
Open Research Online
The Open University’s repository of research publications
and other research outputs

Why not empower knowledge workers and lifelong
learners to develop their own environments?
Conference or Workshop Item
How to cite:

Wild, Fridolin and Mödritscher, Felix (2009). Why not empower knowledge workers and lifelong learners to
develop their own environments? In: 9th International Conference on Knowledge Management and Knowledge
Technologies (I-KNOW 2009), 2-4 Sep 2009, Graz, Austria.

For guidance on citations see FAQs.

c© Not known

Version: Version of Record

Link(s) to article on publisher’s website:
http://i-know.tugraz.at/blog/2009/09/full-proceedings-are-online

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/259781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://i-know.tugraz.at/blog/2009/09/full-proceedings-are-online
http://oro.open.ac.uk/policies.html

Why not Empower Knowledge Workers and Lifelong
Learners to Develop their own Environments?

Felix Mödritscher
(Vienna University of Economics and Business, Vienna, Austria

felix.moedritscher@wu.ac.at)

Fridolin Wild
(The Open University, Milton Keynes, United Kingdom

f.wild@open.ac.at)

Abstract: In industrial and educational practice, learning environments are designed and
implemented by experts from many different fields, reaching from traditional software
development and product management to pedagogy and didactics. Workplace and lifelong
learning, however, implicate that learners are more self-motivated, capable, and self-confident
in achieving their goals and, consequently, tempt to consider that certain development tasks can
be shifted to end-users in order to facilitate a more flexible, open, and responsive learning
environment. With respect to streams like end-user development and opportunistic design, this
paper elaborates a methodology for user-driven environment design for action-based activities.
Based on a former research approach named ‘Mash-Up Personal Learning Environments’
(MUPPLE) we demonstrate how workplace and lifelong learners can be empowered to develop
their own environment for collaborating in learner networks and which prerequisites and
support facilities are necessary for this methodology.

Keywords: User-Driven Environment Design, End-User Development, Semantic
Interoperability, Workplace Learning, Lifelong Learning
Categories: D2.1, D2.2, L3.1, L3.6

1 Introduction

In our everyday life we experience a lot of environments and tools that were designed
by others; houses are constructed for different usages by different building
enterprises, cars have been developed for more than one century to what we know
nowadays, computers are built and assembled by many vendors, and software is
realised by developers and teams, usually according to their mental models and design
expertise – just to name a few examples. However, when it comes to regular usage of
these environments and tools people tend to customise them in their specific way:
they furnish each room of their houses, they decorate their cars and (must) adjust the
mirrors to their needs, and they adapt the operating system and install their preferred
programs.

Nowadays, the development of learning technology is driven by companies and
open-source communities, whereby software solutions for knowledge workers and
lifelong learners have to fulfil many requirements and sophisticated mechanisms of
socio-technical systems, as shown with the multi-activity distributed participators
design process for work-integrated learning systems in [Jones & Lindstaedt, 08] or the

Proceedings of I-KNOW ’09 and I-SEMANTICS ’09
2-4 September 2009, Graz, Austria268

concept of learner networks in [Koper et al., 05; Wild, 09]. In this scope, knowledge
management aims at supporting the designers (domain experts and software
developers) through various business- and technology-driven models, like the SECI
model [Nonaka & Takeuchi, 95]. Again, such approaches put the organisation central
stage prescribing how knowledge transfer ought to work and, at the same time,
ignoring idiosyncrasies of learners and communities.

Due to the complexity and dynamics of such socio-technical systems, expert-
driven software engineering is not sufficient any more, and alternatives are considered
to be useful or even urgently required for workplace and lifelong learning. In this
paper, we sketch the paradigm shift from traditional software engineering to new
streams like opportunistic design and end-user development and, furthermore,
describe a methodological approach to user-driven environment design applicable for
knowledge workers and lifelong learners. In the end, we summarise our experiences
gained with that software development method so far and argue for the potential of
this approach.

