radar (Fig. 1a) indicates
that most of the power, hence potential for deterministic pre-
diction in the context of nowcasting, is contained in the low
frequency components.

In this paper we focus on a data-driven technique to ex-
tract the high frequency (less persistent in time) modes as
the first step in a rainfall nowcasting scheme. The tech-
nique employed is a two-dimensional (2-D space) general-
ization of the one-dimensional Empirical Mode Decomposi-
tion (EMD) technique introduced by Huang et al. (1998). In
a single dimension, EMD analysis produces a set of Intrin-
sic Mode Functions (IMFs) that are very nearly orthogonal;
in two dimensions a set of Intrinsic Mode Surfaces (IMSs)
is produced with similar quasi-orthogonal properties. Two-
dimensional EMD appears to have been first introduced by
Linderhed (2002) in the context of image compression; the
key contribution in this paper is to introduce the concept of
2-D EMD to the Hydrometeorological literature as a tool
for the analysis of space-time rainfall data. This paper fo-
cuses on the implementation and development of the two-
dimensional extension of the EMD algorithm in this con-
text, decomposing spatial rainfall data into its intrinsic spatial
scale components.

In the application presented here, the least persistent IMS
(exhibiting the highest local spatial frequency and least
amount of spatial correlation – hence nearly white noise) is
computed and removed from the raw rainfall data leaving
a residual composed of the more persistent low frequency
structural components in the data. This process is equivalent
to using a low-pass spatial filter, based on the observed prop-
erties of the data rather than the predefined basis functions
used in traditional Fourier or Wavelet scale decompositions.
In Sects. 2 and 3, simple theoretical examples, showing the
power of EMD in one and two dimensions, are presented as a
“proof of concept” before applying the procedure to observed
radar rainfall data from Bethlehem, South Africa (Sect. 4).
These complement and extend the original presentation by
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Figure 1a. An observed convective rainfall field measured by S-Band weather radar at 

Bethlehem, South Africa (colour scale indicates instantaneous rain rate in mm/hr). The image 

is 100x200 with 1km2 pixels. 
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Fig. 1. (a) An observed convective rainfall field measured by S-
Band weather radar at Bethlehem, South Africa (colour scale indi-
cates instantaneous rain rate in mm/h). The image is 100×200 with
1 km2 pixels.

Huang et al. (1998) and Flandrin et al. (2004). Computa-
tional aspects relating to image processing and surface fitting
are covered in detail (Sect. 4) and conclusions are drawn in
Sect. 5.

2 Empirical Mode Decomposition in a single dimension

The basic idea embodied in the EMD analysis, as introduced
by Huang et al. (1998), is to allow for an adaptive and un-
supervised representation of the intrinsic components of lin-
ear and non-linear signals based purely on the properties ob-
served in the data without appealing to the concept of sta-
tionarity. As Huang et al. (1998) point out in their abstract:
“This decomposition method is adaptive and therefore highly
efficient. Since the decomposition is based on the local char-
acteristic time scale of the data, it is applicable to nonlinear
and non-stationary processes.”

Few sequences of observations of natural phenomena are
long enough to test the hypothesis of stationarity and fre-
quently, the phenomena are patently non-stationary. This
tacitly applies in the measurement of rainfall at a point or in
space-time because sequences of rain are interspersed with
dry periods and during the raining periods, the variability
of the intensity due to mixtures of rainfall type (stratiform,
convective, frontal) confound the stationarity definition. The
EMD algorithm copes with stationarity (or the lack of it) by
ignoring the concept, embracing non-stationarity as a prac-
tical reality. For a fuller discussion of the genesis of these
ideas, see the Introduction of Huang et al. (1998), who also
heuristically demonstrate the implicit orthogonality of the se-
quences of Intrinsic Mode Functions (IMFs) defined by the
EMD algorithm.
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Figure 1b. Radially averaged power spectrum of instantaneous rainfall rate from typical radar 

rainfall data shown in Figure 1a. 
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Fig. 1. (b)Radially averaged power spectrum of instantaneous rain-
fall rate from typical radar rainfall data shown in(a).

