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Abstract. A technique has been developed to provide an esti-
mate of the rainfall reaching the earth’s surface by extrapolat-
ing radar data contained aloft to ground level, simultaneously
estimating unknown data in the radar volume scan. The tech-
nique has been developed so as to be computationally fast, to
work in real time and comprises the following steps. A rain-
fall classification algorithm is applied to separate the rainfall
into two separate types: convective and stratiform rainfall.
Climatological semivariograms based on the rainfall type are
then defined and justified by testing, which result in a fast and
effective means of determining the semivariogram parame-
ters anywhere in the radar volume scan. Then, extrapolations
to ground level are computed by utilising 3-D Universal and
Ordinary Cascade Kriging; computational efficiency and sta-
bility in Kriging are ensured by using a nearest neighbours
approach and a Singular Value Decomposition (SVD) ma-
trix rank reduction technique. To validate the proposed tech-
nique, a statistical comparison between the temporally accu-
mulated radar estimates and the Block Kriged raingauge esti-
mates is carried out over matching areas, for selected rainfall
events, to determine the quality of the rainfall estimates at
ground level.

1 Introduction

Raingauges are the traditional tool used for the recording of
rainfall and are often regarded as the “true”, or reference,
rainfall estimates at ground level. Raingauges have the ad-
vantage of being relatively cheap and easy to maintain and
also of providing a direct estimate of the accumulated rain-
fall at a particular point. However there are various disadvan-
tages associated with raingauges. They tend to underestimate
during heavy rainfall periods (Wilson and Brandes, 1979)
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and by providing a point estimate they can fail to capture the
spatial variability of rainfall. Random errors are also present
which can be demonstrated by the difference in measurement
obtained between closely situated raingauges (Ciach, 2002).

Weather radars overcome some of the disadvantages as-
sociated with raingauges. Currently in South Africa the
weather radar network of eleven C-band radars and one
S-band radar provides images of the instantaneous reflec-
tivity values at approximately five-minute intervals and at
a one-kilometre horizontal resolution supplied in Cartesian
co-ordinates on Constant Altitude Plan Position Indicators
(CAPPIs) at 1 km intervals above ground level. This type
of data provides a detailed spatial representation of the rain-
field in real time and over a large area. Figure 1 illustrates a
typical instantaneous radar reflectivity image taken from the
Bethlehem (South Africa) S-band weather radar where the
white portions indicate no rainfall, grey portions indicate ar-
eas out of the weather radar’s range (and also where there
are no data available), and the black portions mark ground
clutter locations.

Rainfields estimated from weather radars experience vari-
ous data quality problems such as ground clutter, anomalous
propagation and beam blocking, to name a few (Terblanche
et al., 2001). Another disadvantage of weather radars is that
they provide an indirect measurement of precipitation inten-
sity, so the returned power of measured reflectivity values
has be converted to rainrate by an appropriate transformation,
such as the Marshall Palmer formula (Marshall and Palmer,
1948) given by Eq. (1), whereZ is the reflectivity (dBZ) and
R is the rainrate (mm/h).

Z = 200· R1.6 (1)

The data in the CAPPIs are only available from one-
kilometre above ground level and there are regions within
the volume scan where the rainrate is unknown. In applica-
tions, such as disaster management, hydrology and agricul-
ture, the rainfall estimates at ground level are of more interest
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Figure 1: Typical radar reflectivity image taken from the Bethlehem (South Africa) weather 

radar on the 25 February 2003. The grey portions of the image indicate where no data are 

available and the black portions indicate ground clutter. The image is 300km square. 
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Fig. 1. Typical radar reflectivity image taken from the Bethlehem (South Africa) weather radar on the 25 February 2003. The grey portions
of the image indicate where no data are available and the black portions indicate ground clutter. The image is 300 km square.
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Figure 2: Simplified flow chart of the process to progressively infill all missing data in a 

radar volume scan and provide an estimate of the rainfall at ground level. 
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Fig. 2. Simplified flow chart of the process to progressively infill all
missing data in a radar volume scan and provide an estimate of the
rainfall at ground level.

and importance than the measurements aloft, which are un-
likely to be an accurate indication of the rainfall at ground
level (Jordan et al., 2000) since precipitation tends to be af-
fected by a variety of atmospheric phenomena before reach-
ing the earth’s surface.

Attempts have been made to provide an improved rainfall
estimate at ground level by taking into account atmospheric
factors such as wind drift (Lack and Fox, 2004). A differ-
ent approach, taken by Franco et al. (2002), was to compute
a Mean Apparent Vertical Profile of Reflectivity and by ex-
tending the profile shape to obtain an estimate of the rainfall
at ground level. Currently in South Africa the real-time radar
rainfall estimates at ground level are simply taken as the av-
erage vertical reflectivity in a column (Visser, 2003). Seed
and Pegram (2001) proposed using 3-D Kriging to estimate

the rainfall at ground level and that paper is the source of
some of the ideas for this paper.

The algorithm proposed in this paper to infill all missing
data in a radar volume scan and provide an estimate of the
rainfall at ground level comprises the following steps, which
are also illustrated in a simplified flow chart given by Fig. 2.

– The reflectivity radar volume scan data is thresholded
and the remainder of the reflectivity values classified as
convective or stratiform rainfall in a pixel-by-pixel by
manner.

– Precalibrated climatalogical semivariograms based on
the classified rainfall type are then defined.

– The next part of the algorithm employs a bright band
correction algorithm which, where necessary, adjusts
the reflectivity values of the stratiform rainfall on the
2 km CAPPI affected by bright band in a pixel-by-pixel
manner.

– The reflectivity values are then extrapolated to ground
level via a nearest neighbourhood Cascade Kriging ap-
proach. All the missing data on each CAPPI are infilled,
working progressively from the uppermost CAPPI to
ground level, where infilled data on upper CAPPIs are
used in the estimation of the data on lower CAPPIs.

To determine the quality of the rainfall estimates at ground
level a statistical comparison between the temporally accu-
mulated radar estimates and the Block Kriged raingauge esti-
mates is carried out over matching areas, for selected rainfall
events.

The data from 1995 and 1996 from the Liebenbergsvlei
catchment near Bethlehem were selected as the test-set for
this study. This was because there was a dense network of 45
tipping bucket raingauges placed in a grid, evenly spaced at
approximately 10 km throughout the catchment at that time
(since decommissioned). The catchment is approximately
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Figure 3: Map of South Africa illustrating the weather radar network coverage and the 

geographic location of the Liebenbergsvlei catchment. An enlarged DEM image of the 

catchment shows the approximate positions of the raingauges and the MRL5 weather 

radar. 
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Fig. 3. Map of South Africa illustrating the weather radar network coverage and the geographic location of the Liebenbergsvlei catchment.
An enlarged DEM image of the catchment shows the approximate positions of the raingauges and the MRL5 weather radar.

3600 km2 in area, which gives a raingauge density of 1 rain-
gauge per 80 km2. The topography is one where the eleva-
tion is approximately 2400 m above sea level in the Southern
reaches of the catchment and slopes downwards to the North-
ern region of the catchment to an elevation of approximately
1500 m. The Bethlehem S-band radar is also situated in close
proximity to the catchment. Both of these factors are impor-
tant in ensuring accurate estimates of rainfall accumulation
values. The geographic position of the area and layout of
the tipping bucket raingauges are illustrated in Fig. 3 as well
as a Digital Elevation Map depicting the topography of the
catchment.

2 Rainfall classification

The initial step, of the operational algorithm for infilling the
missing or inaccurate data on a CAPPI, requires a simple

classification and thresholding of the instantaneous radar vol-
ume scan data, pixel by pixel. A variety of rainfall classifi-
cation algorithms have been suggested that involve subdivid-
ing the rainfall into three zones – convective, intermediate
and stratiform rain. An example of a current rainfall classi-
fication algorithm employed by The Group of Applied Re-
search on Hydrometeorology (GRAHI) (Sempere-Torres et
al., 2000) also subdivides the rainfield into the same three
separate groupings; the convective rain is identified by apply-
ing a threshold value of 40 dBZ; the stratiform rain is iden-
tified when a bright band is present; the rest of the rainfield
is classified as transitional. Another rainfall classification al-
gorithm developed by Mittermaier (1999) was also designed
along similar principles.