2 Moving from Traditional Software Engineering to User-Driven
Development

Looking back on the history of software engineering, development methods have
developed from rather static and product-centric process like the V model or the spiral
model to more dynamical methodologies taking into account the ever shorter software
life cycles with fast changing requirements as well as issues of socio-technical
systems, i.e. networks of humans and machines and their interrelationship and
interaction [Trist, 81; Geels, 04]. Recently, many application areas require iterative
processes interweaving design and prototyping phases in combination with extreme
programming [Beck & Andres, 00] and agile software development [Cockburn, 02].

On the other hand, user-centred design dating back at least to the 1970s has a long
tradition in the field of human-computer interaction. [Preece et al., 98] state that
user-centred design dedicates extensive attention to the user for all steps of the design
process. Therefore, [Maguire, 01] proposes various user-centred design methods for
each phase of the software development process, beginning with the planning and
usage context (e.g. stakeholder identification, user observations, task analysis, etc.) up
to designing and evaluating software (parallel design, prototyping, usability
inspection and testing, questionnaires, and the forth).

However, expert-driven software engineering and human-computer interaction
still lack the ideas of recent streams, like community platforms and related Web 2.0
concepts. Placing the focus on a more active participation of users and interactions
with others has led to dealing with requirements engineering of socio-technical
systems and, furthermore, to methodologies like the RESCUE process by [Jones &
Lindstaedt, 08].

Additionally, the dynamics and complexity of socio-technical systems require
development processes going beyond the methods depicted so far. [Hartmann et al.,
06] come up with the idea of opportunistic design which considers users to hack,
mash and glue software (and hardware!) artefacts to achieve their goals. According to
these authors, mashing up existing and own code pieces provides more functionality

F. Mödritscher, F. Wild: Why not Empower ... 269

up front, although the ‘last mile’ (finalising the full application) may be slow (but not
always necessary). For their approach they are using AppleScript for enabling
(experienced) users to realise their solutions on the basis of existing and own source
code.

Similarly, end-user development aims at empowering users to design their
software environments for their purposes, whereas this development process ranges
from customising user interfaces over visually assembling applications up to real
programming tasks [Fischer et al., 04]. [Lieberman et al., 06] state that end-user
development changes systems from being “easy to use” to being “easy to develop” in
order to increase their responsiveness towards the diversity of users, i.e. people with
different skills, knowledge, cultural background, etc., as well as towards the dynamics
of work and learning practices. Lieberman and his colleagues differentiate between
(a) parameterisation/customisation and (b) program creation/modification. Moreover,
they highlight typical activities, like parameterisation of software components,
annotations, programming by examples, incremental programming, model-based
development, and so forth.

According to [Fischer et al., 04], it is necessary to motivate users to practice the
hand-on skills required for an end-user development approach, e.g. by giving
examples or demonstrators. Beyond that, opportunistic design of a learning
environment requires even more competences of end-users. According to the
classification by [Stahl, 08], these competencies comprise technical ones, like basic
computer and internet skills, methodological ones, for instance being capable to know
and utilise a specific tool for a certain purpose, personal ones, i.e. self-motivation,
self-confidence or self-efficacy in working and learning with online tools, as well as
social ones, such as the capacity to collaborate with others, communicate ideas and
information, or to connect to learner networks.

Overall, [Kraus, 05] introduces the idea of the ‘long tail of software
development’ and sees the opportunity to satisfy the needs of many if (experienced
and capable) end-users are willing to create opportunistic assets and share them with
others. Specifically for higher education, [Wild, 09] states that end-user development
is more powerful than instructional design or personalised adaptive e-learning as it
does not take away important learning experiences from learners, e.g. by calculating
the optimal path through a course, but supports them in constructing knowledge
within their activities, e.g. through recommendations or good practice sharing
[Mödritscher & Wild, 09].

3 A User-Driven Methodology for Environment Design and
Learner Interactions

The end-user development method described in this section is built on a former
conceptual approach called ‘Mash-Up Personal Learning Environment’ (MUPPLE)
and developed within the scope of higher education [Wild, 09]. Without going into
details of this approach, some preliminaries have to be stated at this point:

� MUPPLE is based on a web application mashup infrastructure which
allows learners to integrate arbitrary web-based learning tools into a single

F. Mödritscher, F. Wild: Why not Empower ...270

user experience (see also Fig. 3). This mashup paradigm is one possible
front-end and might be realised in other ways.