In the application of the EMD algorithm, the possibly non-
linear signal, which may exhibit varying amplitude and local
frequency modulation, is linearly decomposed into a finite
number of (zero mean) frequency and amplitude modulated
signals, as well as a residual function which exhibits a sin-
gle extremum, is a monotonic trend or is simply a constant.
Although EMD is a relatively new data analysis technique,
its power and simplicity have encouraged its application in a
myriad of fields. It is beyond the scope of this paper to give
a complete review of the applications, however a few inter-
esting examples are cited here to give the reader a feeling for
the broad scope of applications. Chiew et al. (2005) exam-
ine the one-dimensional EMD of several annual streamflow
time series to search for significant trends in the data, using
bootstrapping to test the statistical significance of identified
trends. The technique has been used extensively in the anal-
ysis of ocean wave data (Huang et al., 1999; Hwang et al.,
2003) as well as in the analysis of polar ice cover (Gloersen
and Huang, 2003). EMD has also been applied in the analy-
sis of seismological data by Zhang et al. (2003) and has even
been used to diagnose heart rate fluctuations (Balocchi et al.,
2004).

2.1 Computing the one-dimensional EMD

The EMD algorithm extracts the oscillatory mode that ex-
hibits the highest local frequency from the data (“detail”
in the Wavelet context or the result of a high-pass filter in
Fourier analysis), leaving the remainder as a “residual” (“ap-
proximation” in Wavelet analysis). Successive applications
of the algorithm on the sequence of residuals produce a com-
plete decomposition of the data. The final residual is a con-
stant, a monotone trend or a curve with a single extremum.

The EMD of a one-dimensional data setz(k) is obtained
using the following procedure:

1. Setr0(k)=z(k) and seti=1.
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Figure 2. EMD based signal separation; all IMFs are plotted to the same vertical scale. Top 

panel is the combined signal; lower 3 panels are the decomposition which recaptures, almost 

exactly, the original components. 
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Fig. 2. EMD based signal separation; all IMFs are plotted to the
same vertical scale. Top panel is the combined signal; lower 3
panels are the decomposition which recaptures, almost exactly, the
original components.

2. Identify all of the extrema (maxima and minima) in
ri−1(k).

3. Compute a maximal envelope, maxi−1(k), by interpo-
lating between the maxima found in step 2. Simi-
larly compute the minimal envelope, mini−1(k). Cubic
splines (as suggested by Huang et al., 1998) appear to
be the most appropriate interpolation method for deriv-
ing these envelopes in one dimension (Flandrin et al.,
2004).

4. Compute the mean value function of the maximal and

minimal envelopesmi−1(k)=
[maxi−1(k)+ mini−1(k)]

2 .

5. The estimate of the IMF is computed from
IMFi(k)=ri−1(k)−mi−1(k).

Each IMF is supposed to oscillate about a zero mean and
in practice it is necessary to perform a “sifting” process
by iterating steps 2–5 (settingri−1=IMFi before each
iteration) until this is achieved.

6. Once the IMFi has a mean value that is sufficiently close
to zero over the length of the data (defined by a stopping
criterion within some predefined toleranceε) the resid-
ual ri(k)=ri−1(k)−IMFi(k) is computed. Alternatively
the sifting procedure can be stopped when the differ-
ence in the standard deviation of successive estimates
of IMFi falls below a critical threshold (Huang et al.,
1998).

7. If the residualri(k) is a constant or trend then stop; else
incrementi and return to step 2.

 

 

 

Figure 3: Wavelet based signal separation – The ‘data’ are the same as in Figure 2, the 

vertical scale has been compressed for a compact presentation. An arbitrarily chosen db5 

wavelet basis has been used. 
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Fig. 3. Wavelet based signal separation – The “data” are the same
as in Fig. 2, the vertical scale has been compressed for a compact
presentation. An arbitrarily chosen db5 wavelet basis has been used.