The above-mentioned algorithms are not suitable for the
purpose of rainfall estimation at ground level over large ar-
eas. This is due to the fact that the data at the 2 km CAPPI
(which, because the base scan is at 1.5◦ above horizontal has
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Table 1. Rainfall classification and threshold criteria to separate
radar volume scan data into stratiform and convective rainfall do-
mains.

Criteria Classification

Pixel≤18 dBZ No Rainfall: Pixel set to 0 dBZ
18 dBZ<Pixel<35 dBZ Stratiform Rain

Pixel≥35 dBZ Convective Rain

a range limited to 73 km) plays a pivotal role in classifying
the rainfall as stratiform or intermediate. This means that
only a small proportion of the total volume scan data can be
classified. Another drawback of the existing algorithms in
real time applications is that they are computationally expen-
sive, especially for large data sets.

The algorithm developed here, with assistance of meteo-
rologists from the South African Weather Services (SAWS)
Innovation and Research Division, classifies the rainfall into
only two groups: convective and stratiform and works as fol-
lows. The classification is rather like Steiner’s (1995) algo-
rithm and is done pixel by pixel throughout the volume scan
data. The initial step of the algorithm works on a simple
threshold where all reflectivity values less than or equal to
18 dBZ are set to zero due to the fact that 18 dBZ approxi-
mates to 0.50 mm/h, a rate that can be considered negligible.
The remainder of the reflectivity values above zero are then
classified by the simple criterion: if the reflectivity value is
35 dBZ or above, the rainfall is classified as convective; the
reflectivity values in the range 18 dBZ to 35 dBZ are classi-
fied as stratiform rainfall.

A summary of the classification criteria is given in Ta-
ble 1 and an example of a classified instantaneous image
4 km above ground level is illustrated in the top panels of
Fig. 4. An example of a vertical cross section through a vol-
ume scan data with corresponding is also illustrated in the
bottom image of Fig. 4.

The classification algorithms proposed by Steiner (1995)
and Mittermaier (1999) work on the basis that the classifica-
tion of convective rainfall on the 4 km CAPPI is applied to
all levels below and that the 2 km CAPPI is used to classify
stratiform rain. However the rainrates at a large number of
pixels outside the range of the 4 km and 2 km CAPPI need to
be estimated and large portions of the image on the 4 km and
2 km CAPPI may also be marked as ground clutter and there-
fore be contaminated. As indicated in the bottom image of
Fig. 4, where the convective rainfall approaches ground level
(below 4 km in altitude) the convective rain zones may in-
crease substantially in the horizontal direction, which would
then result in a scenario where rainfall of high intensity (e.g.
54 dBZ≈84 mm/h) is miss-classified as stratiform rainfall.
For the above reasons a pixel by pixel classification approach
was chosen throughout the CAPPI volume scan due to its

greater suitability for the purpose of rainfall estimation at
ground level.

The main advantage of this algorithm is its simplicity, in
that for a real time application it has little impact on the over-
all computation time; this is especially true for large data
sets such as those returned from weather radar volume scans.
Secondly the algorithm is not restricted to the 2 km CAPPI
which is frequently the level of the melting layer in a South
African context. Thirdly, a far greater spatial range can be
classified than that limited to 73 km at the 2 km level, ad-
mittedly with reduced precision and confidence as the range
increases.

2.1 Characterisitcs of classified rainfall

The rainfall classification algorithm was tested on numer-
ous images ranging over five different years (1995, 1996,
2000, 2001 and 2002) from two weather radars in South
Africa: Bethlehem (mixed convective and stratiform rain,
1800 m altitude, sub-tropical savannah) and Durban (mostly
orographic warm rain, coastal, bush).

The vertical characteristics of the classified stratiform and
convective rain were examined by computing the mean verti-
cal profile of reflectivity from selected images from the Dur-
ban and Bethlehem weather radars over the same five years
as mentioned above. As shown in Fig. 5 the stratiform rain
generally has a low average vertical height, limited to 8 km
above ground level. The convective rainfall has considerable
vertical extent ranging up to 14 km above ground level and a
bigger range in mean reflectivity values. Both the stratiform
and convective profiles show a constant increase in rainfall
intensity as ground level is approached, with the exception
that in the stratiform profile, evidence of a bright band at the
2 km level indicates that the stratiform rain is likely to have
been classified correctly. The variability of the reflectivity in
both are characterised by a standard deviation of 3.5 dB or
less at any level.

3 Semivariogram estimation

One of the advantages of Kriging compared to other interpo-
lation/extrapolation techniques, is that the basis function is
determined by the actual data set and takes into account the
spatial structure of the data. The basis function in Kriging
is determined by the computation and fitting of an appropri-
ate model to the computed semivariogram. The variogram is
defined as the expectation of the square of the differences of
the field variables separated by a specified distance, as given
by Eq. (2):

2 · γ (x, h) = E
{
[Z(x) − Z(x + h)]2

}
(2)

where the semivariogram is defined asγ (x, h) (Journel and
Huigbregts, 1978: 11). The semivariogram provides a way
of measuring the spatial dependence that exists amongst the
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Figure 4: The top image is a radar reflectivity image from the Bethlehem weather radar 

(30 December 2001) and the corresponding classified image. The bottom image is a cross 

sectional profile through a instantaneous reflectivity image. Indicated in the associated 

plan is the CAPPI 4km above ground level and the position of the vertical cross section in 

the radar volume scan CAPPI (24 January 2002). All images are 300km across. Note the 

effectiveness of the classification algorithm. 
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Fig. 4. The top image is a radar reflectivity image from the Bethlehem weather radar (30 December 2001) and the corresponding classified
image. The bottom image is a cross sectional profile through an instantaneous reflectivity image. Indicated in the associated plan is the
CAPPI 4 km above ground level and the position of the vertical cross section in the radar volume scan CAPPI (24 January 2002). All images
are 300 km across. Note the effectiveness of the classification algorithm.

variables in a stationary random field. The Kriging compu-
tation can be carried out using either a covariance or a semi-
variogram function. However in this application the semivar-
iogram is used in preference due to its more robust properties
as outlined by Cressie (1993: 70–73).

3.1 Empirical computation of the semivariogram

The semivariogram is most commonly computed by the
Classical Variogram estimator as was proposed by Mather-
hon (1962) and is given by Eq. (3):

2 · γ̂ (h) =
1

|N(h)|

∑
N(h)

[
Z(si) − Z(sj )

]2 (3)

whereγ̂ (h) is the sample semivariogram at lagh (the speci-
fied lag distance),Z(si) andZ(sj ) are the values of the vari-
ables at the specified locations,si andsj which areh apart
andN(h) is the number of pairs separated by lagh.

Unfortunately the classical estimator of Eq. (3) is badly
affected by non-typical observations which can be attributed
to the (·)2 term in the summand (Cressie, 1993: 40). The
effect of non-typical data points can have a dramatic effect on
the semivariogram since they are used numerous times in the
calculation at different lag intervals. This can result in peaks
or shifting of the entire semivariogram upwards (Sabyasachi
et al., 1997). It was also noted that the distribution of points
at each lag distance (h) computed from radar rain fields was
highly skewed and did not approximate a normal distribution.
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Figure 5: Average vertical profile of reflectivity for classified stratiform and convective 

rainfall. Profiles are computed from 20 different images ranging over a 5 year period from 

the Bethlehem and Durban weather radars. 
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Fig. 5. Average vertical profile of reflectivity for classified strati-
form and convective rainfall. Profiles are computed from 20 differ-
ent images ranging over a 5 year period from the Bethlehem and
Durban weather radars.

It was thus decided that the Robust Variogram, proposed
by Cressie and Hawkins (1980) was the more appropriate
model to use and is given by Eq. (4):

2 · γ̄ (h) =

{
1

|N(h)|

∑
N(h)

∣∣Z(si) − Z(sj )
∣∣1/2}4/

(
0.457+

0.494

|N(h)|

)
(4)

By computing the sum of the absolute difference of the pairs
of data points,Z(si) and Z(sj ) in the square root domain
and then raising the result to the power of four dramatically
reduces the effect of uncharacteristic observations. It was
found that the skewness of the points at each lag (h) was
greatly reduced and also that the mean and the median value
of the sets of points for each lag interval more closely coin-
cided, both indicating that the distribution of points at each
lag (h) more closely approximates a normalized distribution.