� Requirements for integrating learning tools into MUPPLE comprise a certain
degree of widgetisation and semantic interoperability. Widgetisation
means that a web application can generate web-based output (widgets) for
certain functionality through RESTful requests, i.e. a Uniform Resource
Locator (URL) address. Semantic interoperability deals with the possibility
to plug one system to another one so that an exchange of data and its
processing in a meaningful way is achievable. Such a mechanism can be
regarded as a powerful approach for enabling users to create new
functionality. For instance, a PLE including 10 interoperable widgets does
not only have 10 basic functions for learning (e.g. bookmarking, searching,

browsing, creating artefacts, etc.) but also 45
2

)1(���
nn possibilities to

combine two different widgets (e.g. bookmarking results from the search
widget). Most of these combinations might not make sense but it should lie
with the users to play around and identify a new, valuable functionality.
Aiming at a generic solution for web tools, we build on RSS feeds
(distributed feed networks) to achieve semantic interoperability [Wild &
Sigurdarson, 08].

� Similarly to the Activity Theory introduced by [Engeström, 87], the usage
context of MUPPLE is structured through a very simple model of a
learning activity which consists of a set of user interactions, each
interaction being formalised as a triple of (a) an action, (b) an outcome, and
(c) at least one tool. The actor is the user in front of the screen (user-centred
approach), while the action labels the user interaction and the outcome
describes a real or an abstract achievement (e.g. an artefact or a user goal).
The tool (including a URL) is necessary to formalise how a user can achieve
the outcome. Examples for such generic user interactions are ‘find paper
using Google Scholar’ (with the URL http://scholar.google.com), ‘publish
self-description using VideoWiki’ (with the URL
http://distance.ktu.lt/videowiki/addvideo) or, to describe an everyday
situation, ‘sign contract using pen’.

Based on these preliminaries, we differentiate between functional and non-functional
requirements. On the one hand, we consider functional requirements of the learning
environment to be the features which are directly related to the learning process,
typically involving a specific tool. Such requirements are materialised with action-
outcome-tool triples which include RESTful requests to a widget or even a tool
combination if semantic interoperability is fulfilled for the web applications involved.
The set of functional requirements is open, so that users can define their own
interactions and bring in their own tools. In the context of traditional software
engineering, the model of a learning activity would be equal to the concept of a class
having the user interaction statements as its methods. Normally, creating a new
activity would instantiate an empty activity-object, whereas users can add new
methods (mix-ins) and each user-given functional requirement would stand for one
‘interaction method’ (with the parameters action, outcome, tool, and URL). As part of

F. Mödritscher, F. Wild: Why not Empower ... 271

our practice sharing strategy, it is also possible to derive activities from a so-called
activity pattern which can be seen as a class pre-initialised with abstract or real
methods by another user (cf. [Mödritscher & Wild, 09]).

On the other hand, non-functional requirements address the end-user
development framework, in our case the MUPPLE prototype, which includes all
facilities enabling and supporting users in creating web application mashups for their
activities and interacting with the tools. These non-functional requirements have to be
(iteratively) gathered and realised by the provider of the end-user development
framework; they are highly dependent on the presentation layer of a solution and the
characteristics of the tools involved, like semantic interoperability or widgetisation
issues. [Wild, 09] derives these requirements from different research perspectives,
like learning design, semantic interoperability, social networking, practice sharing or
personalised learning, and summarises them for our first MUPPLE prototype.

Fig. 1 visualises our methodology for end-user development of personal
learning environments. The top left corner indicates the user interaction scheme
which can be used to instantiate a learner interaction either by specifying the action-
outcome-tool triple manually, by taking advantage of the recommendation service, or
by reusing them from a pre-defined activity pattern. The start of the actions of one
activity leads to the web application mashup, as shown in the centre of the figure.