Figure 2 shows the EMD of a composite data series (shown
in the first panel) that is the summation of a sine wave, a tri-
angular waveform and a slowly varying trend. The compact
representation obtained by EMD extracts (almost perfectly –
except near the ends) the three separate time series (shown
in panels 2 to 4) that make up the composite signal, with-
out resorting to Fourier or Wavelet techniques with restric-
tive assumptions about the form of the underlying oscillatory
modes or basis functions. Figure 3 shows the analysis of
the same data, using Wavelet decomposition. Here a fifth
order Daubechies wavelet basis was (arbitrarily) chosen for
illustration purposes; this choice of basis function may not
be optimal for detrending but serves to demonstrate a typi-
cal decomposition. Seven levels of decomposition were re-
quired before the trend became apparent; this decomposition
is clearly far less compact and physically meaningful than
the EMD results in this case.

A similar decomposition analysis can be carried out using
Fourier techniques. The Discrete Fourier approximation of
a signal can be defined in terms of the Euler-Fourier coef-
ficients (a0, ak, bk) with k=1, 2, ..., m (Eq. 1). The coeffi-
cients are all that are required to reconstruct the series and
any signal can be well approximated (as long as it satisfies
the Dirichlet conditions), providedm is sufficiently large. In
Eq. (1),F(xj ) is the Fourier approximation of the signalyj

at each of then discrete (evenly spaced) data pointsxj . L

is the range of valuesxj over which the data set is assumed
periodic.

F(xj ) =
a0

2
+

m∑
k=1

{
ak cos(2πkxj/L) + bk sin(2πkxj/L)

}
(1)

ak = 2
n∑

j=1

cos(2πkxj/L)yj/n (2)
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Figure 4. Fourier based signal separation, the first 5 of 75 components – The dashed lines 

show the sine component and the solid lines the cosine component. 
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Fig. 4. Fourier based signal separation, the first 5 of 75 components
– The dashed lines show the sine component and the solid lines the
cosine component.

bk = 2
n∑

j=1

sin(2πkxj/L)yj/n. (3)

Figures 4 and 5 show the result of decomposing the data us-
ing a finite Fourier series. Figure 4 shows the first 5 har-
monics; while Fig. 5 shows the series reconstruction by ac-
cumulating the lower harmonics up tom. Computing the
Euler-Fourier coefficients provides a compact approximation
of the original signal but fails to extract physically meaning-
ful information. The ability to determine meaningful struc-
tural information is clearly important in a nowcasting con-
text, which cannot be bound by the periodicity assumption
implicit in Fourier methods.

3 Empirical Mode Decomposition in two dimensions

In two dimensions the EMD process is conceptually the same
as for a single dimension, except that the curve fitting ex-
ercise becomes one of surface fitting and the identification
of extrema becomes (a little) more complicated. Very little
work appears to have been done which applies the EMD tech-
nique to two-dimensional data. Han et al. (2002) use EMDs
in one dimension along four different directions to smooth
Synthetic Aperture Radar (SAR) images and remove speckle.
Nunes et al. (2003) develop a technique, which they term
“Bidimensional Empirical Mode Decomposition” (BEMD)
in the context of texture analysis in image data where they
demonstrate several examples of intrinsic mode extraction
from image data. Linderhed (2002, 20041) examined the use
of EMD in two dimensions for image compression. Both
of these implementations are very similar to what we pro-
pose in this paper. The 2-D EMD provides a truly two-

1http://www.icg.isy.liu.se/∼anna/emd-samp.pdf

 

 

 

Figure 5. Reconstruction of the signal from the sine and cosine components, m represents the 

number of Euler-Fourier coefficients used in each reconstruction. 
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Fig. 5. Reconstruction of the signal from the sine and cosine com-
ponents,m represents the number of Euler-Fourier coefficients used
in each reconstruction.

dimensional analysis of the intrinsic oscillatory modes inher-
ent in the data. Two-dimensional Fourier and Wavelet anal-
yses are really applications of their one-dimensional coun-
terparts in a number of principal directions. Fourier analysis
concentrates on orthogonal “East-West” and “North-South”
directions (e.g. Press et al., 1992). Wavelet analysis can, in
general, consider any direction of the wavelet relative to the
data, however a typical 2-D Wavelet analysis examines only
horizontal, vertical and diagonal orthonormal wavelet basis
functions (Daubechies, 1992, pp. 313; Kumar and Foufoula-
Georgiou, 1993). In contrast, EMD produces a fully two-
dimensional decomposition of the data, based purely on spa-
tial relationships between the extrema, independent of the
orientation of the coordinate system in which the data are
viewed.