The two-parameter isotropic exponential model was cho-
sen as the model to fit to the empirical semivariogram values,
as defined by Eq. (5):

g(h) = 1 − exp[−
(
h
/
L

)α
] (5)

whereh is the Euclidian distance between data points,L the
correlation length andα the shape parameter which lies in
the range0<α≤2. As recommended by Journel and Hui-
jbrechts (1978: 194), the model was fitted using up to only
half the maximum possible lag and only to the bins at each
lag distance that contained thirty or more points.

3.2 Parameter fitting to rainfall types

Computing the empirical semivariogram values and then ap-
plying a model fitting routine to solve for theα andL param-
eters in Eq. (5) is a computationally burdensome and time-
consuming task, especially if this is done each time an un-
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Figure 6: Scatter plot of alpha (α) and correlation length (L) parameters for stratiform and 

convective rainfall in a horizontal direction. The dashed line indicates the separation 

boundary of the two clusters as identified by a Fuzzy C-Means cluster algorithm. 
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Fig. 6. Scatter plot of alpha (α) and correlation length (L) parame-
ters for stratiform and convective rainfall in a horizontal direction.
The dashed line indicates the separation boundary of the two clus-
ters as identified by a Fuzzy C-Means cluster algorithm.

known reflectivity value is estimated. This problem is ex-
acerbated in the context of real time calculation, when the
images are collected every 5 min. An alternative is therefore
needed that is computational efficient yet does not compro-
mise the accuracy of the estimates. Reducing the computa-
tional burden of computing the semivariogram by the use of
a climatological semivariogram was employed for raingauge
interpolation by Lebel et al. (1987) in order to improve com-
putational efficiency. This idea was explored in the context
of radar rainfields.

A set of instantaneous rainfall images was selected from
the Bethlehem and Durban weather radars ranging over a
period of several years (1995, 2000, 2001 and 2002). The
images consisted of a variety of rainfall types ranging from
images containing solely stratiform rain to images containing
a combination of both stratiform and convective rainfall.

The rainfall classification algorithm of Table 1 was applied
to the CAPPI 4 km above ground level. From the images
various rectangular portions were selected that contained ei-
ther predominantly stratiform or convective rainfall. These
regions were approximately 1200 km2 (40 km by 30 km) in
area or larger where the reflectivity data was standardised
before computing the empirical semivariogram values. From
the selected regions the Robust semivariogram was computed
and the two parameter exponential model (Eq. 5) fitted. This
was done separately in both the horizontal and vertical di-
rections. The two parameters,α andL estimated from each
field, were then plotted against one another in a scatter plot.
This is shown in Fig. 6 for the horizontal direction and Fig. 7
for the vertical direction.

The scatter plots in Figs. 6 and 7 illustrate that the semi-
variogram parameters tend to cluster in a particular region
according to the type of rainfall, indicating that a fixed set of
parameters can comfortably be used depending on the rain-
fall type.
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Figure 7: Scatter plot of alpha (α) and correlation length (L) parameters for stratiform and 

convective rainfall in a vertical direction. The dashed line indicates the separation 

boundary of the two clusters as identified by a Fuzzy C-Means cluster algorithm. 
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Fig. 7. Scatter plot of alpha (α) and correlation length (L) parame-
ters for stratiform and convective rainfall in a vertical direction. The
dashed line indicates the separation boundary of the two clusters as
identified by a Fuzzy C-Means cluster algorithm.

3.3 Cluster analysis

To test if a natural clustering of the variables occurs, and also
to ascertain the degree of clustering in the vertical and hori-
zontal directions, a cluster analysis technique was utilised. A
Fuzzy C-Means clustering algorithm (Gordon, 1981: 58–60)
was run on the scatter plot of the data, where the specification
set in the algorithm was that the data should be divided into
two groups. In the horizontal direction the Fuzzy C-means
cluster algorithm split the groups roughly along the 6.5-km
correlation length and in the vertical direction along the 3.5-
km correlation length. The divisions for the clusters in the
vertical and horizontal direction determined by the Fuzzy C-
means cluster algorithm are indicated on Figs. 6 and 7 by the
dashed line.

Because the semivariogram parameters naturally cluster
around a centroid depending on the rainfall type, it seems
to be a safe assumption to use fixed climatological semivar-
iogram parameters depending on the type of rainfall classi-
fied; the adopted values are given in Table 2. This idea is
tested in the next sub-section.

3.4 Sensitivty analysis of climatological semivariogram pa-
rameters

To determine how sensitive final Kriged solutions are to the
use of a fixed set of semivariogram parameters, a sensitivity
analysis was undertaken. In the testing procedure, various 2-
D data sets of radar reflectivity values were selected that con-
tained solely convective or stratiform rainfall. Random por-
tions of the selected reflectivity data were then removed and
Ordinary Kriging was used to estimate the missing data, but
in this instance the Ordinary Kriging was carried out several
times using different combinations of semivariogram param-
eters (a brief overview of Kriging methods will be given in
a later section). Five different sets of parameters were used:
firstly the centroid value ofα andL for convective and strati-

Table 2. Semivariogram parameter values in the horizontal and ver-
tical directions for stratiform and convective rainfall.

Horizontal Vertical
αH LH (km) αV LV (km)

Stratiform 1.53 8.40 1.33 2.56
Convective 1.85 3.38 1.71 4.11
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Figure 8: Comparison of the mean value for an infilled region with five different 

combinations of alpha (α) and correlation length (L) parameters as indicated on the 

horizontal axis on the graph. 
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Fig. 8. Comparison of the mean value for an infilled region with
five different combinations of alpha (α) and correlation length (L)

parameters as indicated on the horizontal axis on the graph.

form rain and then theα andL values one standard deviation
away from the centroid values, as computed by Eqs. (6) and
(7).

α ± σα, 0 < α ≤ 2 (6)

L ± σL, 0 < L (7)

The infilled data were then compared to the original observed
reflectivity data by computing the Sum of Square of Errors
(SSE), means and standard deviations of the observed and
estimated data. As indicated by Figs. 8 and 9 there is no sig-
nificant difference between the estimated values returned for
the expected range of parameter values. The estimated Krig-
ing values appear to be more sensitive to the shape parameter,
α, than the correlation length,L.

The results indicate that there is no significant difference
between the five sets of parameter values used in each in-
stance, giving a clear indication that the final Kriged solution
is reasonably insensitive to the range of the shape parameter,
α, and correlation length,L, values that can possibly occur
when a sample semivariogram is fitted to a specific rainfall
type. Instead of solving for each set of semivariogram param-
eters for each neighbourhood one can simply use the centroid
value computed for each rainfall type depending on the ob-
served rainfall.
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Figure 9: Comparison of the standard deviation for an infilled region with five different 

combinations of alpha (α) and correlation length (L) parameters as indicated on the 

horizontal axis on the graph. 
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Fig. 9. Comparison of the standard deviation for an infilled region
with five different combinations of alpha (α) and correlation length
(L) parameters as indicated on the horizontal axis on the graph.

3.5 Application to 3-D reflectivity data

When selecting controls for computing the estimated value of
a target in 3-D space, three possible combinations of points
can be selected: (1) all convective, (2) mixed, containing
both stratiform and convective points and (3) all stratiform.
For situations with either all convective or all stratiform, the
appropriate subset of parameters in Table 2 are utilised for
all estimations.

When it comes to the practical calculation of the semivar-
iogram elements in the Kriging equations (Eq. 15) there are
no numerical or technical difficulties if the controls are all of
one type, either convective, or stratiform. A problem arises
when the controls are of mixed type. It was found that if the
individual semivariogram elements in the equation were set
to their type, with a compromise value for a mixed pair, un-
predictable instabilities occurred in the solution of the equa-
tion. The methodology adopted was to use a linear weighting
of theα andL parameters, where the weights are the propor-
tion of type.

When Kriging with a 3-D data set, the semivariogram
model developed by Seed and Pegram (2001) was modified
and is given by Eq. (8):

γ (h) = σ 2
·
[
1 − exp

(
−hα

)]
(8)

where: h2
=

(
r

LH

)2
+

(
z

LV

)2
and r2

=x2
+y2 here σ 2 is

the field variance,h is the scaled distance in spherical co-
ordinates,α is the scaling exponent,r is the distance in the
horizontal plane,LH the horizontal correlation length,z is
the distance in the vertical direction,LV the vertical corre-
lation length andx andy are the distances in the Cartesian
horizontal direction.