Figure 1: User-driven methodology for environment design and learner interactions

Now, the user has the control over the user interface, is able to work with the tools in
any specific order, fully rewrite the activity, complete or resume actions, and export
new patterns from this activity. Certainly, users can bring in new tools if they require
them for successfully finishing an activity. These new user interactions with the
environment are subject to automated generation of recommendations or to user-

F. Mödritscher, F. Wild: Why not Empower ...272

driven good practice sharing through the activity patterns (top left and bottom right).
Fig. 1 also gives an example for applying a tool combination, for example the
interaction ‘find papers using http://www.objectspot.org’ enables users to send
selected search results to their preferred bookmarking tool and share these bookmarks
afterwards (cf. interaction ‘share bookmarks using http://distance.ktu.lt/scuttle’).

Specifically, the MUPPLE approach has been developed within the scope of
higher education, assuming that learners are self-motivated enough to design their
environments to collaborate in meaningful PLE-based activities. Such approaches to
self-directed learning are also observable in the fields of workplace and lifelong
learning [Ulbrich et al., 06; Koper & Specht, 06]. More likely, the user-driven
methodology for environment design is not only applicable for these two areas but for
any action-oriented activity, even beyond the context of learning. The non-functional
part of MUPPLE, however, is dependent on the technological solution and usage
context and, therefore, not transferable to other domains.

4 Implementation of and Experiences with User-Driven
Environment Design

In this section we use our first MUPPLE prototype to explain how end-user
development of and interactions with these environments can be supported. As a first
step towards implementing environment design we have designed a domain-specific
language, namely the ‘Learner Interaction Scripting Language’ (LISL), to be able to
materialise how learners design and use their environments [Mödritscher et al., 08].

Fig. 2 gives an example of a LISL script which describes a MUPPLE activity
consisting of three actions (lines 1-3: compose, browse and bookmark), each one
bound to a specific outcome (lines 4-6: self-descriptions, peers and selected
descriptions) and displaying a windowed widget with a specific RESTful request to
the VideoWiki application (lines 10-12). The lines 7 to 9 define two tools (VideoWiki
and Scuttle) and the channel between these tools, which is set up by the connect
statement and requires a certain degree of semantic interoperability.

Figure 2: Example LISL script for activity ‘getting to know each other’

F. Mödritscher, F. Wild: Why not Empower ... 273

As mentioned before, we differentiate between a functional and a non-functional view
on learning environments. On the one hand, the action statements (lines 1-8 and 10-
12) refer to the functional requirements of the learning environments and comprise
the learning tools required and defined by the learners for their specific situation
(activity). Connecting two or more tools, furthermore, leads to new functionality (e.g.
bookmarking VideoWiki entries in the Scuttle tool) and increases the powerfulness of
this approach so that learners can reuse and mix functionality for more sophisticated
(real-life) situations.

On the other hand, non-functional requirements cover the learner interactions
with the environment and are therefore dependent on the overall environment, the
single tools, and the learner interactions with it. Such statements are hard-coded for
specific integrative frontends, like Yahoo Pipes, iGoogle, or our web application
mashup solution. For instance, line 13 indicates that learners can drag and drop
windowed tools from one to another position along a grid-based mashup space on the
screen. Further statements are about connecting, minimising, maximising or closing
tools, and so forth.

Figure 3: MUPPLE page for the LISL script in Fig. 2

F. Mödritscher, F. Wild: Why not Empower ...274

Using this scripting language, it is possible to capture (‘externalise’) environment
design capabilities and learner interactions with MUPPLE and, more importantly, to
exploit these scripts in some way, e.g. for automated generation of recommendations
or user-driven practice sharing. Within our first prototype, the result of such a LISL
script is a so-called MUPPLE page, as shown in Fig. 3. Learners, in fact, do not need
to create these pages by manually writing LISL code but can use web-based widgets,
which materialises their interactions by appending commands to the LISL script.

The header of a MUPPLE page, as shown on top of Fig. 3, displays the type
(activity or pattern) and the title of the learning situation (activity). On the right-hand
side, users can navigate through their activity space, create new activities from blank
or from the given patterns, and add new action-outcome-tool triples to the opened
activity, either by specifying them manually or by making use of the
recommendations. Opening one activity executes the LISL script of this page within a
web-based interpreter which reconstructs the last state of the MUPPLE page.
Thereafter, the user can choose between three possible viewing modes of the page: (a)
the tab ‘preview’ displays the tool mashup (bottom right of Fig. 3); (b) the tab ‘code’
shows an in-line editor for the whole LISL code of the page; (c) the tab ‘log’
visualises the result of the web-based interpreter, i.e. also warnings and errors in
connection with the current LISL script (in the centre of Fig. 3).