3.1 Description of the algorithm

The algorithm follows intuitively from the one-dimensional
case and may be briefly summarised as follows:

1. Locate the extrema in the 2D space including maximal
and minimal plateaus.

2. Generate the bounding envelopes using appropriate sur-
face fitting techniques. We suggest conical Multi-
quadrics (for reasons explained in Sect. 3.2).

3. Compute the mean surface function as the average value
of the upper and lower envelopes.

4. Determine the first estimate of an IMS by subtracting
the mean surface from the data.

5. Iterate until the IMS mean surface function is close to
zero everywhere.

Hydrology and Earth System Sciences, 9, 127–137, 2005 www.copernicus.org/EGU/hess/hess/9/127/
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Figure 6. Example of EMD used for noise removal on a 2-D sine wave. The bulk of the 

additive white noise in the corrupted signal is well captured by the first IMS. 
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Fig. 6. Example of EMD used for noise removal on a 2-D sine
wave. The bulk of the additive white noise in the corrupted signal
is well captured by the first IMS.

6. Estimate the IMS and Residual.

7. If the Residual is a constant or a monotone trend, then
stop; else return to step 2.

3.2 Surface fitting for extremal envelope generation

The generation of maximal and minimal envelopes is of key
importance to a successful 2-D EMD implementation and is
the most computationally intensive task. The problem is a fa-
miliar one of collocating a smooth surface to randomly scat-
tered data points in two-dimensions. There are several op-
tions available to achieve this. Ultimately the fitting proce-
dure reduces to computing the unknown value of the surface
at a pointsi=(xi, yi), by some linear (or nonlinear) weight-
ing of the known data. In general, a basis function determines
the influence of each known data point based on its spatial
position relative to the unknown pointsi . Nunes et al. (2003)
use radial basis functions while Linderhed uses bi-cubic
splines (Linderhed, 2002) and later chooses the more suit-
able option of Thin Plate Splines (Linderhed, 2004). We use
radial basis functions (technically, conical Multiquadrics),
which are identical to Kriging (Cressie, 1991) with a purely
linear semi-variogram model. It could perhaps be argued that
it would be more appropriate to fit a semi-variogram model
to the maxima and minima, but we feel this would be over-
elaborate and presumptuous, as the extrema are only related
by distance and cannot be considered drawn from a station-
ary correlated random field. Invoking Occam’s razor in the
spirit of Huang’s original derivation of EMD, we wish to let
the data do the talking and conical Multiquadrics assume the
least structure of any linear surface fitting algorithm.

 

 

 

Figure 7. Naïve EMD of the observed rainfall field shown in Figure 1a – note the change in 

scale of the rain rates in the IMSs. 
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Fig. 7. Näıve EMD of the observed rainfall field shown in Fig. 1a –
note the change in scale of the rain rates in the IMSs.

The Ordinary Kriging estimatêzi at any pointi based on
n observed data points is

ẑi =

n∑
k=1

λkzk, (4)

wherezk are the observations andλk are weights associated
with each observation and the target point. The mean is as-
sumed unknown and the weightsλk are constrained to sum
to unity. The vector of weightsλ is obtained by solving the
linear system in Eq. (5)[

0 u

uT 0

] [
λ

µ

]
=

[
γ

1

]
, (5)

whereγ is a vector of semivariogram values, in this appli-
cation simply defined by the linear distance basis function
γ (sij )=

∣∣sij ∣∣ with sij the distance between pointi and the
j=1, 2, ..., n observation locations.0 is the matrix of dis-
tances between the observations,u is a vector ofn ones and
µ is a Lagrange multiplier ensuring that the Kriging weights
λk sum to unity, as required. The solution of Eq. (5) is ob-
tained using Singular Value Decomposition (SVD) in this ap-
plication to ensure that a stable solution is assured (when
the matrix is ill conditioned). This is achieved by truncat-
ing singular and near-singular components. Although SVD
is computationally less efficient than (for example) LU de-
composition as a means of solving a dense linear system, it’s
use is preferred here because of it’s robustness in the face of
the near-singular Kriging systems which are frequently en-
countered in gridded data applications (Wesson and Pegram,
2004).