4 Bright band correction

As snow and ice crystals drop through the 0◦C isotherm they
begin to melt and are surrounded by a thin layer of water.

The result is that, from the radar’s point of view, the melting
snow and ice crystals resemble large blobs of water and the
reflectivity values for the melting level are enhanced greatly,
resulting in an overestimation of rain (Sanchez-Diezma et al.,
2000). This level is called the bright band. At Bethlehem,
South Africa the bright band generally occurs 2 km above
ground level (Mittermaier, 1999) as can be seen by the strat-
iform climatological profile of reflectivity in Fig. 5.

A typical method to correct the bright band as described
by Mittermaier (2003) is to derive a vertical profile based
on radar volume scan data which is then used to correct the
values and provide an estimate of the rainfall rate at ground
level (e.g. Sanchez-Diezma et al., 2000).

4.1 Effect of bright band on ground level estimates

The presence of a bright band has an adverse effect on the
estimates at ground level when applying an extrapolation al-
gorithm to volume scan radar reflectivity data. The reflectiv-
ity values at the 2 km CAPPI, which are on average greater
than the values on the 1km CAPPI, create a trend of decreas-
ing reflectivity values as ground level is approached. When
extrapolating to ground level and pixels are selected from the
1 km and 2 km CAPPIs, the trend of decreasing reflectivity is
extrapolated to ground level resulting in lower estimates of
stratiform rainfall at ground level than should be expected.
There is therefore a need to adjust the reflectivity values at
the 2 km CAPPI to provide an improved estimate of the rain-
fall at ground level, as illustrated in Fig. 10.

4.2 Bright band correction algorithm

The first step of the bright band correction algorithm is to
compute the wetted area ratio (WAR) of observed stratiform
rainfall at the 3 km, 2 km and 1 km CAPPIs. If the WAR
of stratiform rainfall is less than 10% at any of the CAPPIs,
then no correction takes place due to there being insufficient
rainfall to determine if a bright band is present; otherwise the
2 km CAPPI is examined to detect evidence of a bright band.

The existence of the bright band is determined by compar-
ing the temporally weighted mean values of reflectivity (x̃1,
x̃2 andx̃3) at the 1 km, 2 km and 3 km CAPPIs; the calcula-
tion is limited to the reflectivity values classified as stratiform
rainfall. If the computed temporally weighted mean values
of the stratiform rainfall at each level arẽx1>x̃3 andx̃2≥x̃1
then a bright band is considered to be present. Some mem-
ory of the mean value from previous time steps is retained by
temporal weighting as indicated by Eq. (9):

x̃T = λ · x̄T + (1 − λ) · x̃T −1(λ = 0.50) (9)

where x̃T is the temporally weighted mean,λ represents
the weighting value which is set to 0.50 (a value chosen to
smooth the means, but not excessively), andx̄T is the spatial
mean value of reflectivity at a given level computed from the
stratiform data at timeT .
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Figure 10: Adjustment of a stratiform pixel value on the 2km CAPPI that is identified as 

being affected by bright band. The bright band pixel is adjusted so as to sit at the midpoint 

between the observed reflectivity value situated on the 3km CAPPI and the mean value of 

stratiform rainfall reflectivities on the 1km CAPPI; the mean is used because the 1km 

CAPPI has very limited range. 
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Fig. 10. Adjustment of a stratiform pixel value on the 2 km CAPPI that is identified as being affected by bright band. The bright band pixel
is adjusted so as to sit at the midpoint between the observed reflectivity value situated on the 3 km CAPPI and the mean value of stratiform
rainfall reflectivities on the 1 km CAPPI; the mean is used because the 1 km CAPPI has very limited range.

Throughout the rain event a second temporally weighted
mean is also computed where the weighting value is set to
0.05; this has the result of producing a slowly adapting mean
valuewT . If the WAR of the stratiform rainfall is below 10%
then a break occurs and thex̃T value is now computed based
on the finalwT value before the break (wT B). An example
of this is illustrated in Fig. 11 where the mean values of re-
flectivity (x̃T ) are computed by geometric weighting. The
reflectivity data are from the Bethlehem weather radar, 25
January 1996. As indicated in Fig. 11, in three periods, the
WAR of stratiform rainfall is less than 10%; in these periods
x̃T is computed from the finalwT value before the break so
that toward the end of the period, it tends towT B , which can
be thought of as a locally adaptive historical mean value of
reflectivity.

To correct the bright band it is necessary to compute the
standard deviation (σ ) of the stratiform rainfall on the 1km
CAPPI, as illustrated by Fig. 10. Some memory of theσ

value from the previous time step is retained by weighting
as in Eq. (9); to compute the weighted standard deviation,
Eq. (10) is used:

σ̃T = λ · σT + (1 − λ) · σ̃T −1(λ = 0.50) (10)

whereσ̃T is the weighted standard deviation,λ represents the
weighting value which is set to 0.50 andσT is the standard
deviation of reflectivity at timeT . Once again throughout the
rain event a second temporally weighted standard deviation
(sT ) is also computed where the weighting value is set to
0.05. If the WAR of the stratiform rainfall is below 10% then
a break occurs and thẽσT value is now computed based on
the finalsT value before the break (sT B).

 47

 

 

Figure 11: Weighted mean value of stratiform rain on the 2km CAPPI as computed by 

geometric weighting. The data is taken from the Bethlehem weather radar (25 January 

1996) over a 24-hour period. 
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Fig. 11.Weighted mean value of stratiform rain on the 2 km CAPPI
as computed by geometric weighting. The data is taken from the
Bethlehem weather radar (25 January 1996) over a 24-h period.

If a bright band is identified, all the values classified as
stratiform rainfall are then evaluated on an individual pixel
by pixel basis within a vertical column, to decide if the
pixel at the 2 km CAPPI is affected by the bright band. For
each stratiform pixel location on the 2 km CAPPI the gra-
dient (1critical=1 dBZ/1height) is calculated between the
pixel value (directly above it) on the 3 km CAPPI and the
value equal tox̃1+σ̃1 on the 1 km CAPPI, as illustrated in
Fig. 10; the gradient is computed from Eq. (11). The gra-
dient (1observed) is also calculated between the pixel on the
3 km and 2 km CAPPI; as indicated by Eq. (12):

1critical =
1dBZ

1Height
=

dBZ3 − (x̃1 + σ̃1)

2
(11)
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Figure 12: Bright band adjustment of the 2km CAPPI for the 17 December 1995 (00:00 to 

24:00). The green line with triangle markers indicates the 2km CAPPI affected by bright 

band and the black line with plus sign markers indicates the mean value of the corrected 

data on the 2km CAPPI.  (The data are recorded at 5-minute intervals – the markers do 

not match the data but are for series identification in monochrome reproduction.) 
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Fig. 12. Bright band adjustment of the 2 km CAPPI for the 17 De-
cember 1995 (00:00 to 24:00). The green line with triangle markers
indicates the 2 km CAPPI affected by bright band and the black line
with plus sign markers indicates the mean value of the corrected
data on the 2km CAPPI. (The data are recorded at 5-min intervals –
the markers do not match the data but are for series identification in
monochrome reproduction.)

1observed=
1dBZ

1Height
=

dBZ3 − dBZ2

1
(12)

If |1observed|>|1critical| then the pixel on the 2 km CAPPI is
classified as a bright band pixel and adjusted by altering the
value of that pixel as shown in Eq. (13):

New dBZ2 Pixel =
dBZ3 + x̃ 1

2
(13)

Figure 10 provides a schematic of a scenario where a pixel
on the 2 km CAPPI is identified as being affected by bright
band. The correction of the pixel is then also indicated as
the new value is set to the midpoint of the pixel on the 3 km
CAPPI and the mean value (x̃1) of the reflectivity data on the
1 km CAPPI.

4.3 Testing the bright band correction procedure

To test the effectiveness of the proposed bright band cor-
rection procedure a period of rainfall from the Bethlehem
weather radar was selected (17 December 1995) that con-
sisted predominantly of stratiform rainfall and showed clear
evidence of a bright band. Figure 12 illustrates the com-
puted mean values̃xT at CAPPIs 1, 2 and 3 at 5-min intervals
throughout the day. The mean value of 2km CAPPI (green
line with triangle markers) is consistently higher throughout
the day than the mean values on the 1km and 3 km CAPPIs,
indicating a definite bright band.