Within our prototype, starting a new action within one activity is equivalent to
having a learner to ‘implement’ one functional requirement. In this context, the end-
user can manually specify the details of the interaction (action-outcome-tool triple) or
use recommendations provided by our prototype. Therefore, MUPPLE empowers
learners to design their environment. The non-functional requirements are more or
less realised by functions of the whole platform, comprise the learner interactions
with their mash-up personal learning environments and are subject to being adapted
or extended by us, the PLE developers. So far, the non-functional part of MUPPLE
monitors how learners use the environment which is materialised by adding additional
LISL code to the current page (like the statement in line 13 of Fig. 2).

In a preliminary evaluation study, we observed that new MUPPLE users who are
not at all experienced in environment design prefer working only with the web-based
widgets and extensively use the recommendations provided by the system. Those
users being familiar with MUPPLE having programming skills or having to prepare a
lot of exemplary scenarios (facilitators) slowly proceed to script the functional
requirements of their environment. Adding the LISL code for learner interactions,
however, is always left to the widget-based wrappers of the platform.

5 Conclusions and Outlook

In this paper, we have sketched a methodology for end-user development of personal
learning or working environments and demonstrated how it can be set into practice.
Furthermore, we argued for the need to support learners in designing their
environment. Overall, user-driven environment design seems to be a promising
approach for both knowledge workers and lifelong learners, particularly if they are
self-motivated enough. In this context, [Alvesson, 04] argues for specific
competencies necessary for knowledge workers (e.g. social competencies or
capabilities to orchestrate the interaction process), which we tried to consider with

F. Mödritscher, F. Wild: Why not Empower ... 275

different features of our MUPPLE platform, like a recommendation service. In terms
of important usability components, learnability and efficiency, the required hand-on
skills need to be trained by inexperienced users which we tried to realise through
emergent behaviour of our PLE solution and help facilities.

However, this first prototype needs to be extended and improved, e.g. with
regulation and reflection facilities for collaboration in learning networks or good
practice sharing functions. Moreover, the whole MUPPLE approach as well as our
methodology for user-driven environment design is based on specific technical
requirements, like widgetisation and semantic interoperability of tools, which are
often not fulfilled. Although a lot of research and development still needs to be
undertaken, user-driven environment design offers a great potential for knowledge
workers and lifelong learners if this approach centres the learners and their specific
needs and not organisational requirements. Finally, the organisation also might
benefit from this learner-centred approach, as the materialisation of environment
design and learner interactions is more or less the externalisation of implicit
knowledge. From this perspective, the concept of a mash-up personal learning
environment can be seen as an enabler for action-oriented, community-driven
knowledge management.

Acknowledgements

This work has been produced in the context of ROLE, a research and development
project financially supported by the European Union under the ICT programme of the
7th Framework Programme (Contract number: 231396).

References

[Alvesson, 04] Alvesson, M.: Knowledge work: ambiguity, image and identity, In K. Starkey,
S. Tempest, A. McKinlay (Eds.): How Organizations Learn: Managing the Search for
Knowledge, 2nd edition, Thomson Learning, London, 2004, p. 385-405.

[Beck & Andres, 00] Beck, K., Andres, C.: Extreme Programming Explained, Addison-Wesley,
Reading, 2000.

[Cockburn, 02] Cockburn, A.: Agile Software Development, Addison-Wesley, Boston, 2002.

[Engeström, 87] Engeström, Y.: Learning by expanding: an activity-theoretical approach to
developmental research, Orienta-Konsultit Oy, Helsinki, 1987.

[Fischer et al., 04] Fischer, G., Giaccardi, E., Ye, Y., Sutcliff, A.G., Mehandiev, N.: Meta-
design: a manifesto for end-user development, Comm. of the ACM 47(9), 2004, pp. 33-37.

[Geels, 04] Geels, F.W.: From sectoral systems of innovation to socio-technical systems
Insights about dynamics and change from sociology and institutional theory, Research Policy
33, 2004, pp. 897-920.