A more efficient choice of interpolation technique would
be useful and more work could be done in this regard, how-
ever care is required. Moving-neighbourhood Kriging (a
possible alternative to reduce the number of control points)
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Figure 8: Summary of data processing 

1. Mask the wet and dry areas 

2. Trace the boundary of each wet region 

3. Separately label each wet region 

4. Decimate the fence by a factor of 5, isolating the ‘fence posts’ 

5. Isolate the maxima in each sub-region 

6. Isolate the minima in each sub-region 

7. EMD analysis decomposes the data into the first IMS and the first residual using the 

maximal and minimal envelopes defined using the points in 4, 5 & 6. 
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Fig. 8. Summary of data processing 1. Mask the wet and dry areas; 2. Trace the boundary of each wet region; 3. Separately label each wet
region; 4. Decimate the fence by a factor of 5, isolating the “fence posts”; 5. Isolate the maxima in each sub-region; 6. Isolate the minima
in each sub-region; 7. EMD analysis decomposes the data into the first IMS and the first residual using the maximal and minimal envelopes
defined using the points in 4, 5 and 6.
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Figure 9: Comparison of individual radially averaged power spectra of the radar rainfall data 

(of Figure 1a) with its EMD components: the first IMS and the first residual 
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Fig. 9. Comparison of individual radially-averaged power spectra
of the radar rainfall data (of Fig. 1a) with its EMD components: the
first IMS and the first residual.

can produce unwanted discontinuities in regions that are data
sparse (Chiles and Delfiner, 1999, pp. 201), such disconti-
nuities would be amplified through the EMD sifting process.
In addition, the particular choice of Ordinary Kriging as a
method of generating the bounding envelopes was (partially)
directed by the property that the estimates decay asymptoti-
cally to the mean of the observed extrema.

3.3 Simple two-dimensional EMDs

In this section, applications of the 2-D EMD technique are
presented. As an artificially constructed example Fig. 6
shows the successful removal of noise added to a syntheti-
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Figure 10: The same as Figure 9 but for the mean of individual power spectra for five 

consecutive, radar scans – Beginning with the spectra shown in Figure 9. 
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Fig. 10. The same as Fig. 9 but for the mean of individual power
spectra for five consecutive, radar scans – Beginning with the spec-
tra shown in Fig. 9.

cally generated two-dimensional sine signal. The noise (with
it’s high local spatial frequency) is almost completely de-
scribed by the first IMS leaving a residual, which is closely
representative of the underlying signal.

Turning to a realistic example of the type we have been
aiming for, Fig. 1a showed an instantaneous radar rainfall
field with an area of 100×200 km. A complete EMD of this
field is shown in Fig. 7 using a direct application of the 2-D
EMD process described in Sect. 3.1; note the change in scale
of the individual IMSs. The final residual (with a single ex-
tremum) gives a clear indication of the position of the largest
convective raincell evident in the field.
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Figure 11. Spectral persistence scatter plots of the original data for a sequence of rainfall 

fields and those at successive intervals. This is constructed by plotting the values of power for 

each field at corresponding wavelengths coaxially. For example points A and B at the 10km 

wavelength are plotted against each other and appear ringed in the upper right diagram. 
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Fig. 11. Spectral persistence scatter plots of the original data for a sequence of rainfall fields and those at successive intervals. This is
constructed by plotting the values of power for each field at corresponding wavelengths coaxially. For example pointsA andB at the 10 km
wavelength are plotted against each other and appear ringed in the upper right diagram.

4 Application of 2-D Empirical Mode Decomposition to
rainfall data

The simple 2-D EMD application presented in the previous
section is computationally burdensome when applied to rain-
fall data. In this section, to overcome this drawback, a num-
ber of specific refinements are presented which combine to
make EMD tractable in practical real-time situations.