The bright band correction procedure described in the pre-
vious sub-section was applied to each 5-min instantaneous
image throughout the 24-h period, so that the mean value
sequence of the adjusted reflectivity data on the 2 km CAPPI
was then recomputed. Figure 12 illustrates the adjusted mean
value series for the 2 km CAPPI, which now lies at the ap-
proximate midpoint of the mean value series for the 1 km
and 3 km CAPPIs.

Table 3. Sum of square of errors (SSE) andr2 value between radar
and raingauge estimates before and after bright band correction.

Before bright After bright
band correction band correction

SSE 16 601 13 161
r2 0.34 0.43

To test the effectiveness of the bright band adjustment al-
gorithm, a comparison was carried out between Block Kriged
raingauge estimates and the radar accumulation estimates be-
fore and after the bright band correction procedure. The
raingauge network utilised was from the Liebenbergsvlei
catchment as described in the Introduction. The compari-
son was carried out on the 24-h rain event from the Bethle-
hem weather radar from the 17 December 1995 with a strong
bright band evident, indicated in Fig. 12. The SSE between
the raingauge and radar accumulations for a 24-h period were
computed and ther2 values also estimated before and after
the bright band correction. There was a notable improvement
in the radar estimates as the radar accumulation values more
closely matched the raingauge estimates after the bright band
was corrected. This is demonstrated by the lower SSE and
higherr2 value returned for radar estimates where the bright
band correction was implemented as summarised and shown
in Table 3.

The proposed bright band correction procedure provides
an effective means of adjusting the 2 km CAPPI reflectiv-
ity values when affected by bright band so as to provide
an improved estimate of the rainfall at ground level. The
bright band correction algorithm is computationally inexpen-
sive and therefore suitable for real time applications.

5 Kriging methods

Kriging was chosen as the computational method to inter-
polate the observations missing internal to the CAPPI stack
and to extrapolate the reflectivity values contained aloft to
ground level. Kriging is considered to be the optimal tech-
nique for the spatial prediction of Gaussian data (Cressie,
1993: 106). In this application two types of Kriging were
used, Ordinary and Universal Kriging (also called External
Drift Kriging (Hengl et al., 2003)).

5.1 Ordinary and Universal Kriging

In Ordinary Kriging, the mean is assumed constant and un-
known throughout the field whereas in Universal Kriging, the
mean is also assumed to be unknown but varying (Chiles and
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Delfiner, 1999: 151). The Ordinary Kriging equations are
given by Eq. (14):

z(s0) = λT (s0) · z (14)

wherez(s0) is the value to be estimated at the targetso, z is
the vector of known reflectivity values, or controls, and the
row vectorλT (s0) contains the calculated weighting values
which depend ons0. The vector of weighting values is com-
puted by the matrix Eq. (15):[

G u

uT 0

]
·

[
λ(s0)

µ(s0)

]
=

[
g(s0)

1

]
(15)

whereG is a matrix of semivariogram values between the
controls,u a unit vector of ones,λ(s0) the vector of weight-
ing values,µ(s0) a Lagrange multiplier andg(s0) a vector of
semivariogram values between the target atso and the con-
trols’ locations; note the dependence of the unknown and
right hand side vector on the position of the targets0. In
Universal Kriging variables can be added to Eq. (15) in order
to model the variation of the mean throughout the field. This
modification is indicated in Eq. (16a), by the addition ofQc

to the coefficient matrix andqt (so) to the right hand side and
β to the vector of weighting values: G u Qc

uT 0 0
QT

c 0 0

 ·

 λ(s0)

µ(s0)

β

 =

 g(s0)

1
qt (s0)

 (16a)

where the additional terms are:

Qc=

 q1(s1) · · · qp(s1)
...

...

q1(sn) · · · qp(sn)

 (16b)

The selected variableqj (si) is associated with the pointsi
and could be altitude, mean annual precipitation or some
other classification variable. They range fromq1(si) to
qp(si) and are associated with the selected control. The
vectorqt (s0) contains the corresponding variables associated
with the target. Typical models for the variation of the mean
are either linear or polynomial; alternatively variables asso-
ciated with physical characteristics of the controls may be
included, that influence the mean value of the field.

5.2 Computational stability and efficiency

In order to supply an estimate of the rainfall at ground level
on a real time basis, computational efficiency is of the ut-
most importance. In South Africa, as volume scan data are to
be processed at approximately 5 min intervals, an estimated
120 000 targets need to be computed in this time. One of the
disadvantages of the Kriging technique is that it relies on the
solution of a linear system of equations whose size is propor-
tional to the number of selected controls. For large systems
of equations this can be time consuming, computational bur-
densome and potentially unstable. Previous authors have also

made reference to the computational burden associated with
Kriging (e.g. Creutin and Obled, 1982).

There are several approaches that can be adopted for Krig-
ing target data, some of which are:

– compute all target values together.

– separate the targets into contiguous sets and identify
their boundary controls.

– use neighbourhood Kriging to estimate each target value
individually.

It was ascertained that the last of the three options is the
most accurate, most stable and fastest of the three by an
order of magnitude (Wesson and Pegram, 2004) and is the
method adopted here. One of the properties of Kriging that
can be exploited to overcome the problem of dimension is
the “screening effect” (Chiles and Delfiner, 1999: 202–206).
The screening effect refers to the observation that the sig-
nificant weighting values are concentrated around the target,
with the weighting values rapidly decreasing with distance
from the target. For each target only a cluster of the nearest
controls needs to be selected. In this application the com-
puted optimum number of controls based on an exhaustive
comparison, is 25. This has the effect of drastically reducing
the computation time with little or no loss in accuracy of the
final results.

Another unexpected problem associated with the Kriging
technique, which is not so well known, is the ill-conditioning
of the coefficient matrix. It was demonstrated by Wesson
and Pegram (2004) that the coefficient matrix can be highly
ill-conditioned dependent on a number of factors, but most
notably the chosen parameterization of the semivariogram
function. This is especially evident as theα value tends to
become Gaussian (α→2). The method of Singular Value
Decomposition (SVD) is therefore used in conjunction with
a trimming of the singular values to provide a computational
stable method to find the solution to the Kriging equations.
Due to the fact the singular values are trimmed, matrix rank
reduction techniques can then be exploited to dramatically
decrease the time to find the inverse solution of the coef-
ficient matrix with little or no loss in accuracy of the final
Kriged solution (Wesson and Pegram, 2004).

5.3 Development of Ordinary and Universal Kriging tech-
niques

In the application of the Kriging technique the control data
selected divides into three categories which are determined
by the 25 controls in the selected neighbourhood and are de-
fined as follows:

– Stratiform – controls consist entirely of stratiform rain.

– Mixed/Intermediate – controls consist of a combination
of stratiform and convective rain.
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Figure 13: Scatter plot of observed and estimated rainrates at individual pixel points for 

mixed rainfall for a instantaneous image from the Bethlehem weather radar, 24 January 

2002, the number of pixels estimated number 2628. Estimates are computed with 

Ordinary (left) and Universal Kriging (right) with the latter indicating a substantial 

improvement in estimates. 
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Fig. 13. Scatter plot of observed and estimated rainrates at individual pixel points for mixed rainfall for a instantaneous image from the
Bethlehem weather radar, 24 January 2002, the number of pixels estimated number 2628. Estimates are computed with Ordinary (left) and
Universal Kriging (right) with the latter indicating a substantial improvement in estimates.

– Convective – controls consist entirely of convective
rain.

Although the rain is classified as purely stratiform or convec-
tive rainfall an intermediate rainfall zone is implied for com-
putation purposes. Ordinary Kriging was used in the “pure”
convective and stratiform zones while Universal Kriging was
used in the mixed zone. The problem to be solved was how
to get the best combination in the mixed cases.