[Hartmann et al., 06] Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, Mashing, Gluing: A
Study of Opportunistic Design and Development, IEEE Pervasive Computing 7(3), 2006, pp.
46-54.

F. Mödritscher, F. Wild: Why not Empower ...276

[Jones & Lindstaedt, 08] Jones, S, Lindstaedt, S.: A Multi-Activity Distributed Participatory
Design Process for Stimulating Creativity in the Specification of Requirements for a Work-
Integrated Learning System, Proc. on Distributed Participatory Design Workshop at the
Computer Human Interaction Conference (CHI), Florence, 2008.

[Koper et al., 05] Koper, R., Giesbers, B., Van Rosmalen, P., Sloep, P., Van Bruggen, J.,
Tattersall, C., Vogten, H., Brouns, F.: A design model for lifelong learning networks,
Interactive Learning Environments 13(1-2), 2005, pp. 71-92.

[Koper & Specht, 06] Koper, R., Specht, M.: Ten-Competence: Life-Long Competence
Development and Learning, In M-A. Cicilia (Ed.): Competencies in Organizational e-learning:
concepts and tools, IGI-Global, Hershey, pp. 234-252.

[Kraus, 05] Kraus, J.: The long tail of software, 2005, http://bnoopy.typepad.com/bnoopy
/2005/03/the_long_tail_o.html (2009-04-02).

[Lieberman et al., 06] Lieberman, H., Paterno, F., Klann, M., Wulf, V.: End-User
Development: An Emerging Paradigm. In H. Lieberman, F. Paterno, V. Wulf (Eds.): End-User
Development. LNCS, vol. 4321, Springer, Dordrecht, 2006, pp. 1-8.

[Maguire, 01] Maguire, M.: Methods to support human-centred design, International Journal of
Human-Computer Studies 55, pp. 587-634.

[Mödritscher & Wild, 09] Mödritscher, F., Wild, F.: Sharing Good Practice through Mash-Up
Personal Learning Environments, Proceedings of the International Conference on Web-based
Learning (ICWL), Aachen, 2009. (to appear)

[Mödritscher et al., 08] Mödritscher, F., Wild, F., Sigurdarson, S.E.: Language Design for a
Personal Learning Environment Design Language. Proceedings of the Workshop on Mash-Up
Personal Learning Environments at the European Conference on Technology Enhanced
Learning (EC-TEL), Maastricht, 2008, pp. 5-13.

[Nonaka& Takeuchi, 95] Nonaka, I., Takeuchi, H.: The Knowledge-creating Company: How
Japanese Companies Create the Dynamics of Innovation, Oxford University Press, New York,
1995.

[Preece et al., 98] Preece, J., Finley, A., Abowd, G., Beale, R.: Human-Computer Interaction,
Addison-Wesley, Essex, 1998.

[Stahl, 08] Stahl, C.: Developing a Framework for Competence Assessment, Dissertation,
Vienna University of Economics and Business Administration, Vienna, 2008.

[Trist, 81] Trist, E.L.: The evolution of socio-technical systems: A conceptual framework and
an action research program, Ontario Quality of Working Life Centre, Toronto, 1981.

[Ulbrich et al., 06] Ulbrich, A., Scheir, P., Lindstaedt, S.N., Görtz, M.: A Context-Model for
Supporting Work-Integrated Learning, In W. Nejdl, K. Tochtermann (Eds.): Innovative
Approaches for Learning and Knowledge Sharing. LNCS, vol. 4227, Springer, Berlin, 2006,
pp. 525-530.

[Wild, 09] Wild, F. (Ed.): Mash-Up Personal Learning Environments, iCamp Deliverable D3.4,
http://www.icamp.eu/wp-content/uploads/2009/01/d34_icamp_final.pdf (2009-03-30).

[Wild & Sigurdarson, 08] Wild, F., Sigurdarson, S.E.: Distributed Feed Networks for Learning,
European Journal for the Informatics Professional (UPGRADE) 9(3), 2008, pp. 51-56.

F. Mödritscher, F. Wild: Why not Empower ... 277