4.1 Image processing techniques and optimisations

Since an application of 2-D EMD requires the use of sur-
face fitting techniques, large linear systems must be solved.
The size of a system is determined by the number of known
data points which are to be used in combination to find the
unknown values of the surface at each remaining position in
the field. The highly variable nature of rainfall data means
that the field contains a large number of extrema from which
the bounding envelopes must be constructed. Additionally

there are a large number of zero (no rain) data, which con-
stitute minima. By only considering raining areas, the size
of the linear systems requiring a solution are greatly reduced
since each raining area (if more than one exists) will contain a
considerably smaller number of extrema than the entire data
region and each can be treated separately. Furthermore, it
makes no sense to consider an EMD in areas where the vari-
able of interest does not exist, in this case the areas that are
not raining.

A number of well-known image processing techniques are
implemented to isolate and process each raining area. Fig. 8
summarises the steps taken in processing the data with the
boxes numbered 1–7 indicating different steps in the pro-
cess. First a mask is generated to separate the raining and
non-raining pixels (Fig. 8, Box 1) in the instantaneous radar
image; pixels below a threshold of 1 mm/hr are considered as
non-raining and the remaining pixels are marked as raining.

www.copernicus.org/EGU/hess/hess/9/127/ Hydrology and Earth System Sciences, 9, 127–137, 2005
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Figure 12. Spectral persistence scatter plots of the sequence of 1st IMSs of each pair of rainfall 

fields T0,...,T4. 
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Fig. 12. Spectral persistence scatter plots of the sequence of 1st IMSs of each pair of rainfall fieldsT0, · · ·, T4.

An outer boundary border-tracing algorithm (Sonka et al.,
1999) is used to establish a boundary “fence” around each
raining area (Fig. 8, Box 2) and a flood-fill procedure is then
used to fill each raining area with a unique identifier, result-
ing in separately labelled raining regions (Fig. 8, Box 3). To
reduce the computational burden of the algorithm even fur-
ther, the boundary “fence” is decimated by a factor of 5 to
reduce the continuous string of border points to “fence posts”
while retaining the gross shape of the raining areas (Fig. 8,
Box 4). The next step in the processing of the data is to
isolate the extrema in the rainfall field (Fig. 8, Boxes 5 and
6). There are numerous possible techniques for identifying
extrema in the rainfall field. Nunes et al. (2003) use a mor-
phological reconstruction technique. One alternative, which
was explored, is based on image segmentation and detection
of extremal plateaus. However, our method of choice was to
use a simple 8 neighbour search routine for identification of
pixels with extreme values as done by Linderhed (2004). The
choice was partly for convenience, but also because the ma-
jority of the (non-zero) extreme values in the rainfall fields

studied turned out to consist of single pixels. There is a rich
literature on image processing techniques and the reader is
referred to an introductory text such as Sonka et al. (1999) to
explore the field further. Finally, the EMD analysis is carried
out using the extrema within each raining area and the zeros
at the “fence posts” of non-raining border pixels to specify
the extremal envelopes (Fig. 8, Box 7). Only one step of de-
composition is shown here – the data is decomposed into the
noisy first IMS and the first residual.

4.2 Results

An analysis of over 800 individual radar scans, embodying
mixtures of various ratios of Stratiform and Convective rain-
fall types, was carried out to determine the effectiveness of
the 2-D EMD algorithm in separating the high frequency spa-
tial components from the original rainfall data. Working on
the basis that the average characteristics of the data over a
range of spatial scales summarised by the power spectrum
is intuitively useful, the (radially averaged) power spectra
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Figure 13: Spectral persistence scatter plots of the 1st Residual for each pair of rainfall fields 
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Fig. 13. Spectral persistence scatter plots of the sequence of 1st Residual of each pair of rainfall fieldsT0, · · ·, T4.

of (i) the original data, (ii) the first IMS and (iii) the first
residual of each image were examined and compared. Fig. 9
shows a typical result; the power spectrum of the residual
shows a very close correspondence with that of the original
data at high wavelengths while it contains far less power at
the lower wavelengths. In contrast, the spectrum of the first
(noisy) IMS has very little power relative to the data’s spec-
trum at high wavelengths but shows a strong correspondence
at the lowest wavelengths. Fig. 9 clearly indicates how the
2-D EMD technique moves the bulk of the high frequency
components in the original data into the first IMS and leaves
the high power, lower frequencies in the residual. Fig. 10
shows a time average of this behaviour by plotting the mean
values at each wavelength of the three spectra over five con-
secutive radar scans (beginning with the data used to produce
Fig. 9). The radar scans are captured at approximately five-
minute intervals. It is interesting to observe that the average
of the spectra of the first IMSs is flat for wavelengths longer
than 10 km, suggesting nearly white noise over this range.