In order to determine the most effective form of Kriging
to use, and the most appropriate variables to use in Univer-
sal Kriging, a validation technique was devised. The CAPPI
2 km above ground level was selected as the target level for a
variety of weather types. The data from aloft was then used
to estimate all the reflectivity data on the 2 km CAPPI. The
estimated data and observed data were then converted from
reflectivity to rainrate values and the rain separated into the
three categories listed above. These were compared in terms
of SSE, means and standard deviations. Universal Kriging
was investigated by modelling the vertical variation of the
mean by use of either a second order polynomial or a lin-
ear relationship to take advantage of the trend in the vertical
reflectivity profile. This was investigated for stratiform, con-
vective and mixed rainfall.

5.3.1 Stratiform zone

In the stratiform zone Ordinary Kriging is utilised. Univer-
sal Kriging did not result in any significant improvement in
terms of the SSE between the estimated and observed rain-
fall. A computational advantage of Kriging in the stratiform
zone is that SVD does not need to be used in order to com-
pute the inverse of the coefficient matrix. This is due to the

fact that the shape parameter,α, for stratiform rain is close to
unity (implying an exponential semivariogram model) which
results in a stable coefficient matrix. By computing the con-
dition number, which for a symmetric matrix is defined as
the ratio of the largest to the smallest singular value (Wilkin-
son, 1988: 191), it was shown that the coefficient matrices
for stratiform rain were stable enough to use the quicker LU
decomposition algorithm to find the solution to the Kriging
equations.

5.3.2 Convective zone

The controls in this zone consist entirely of convective rain-
fall, so SVD is used to compute the inverse of the coefficient
matrix because the shape parameter,α, is close to Gaussian.
Universal Kriging was not found to provide a significant im-
provement in the estimates over Ordinary Kriging. When
applying Universal Kriging the linear relationship tended to
overestimate the convective rainfall and the second order
polynomial provided an underestimate at the target. Based
on the above, Ordinary Kriging is used when the controls
selected consist entirely of convective pixels.

5.3.3 Mixed/intermediate zone

In the mixed zone, SVD is used to compute the inverse of
the coefficient matrix because, for convective rain, the shape
parameterα is close to Gaussian as seen in Table 2. This re-
sults in a numerical unstable coefficient matrix (Wesson and
Pegram, 2004). In addition Universal Kriging in this instance
provides an improved estimate over Ordinary Kriging. Test-
ing the method on 10 different instantaneous images showed
an improvement in estimates (in terms of SSE) on 8 of the
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images. Since the controls now consist of both stratiform
and convective pixels a stratiform/convective binary switch
was used as the two external variables in Universal Kriging.
This is indicated as a specialization ofQc in Eq. (16b) and is
given as Eq. (17):

Qc =

C1 S1
...

...

Cn Sn

 (17)

whereC represents a convective andS a stratiform control;
so that a convective control is assigned the values[C S]=[1
0]; and a stratiform control is assigned the values[C S]=[0
1].

A decision needs to be made as to which semivariogram
is to be used in the coefficient matrix and which switch is to
be set inQc (Eq. 17). This also affects the choice ofqt in
the right hand side of Eq. (16a). It was decided to let this
be determined by examining the controls; if the majority of
the controls are convective then the target is assumed to be
convective, if not then it is assumed to be stratiform. Includ-
ing these external variables resulted in an improvement in
the estimates. An example of this comparison is indicated
in Fig. 13 where first Ordinary then Universal Kriging were
used to estimate the mixed rainfall pixels on an instantaneous
image (24 January 2002) from the Bethlehem weather radar;
the number of pixels to be estimated were 2628. As indicated
in Fig. 13, Universal Kriging provides an improved estimate
over Ordinary Kriging.

5.4 Cascade Kriging

When Kriging directly to ground level using the full set of
CAPPI data in a stack, there are unexpected problems which
occur. A 24-h accumulation of rainfall calculated from 5-min
images Kriged from the CAPPI volume down to ground level
is shown in Fig. 14. The data are from the Bethlehem weather
radar (25 January 1996); the image is 200 km square. As
can be seen in Fig. 14, there are serious discontinuities at the
regions located directly under the edges of the CAPPIs; there
is also an inflation of the reflectivity estimates which was
found to be due to the numerical and geometric distribution
of Kriging weights at the CAPPI edge locations.

A solution to the above problem is to use a Cascade Krig-
ing approach, which exploits the fact that the 25 nearest
neighbouring controls are confined to two levels above the
target. The first step is to infill the missing data in the CAPPI
at 16 km above ground level, pixel by pixel, using neighbour-
hood Kriging of the 25 control data vertically above and in
the horizontal direction. Once all the unknown data on that
CAPPI have been estimated and infilled, the CAPPI directly
below is examined and any missing data here are estimated
in the same manner; once again estimates from above (which
now can include previously infilled data) and at the same
level are used as control data. This is repeated until all the
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Figure 14: 24-Hour rainrate accumulation for the Bethlehem weather radar (25 January 

1996). Image dimensions are 200km square. Indicated on the image are the serious 

discontinuities associated with the CAPPI edges and also the inflation of the Kriged 

estimates at CAPPI edges. 
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Fig. 14. 24-h rainrate accumulation for the Bethlehem weather
radar (25 January 1996). Image dimensions are 200 km square. In-
dicated on the image are the serious discontinuities associated with
the CAPPI edges and also the inflation of the Kriged estimates at
CAPPI edges.

unknown data in each CAPPI are estimated. The final step
involves an estimate of the rainfall at ground level.

Figure 15 gives a 3-D illustration of radar volume scan
data before and after Cascade Kriging. The data are from
the Bethlehem weather radar, 14 February 1996, where the
image is 200 km square, and the vertical extent is 3 km. The
levels above 3 km have been ignored for clarity, but the cas-
cade was started at level 4. The image on the left hand side
indicates the volume scan data before Cascade Kriging and
the right hand image represents the same volume scan data
after Cascade Kriging has been used to estimate as much un-
known data as possible and provide an estimate at ground
level.

Cascade Kriging has the following influences on reflec-
tivity data. There is increased smoothing of the reflectivity
data as ground level is approached. There is also an increase
in the reflectivity values as ground level is approached due
to the pattern of Kriging Weights as illustrated in Fig. 16.
This is because, in the case where the reflectivity values in-
crease with proximity to ground level, the negative weights
on the upper level and the positive weights on the lower level
maintain the observed gradient, which results in an increase
in the magnitude of the Kriged values; this tendency corre-
sponds with the climatological profiles shown in Fig. 5. The
next section details the validation testing procedure adopted
to determine the efficiency and accuracy of the algorithm.

6 Testing and results

In order to determine the efficacy of the proposed tech-
nique in providing accurate rainfall accumulation values at
ground level, a comparison was carried out between rain-
gauge and radar accumulation values for selected rain events;
care was taken to compute values which were comparable at
ground level. The Liebenbergsvlei catchment described in
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Figure 15: 3D Graphical illustration of radar volume scan data up to 3km above ground 

level, before and after Cascade Kriging. Data are from the Bethlehem weather radar (14 

February 1996). Data at levels 4km and higher are not shown, but were used to 

successively fill the stack from above. 

 

 

 

Fig. 15. 3-D Graphical illustration of radar volume scan data up to 3 km above ground level, before and after Cascade Kriging. Data are
from the Bethlehem weather radar (14 February 1996). Data at levels 4 km and higher are not shown, but were used to successively fill the
stack from above.
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Figure 16: Layout of Kriging weightings, computed with convective semivariogram 

parameters, for 22 controls (chosen for symmetry of illustration) centred directly above a 

target. The negative weights (occurring particularly where semivariograms model 

parameter α  2) are situated on the upper CAPPI and the positive weights on the lower 

CAPPI and maintain a gradient in the field if there is one above the target. 
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Fig. 16. Layout of Kriging weightings, computed with convective semivariogram parameters, for 22 controls (chosen for symmetry of
illustration) centred directly above a target. The negative weights (occurring particularly where semivariograms model parameterα→2) are
situated on the upper CAPPI and the positive weights on the lower CAPPI and maintain a gradient in the field if there is one above the target.

the introduction and illustrated in Fig. 3 was used as the test
area for the comparison between radar and raingauge accu-
mulation estimates.

The radar rainfall estimates at ground level are estimated
in 1 km by 1 km cells and the raingauge provides a point esti-
mate at ground level. In order to provide an appropriate way
of comparing the two estimates, the following approach was
taken. The average value of the 9 radar pixels (a 3 km square
area), with the centre square covering a gauge, was taken as
the radar estimate of average rainfall at each gauge location.
In computing the radar accumulation values one needs to take
into account that the images are sampled at five-minute inter-
vals, so a simple linear accumulation of the images may not
provide an accurate accumulation, especially for fast mov-
ing rain events. The accumulations are therefore computed

by a Morphing Algorithm that takes into account the motion
of the rainfield between instantaneous images (Sinclair and
Pegram, 2003).

Block Kriging was used to determine the average rainfall
over the same 9 km2 area by using all raingauges within a
range of 2 correlation lengths from the centre of the 9 km2

area, at times corresponding to the radar estimates. The
Block Kriging estimates are computed by Eq. (18):

ẑD =
1

D

∫
D

Z(x) · dx (18)

whereẑD is the average value over a selected region andD

defines the region (Bras and Rodriguez-Iturbe, 1985: 402–
404). Due to the wide spacing of the raingauges compared
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Figure 17: Method of selection of raingauges to compute Block Kriging estimate over the 9 

pixels centred at a raingauge location. Raingauges within a range of 2 correlation lengths 

are selected to compute the Block Kriging estimate over the 9 pixel region. 
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Fig. 17. Method of selection of raingauges to compute Block Krig-
ing estimate over the 9 pixels centred at a raingauge location. Rain-
gauges within a range of 2 correlation lengths are selected to com-
pute the Block Kriging estimate over the 9 pixel region.

to the 3×3 km area, the semivariogram parameters used were
the same as those determined for the radar reflectivity data in
the horizontal plane. However, a nugget effect is included,
which for stratiform rain has a value of 0.10 and convective
rainfall 0.03 (for a semivariogram type function) as was de-
termined by Habib and Krajewski (2002). This allows for the
random errors and uncertainties associated with raingauge
estimates. Illustrated in Fig. 17 is the method of selection
of the nearest raingauges to be used in the estimation of the
average rainfall over the 9-pixel region, where the raingauges
selected are within a range of 2 correlation lengths from the
centre of the 9-pixel region.

The following two rain events were selected for compre-
hensive validation tests: (1) 24 January 1996 – a rain event
which consisted of extremely high rainfall intensities over an
approximately 12-h period, (2) 13 February 1996 – a rain
event consisting of a combination of convective rain with pe-
riods of stratiform rain. Further testing on numerous other
rain events was also conducted and is discussed in a later
point in the Testing and Results section but not in as much
detail as the two mentioned above.

6.1 Statistical comparison of raingauge and radar accumu-
lations

In order to determine the quality of the radar estimates at
ground level a statistical comparison of the raingauge and
radar accumulations over different periods of 24 h, 12 h and
6 h was conducted. A scatter plot of the radar and raingauge
accumulations was done and the correlation coefficient com-
puted. The Kolmogrov-Smirnov (K-S) test was also used
to determine if the cumulative distributions of the radar and
raingauge accumulations were significantly different at a sig-
nificance level of 5%, where the hypothesis being tested is
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Figure 18: 12-hour rainfall accumulation from the Bethlehem radar on the 24 January 

1996. An outline of the test catchment is indicated on the image as well as the raingauge 

locations. Dimensions of the image are 200km square. 

 

 

 

Fig. 18. 12-h rainfall accumulation from the Bethlehem radar on
the 24 January 1996. An outline of the test catchment is indicated
on the image as well as the raingauge locations. Dimensions of the
image are 200 km square.

H0: Raingauge Distribution = Radar Distribution against H1:
Raingauge Distribution6= Radar Distribution. The means
and standard deviations (σ) of the accumulated values were
also tested at a significance level of 5%. In all the statisti-
cal tests undertaken a Box-Cox Transform was applied to the
data in order to ensure the data sets approximated to a normal
distribution.

6.2 Rainfall events

6.2.1 Rainfall event 1: 24 January 1996

Severe convective rainfall was recorded in the late afternoon
and evening of the 24 January 1996 (Mather et al., 1997).
The analysis for this event was conducted over a 12-h period
from 12:00 to 24:00. For this rain event 29% of the images
in the 12-h accumulation period were identified as contain-
ing bright band and corrected. Figure 18 illustrates a 12-h
accumulation giving an indication of the extreme rainfall in-
tensity during the 12-h period. Indicated on Fig. 18 is an out-
line of the catchment area as well as the raingauge locations.
The region directly above the radar, a circle of 20 km radius,
has also not been infilled due to poor data quality close to
the radar during this time period; two raingauges within this
region were excluded from the study.

A scatter plot of the raingauge and radar accumulations
after a 12 h period at each of the 43 gauge sites computed
by the appropriate Kriging method over each 9 km2 region,
is shown in Fig. 19. There is a high correspondence for this
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Figure 19: Scatter plot of radar and raingauge accumulations for a 12-hour accumulation 

period for the 24 January 1996 rain event. A strong correspondence exists between the 

radar and raingauge accumulation, especially for the high intensity rainfall. 
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Fig. 19.Scatter plot of radar and raingauge accumulations for a 12-
h accumulation period for the 24 January 1996 rain event. A strong
correspondence exists between the radar and raingauge accumula-
tion, especially for the high intensity rainfall.
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Figure 20: Cumulative Distribution Functions (CDFs) of the raingauge and radar 

accumulations for a 12-hour period. Accumulations values are from the 24 January 1996 

(12:00 to 24:00). Testing at a significance level of 5% indicate that the distributions of the 

accumulations for the radar and raingauge are not dissimilar 
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Fig. 20. Cumulative Distribution Functions (CDFs) of the rain-
gauge and radar accumulations for a 12-h period. Accumulations
values are from the 24 January 1996 (12:00 to 24:00). Testing at a
significance level of 5% indicate that the distributions of the accu-
mulations for the radar and raingauge are not dissimilar.

rain event between radar and raingauge accumulations with
anr2 value of 0.86 being returned. The highest pair of radar
observations bias what is otherwise a reasonable fit, as can
be seen in Figs. 19 and 20. This is probably due to under
estimation of the highly localised convective rainfall by the
gauges concerned (Wilson and Brandes, 1979).

Table 4 provides a summary of the statistical results re-
turned for the raingauge and radar accumulation over a 12-
h period and two 6-h periods. For the 6-h period (18:00
to 24:00) and the 12-h accumulation period there is a close
correspondence between the radar and raingauge estimates.

 57

 

 

 

 

 

 

 

 

 

Figure 21: 24-hour rainfall accumulation from the Bethlehem radar on the 13 February 

1996. An outline of the test catchment is indicated on the image as well as the raingauge 

locations. Dimensions of the image are 200km square. 

 

 

 

 

 

Fig. 21. 24-h rainfall accumulation from the Bethlehem radar on
the 13 February 1996. An outline of the test catchment is indicated
on the image as well as the raingauge locations. Dimensions of the
image are 200 km square.

With the exception of one standard deviation, the means and
standard deviations are statistically similar with the K-S test
also indicating that the distributions of the accumulations for
the radar and raingauge are not dissimilar, except for the
6-h accumulation period from 12:00 to 18:00. The word
“Accept” in Table 4 refers to the null hypothesis H0 being
accepted and H1 rejected, and “Reject” refers to H0 being
rejected and H1 accepted. Figure 20 shows an example of
the cumulative distribution functions for 12-h raingauge and
radar accumulations where the distributions for this example
were considered to be not dissimilar.

6.2.2 Rainfall event 2: 13 February 1996

The rain event on the 13 February 1996 consisted of a combi-
nation of convective and stratiform rain. The rainfall initially
consisted of light stratiform rainfall but towards the evening
and afternoon this area also experienced convective rainfall.
In the 24-h rain period 19% of the images were identified as
containing bright band and corrected. The 24-h accumula-
tion for the 13 February 1996 is depicted in Fig. 21 illustrat-
ing the combination of convective and stratiform rainfall that
was recorded throughout the day. The exclusion of data di-
rectly above the radar applies in this instance as well. Two of
the gauges were therefore excluded from the data analysis.

Figure 22 illustrates a scatter plot of the radar and rain-
gauge areal average data for the 24-h accumulation period
of low intensity, wide spread, mostly stratiform rain, cor-
responding to Fig. 21. The scatter plot indicates a strong
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Table 4. Summary of statistical results for different accumulation periods for 24 January 1996 rain event for radar and raingauge data.