The temporal persistence exhibited at the spatial scales
represented in each of the three sequences of: (i) the data,
(ii) the first IMS and (iii) the first residual was examined by
considering their temporally consecutive power spectra. The
notion of “spectral persistence” was used to determine how
variable the spatial structure (at a particular spatial scale) is
in time and hence to give an indication of the temporal pre-
dictive capability at each spatial scale. A summarised exam-
ple of the analysis of a sequence of 5 radar rainfall images
is presented in Figs. 11, 12 and 13 where a “matrix” of scat-
ter plots is shown in each case. Scatter-plots of the pairs of
power values at each discrete wavelength for five consecutive
spectra (with the 1:1 line indicated) are shown for, the origi-
nal data (Fig. 11) the first IMS (Fig. 12) and the first residual
(Fig. 13). The rows and columns of the scatter-plot matri-
ces are labelled fromT0 to T4 and indicate separate radar
scans between timeT =0 and timeT =4. Each block in the
scatter-plot matrix represents a scatter-plot of the power at
each wavelength for the spectrum computed atTi versus that
of the spectrum computed atTj . Clearly the plots on the
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“matrix” diagonal each compare a spectrum to itself and a
perfect 1:1 relationship is observed in this case. For the off-
diagonal plots, the degree of scatter amongst the data points
indicates the degree of similarity between the spectra at indi-
vidual wavelengths at increasing time lags with a large scat-
ter indicating a weak similarity. The trends shown here are
typical of the data analysed and show how the first (high
average frequency) IMS has a temporally incoherent spa-
tial structure, while the first (low average frequency) resid-
ual shows a temporally consistent structure. The behaviour
shown in Figs. 9–13 suggests that the high frequency IMS
components in spatial rainfall data do not contain much pre-
dictive capability, supporting the suggestions of Seed (2003)
and Turner et al. (2004) to increase the degree of spatial
smoothing and rely more on the information contained in the
lower frequency components as forecast lead times increase.

5 Conclusions

A new technique for analysing the spatial scaling structure of
rainfall fields has been presented. The technique is a two di-
mensional extension of Empirical Mode Decomposition for
the analysis of non-linear and non-stationary time series. An
EMD analysis in two dimensions linearly decomposes the
spatially distributed rainfall data into a set of Intrinsic Mode
Surfaces, which are approximately mutually orthogonal and
sum back to the original data. Each IMS contains an oscilla-
tory mode inherent in the data at a different (narrow) range
of spatial frequencies. The EMD analysis successively ex-
tracts the IMS with the highest local spatial frequencies in a
recursive way, which is effectively a set of successive low-
pass spatial filters based entirely on the properties exhibited
by the data. The utility of the EMD technique for signal sep-
aration has been demonstrated in both one and two dimen-
sions and applied to the analysis of a large set of 800 radar
rainfall images in South Africa. The 2-D EMD technique is
proposed here in the context of rainfall nowcasting to sepa-
rate the less persistent high frequency components from the
more persistent low frequency ones in the data. The aim is to
remove the noisy high frequency components, which do not
exhibit a strong temporal correlation and add little structural
information to nowcasting algorithms. The scale separation
achieved by 2-D EMD has been analysed using radially aver-
aged power spectra to summarise the spatial structure of the
data and filter outputs. In addition these power spectra have
also been used to examine the temporal persistence of the
spatial structure exhibited by the first IMS and it’s residual.
The results presented in this paper agree with other work in
the hydrometeorological literature, which suggests that the
low frequency spatial components in rainfall data are most
useful in a nowcasting context. This methodology is being
exploited in ongoing research into rainfall nowcasting.
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