6 h accumulation 6 h accumulation 12 h accumulation
(12:00 to 18:00) (18:00 to 24:00) (12:00 to 24:00)
Mean Stdev Mean Stdev Mean Stdev

Radar 4.6 5.1 27.2 40.8 30.3 41.3
Raingauge 4.0 7.1 25.4 38.3 29.4 36.8

Accept/Reject H0 Accept Accept Accept Accept Accept Accept
r2 0.08 0.88 0.86

K-S TEST Reject Accept Accept
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Figure 22: Scatter plot of radar and raingauge accumulations for a 24-hour accumulation 

period for the 13 February 1996 rain event. A strong correspondence exists between the 

radar and raingauge accumulation, especially for the high intensity rainfall. 
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Fig. 22. Scatter plot of radar and raingauge accumulations for a
24-h accumulation period for the 13 February 1996 rain event. A
strong correspondence exists between the radar and raingauge ac-
cumulation, especially for the high intensity rainfall.

correspondence between raingauges and radar estimates with
a correlation coefficient,r2, of 0.78 being returned. The
higher rainfall accumulation values show a strong correspon-
dence, while the lower rainfall values exhibit a weaker rela-
tionship. Again, the raingauges underestimate the highest
two values of the rainfall when compared to the radar, induc-
ing a bias because of the strong influence of the two largest
values.

Table 5 provides a summary of the statistical analysis of
the comparisons between raingauges and radar accumulation
for the full 24-h period and two 12-h periods. The mean
and standard deviation for each of the accumulation peri-
ods closely corresponds and are statistically similar, except
for the standard deviation of the 12-h accumulation from
12:00 to 24:00. The correlation coefficient value,r2, is also
high except for the accumulation period from 00:00 to 12:00
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Figure 23: Correlation coefficients (r2) computed for raingauge and radar accumulations 

over a 24-hour period for 15 rain events consisting of different rainfall types. 
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Fig. 23. Correlation coefficients (r2) computed for raingauge and
radar accumulations over a 24-h period for 15 rain events consisting
of different rainfall types.

which consisted of light stratiform rain. The cumulative dis-
tributions of accumulation values for each time period were
also determined to be statistically similar via the K-S test.

The statistics of the comparatively high rainfall accumula-
tions summarised in Tables 4 and 5 indicate that the estimates
of the rainfall at the ground from the radar images satisfacto-
rily capture the amount and variability of the rainfall.

6.3 Additional testing

The Cascade Kriging algorithm was also tested on addi-
tional rain events that consisted of stratiform, convective
and mixtures of convective and stratiform rainfall. The
rain events were selected from the December 1995 and Jan-
uary/February 1996 periods all of which were taken from the
Bethlehem weather radar and once again the Liebenbergsvlei
raingauge network utilised. The rain events will not be dis-
cussed in as much detail as the two previously mentioned
events however the correlation coefficient (r2) was computed
and the mean, standard deviation and CDFs of the raingauge
and radar accumulations were tested to see if they were sta-
tistically dissimilar. All tests were once again carried out at
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Table 5. Summary of statistical results for different accumulation periods for 13 February 1996 rain event for radar and raingauge data.

12 h accumulation 12 h accumulation 24 h accumulation
(00:00 to 12:00) (12:00 to 24:00) (00:00 to 24:00)
Mean Stdev Mean Stdev Mean Stdev

Radar 1.1 1.4 17.0 14.5 18.1 14.7
Raingauge 1.0 1.5 14.8 11.9 15.8 12.2

Accept/Reject H0 Accept Accept Accept Reject Accept Accept
r2 0.14 0.76 0.78

K-S TEST Accept Accept Accept
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Figure 24: Average MSSE for radar and raingauge accumulations for all rain events tested 

over 6, 12 and 24-hour accumulation periods. 
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Fig. 24. Average MSSE for radar and raingauge accumulations for
all rain events tested over 6, 12 and 24-h accumulation periods.

a significance level of 5%. In total 15 rain events are sum-
marised in this sub-section.

The correlation coefficients were firstly computed for the
raingauge and radar accumulations all of which were for a
24-h accumulation period. As mentioned in the rain events
discussed above there was a good correspondence between
raingauge and radar accumulations for convective rainfall
events with a weaker correspondence for stratiform rain-
fall events. The correlation coefficients (r2) are plotted in
Fig. 23.

For the 15 rain events tested 8 of the mean values for the
raingauge and radar accumulations were considered to be
similar with 7 dissimilar. For the computed standard devi-
ations 8 were also considered to be similar with 7 dissimi-
lar. The K-S test on the CDFs for the raingauge and radar
accumulations returned that 6 of the distributions were sta-
tistically similar with 9 being considered dissimilar.

From the 15 rain events selected 8 consisted of predom-
inantly stratiform rainfall and 7 with combinations of con-
vective and stratiform rainfall. The averager2 value of the 8
stratiform rainfall events was 0.41 and the averager2 value
from the 7 heavier rainfall events was 0.61. The major-

ity of the tests where the raingauge and radar accumulation
statistics were considered to be dissimilar belonged to the
predominantly stratiform rainfall events. The above results,
and averager2 values computed, once again indicate that the
Cascade Kriging extrapolation algorithm works well for the
heavier rainfall events but returns less accurate results for
lighter stratiform rainfall events.

6.4 Comparison to alternative methodologies

A brief overview of how the Cascade Kriging algorithm com-
pared to two simpler methodologies to obtain the rainrate at
ground level will be reviewed.

– Nearest Pixel – The first method simply uses the lowest
(altitude) pixels reflectivity in a vertical profile as the
estimate at ground level.

– Average Profile – The second method is currently em-
ployed by SAWS in the Daily Rainfall Mapping Project
over South Africa to provide an estimate the rainfall
at ground level. The method calculates the average of
all the non-zero reflectivity values contained in a verti-
cal column above the pixel, the average is then utilised
as the estimate of the rainfall at ground level (Visser,
2003).

The three methods: Cascade Kriging, Nearest Pixel and Pro-
file Average were compared over 4 rain events (24 and 27
January 1996, 13 February 1996 and 17 December 1995)
over the 6-h, 12-h and 24-h accumulation periods. For each
of the methods employed to obtain an estimate of the rain-
fall at ground level over each of the accumulation periods the
Mean Sum of Square of Errors (MSSE) was computed. The
MSSE was determined by computing the SSE between the
Block Kriged raingauge accumulations and radar accumula-
tions and dividing by the number of raingauges utilised.

The Cascade Kriging algorithm returned preponderantly
improved estimates over the other techniques in rain events
that consisted of a mixture of stratiform and convective rain-
fall over the accumulation periods over a range of rainfall
events. The average MSSE for each of the techniques over
6, 12 and 24-h accumulation periods was computed and the
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results illustrated in Fig. 24. As indicated in Fig. 24 the Cas-
cade Kriging algorithm returned superior estimates in terms
of the MSSE over all the accumulation periods investigated;
although it is marginally better than the Nearest Pixel method
it is much better than the Profile Averaging.

7 Summary and conclusion

A technique has been presented that extrapolates radar vol-
ume scan data estimated at 1km intervals above ground level
to the earth’s surface, and in the process estimates missing
data in the CAPPI stack.

A rainfall classification was firstly done to separate the
rainfall into stratiform and convective types. By separating
the rainfall, climatological semivariograms for each rainfall
type were defined, a procedure which ensures high computa-
tional efficiency with little loss in accuracy. The 2 km CAPPI
is then examined to determine if a bright band is present and
if so the pixels are adjusted on an individual basis. Both 3-
D Universal and Ordinary Cascade Kriging were then used
to infill missing data in the CAPPI stack and finally provide
a rainfall estimate at ground level. In the Kriging computa-
tions care was taken to ensure computational efficiency and
stability.

The effectiveness of the above algorithm was tested on
two different rainfall events exhibiting distinctly different
types of rainfall by comparing raingauge and radar accumu-
lation estimates at ground level. The technique demonstrated
that both and high and moderate intensity rainfall exhibited
similar estimates to raingauges whereas stratiform rainfall
showed a weaker correspondence to the raingauge estimates;
the research is ongoing. The Cascade Kriging technique is
undergoing further testing currently at the Innovation and Re-
search Division of SAWS to determine if it is operationally
sound to implement.
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