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Madrid, Ciudad Universitaria s.n., 28040 Madrid, Spain

Received: 10 July 2007 – Revised: 23 August 2007 – Accepted: 3 September 2007 – Published: 12 September 2007

Abstract. We use multifractal analysis to estimate the Rényi
dimensions of river basins by two different partition meth-
ods. These methods differ in the way that the Euclidian plane
support of the measure is covered, partitioning it by using
mutually exclusive boxes or by gliding a box over the plane.

Images of two different drainage basins, for the Ebro and
Tajo rivers, located in Spain, were digitalized with a resolu-
tion of 0.5 km, giving image sizes of 617×1059 pixels and
515×1059, respectively. Box sizes were chosen as powers
of 2, ranging from 2×4 pixels to 512×1024 pixels located
within the image, with the purpose of covering the entire net-
work. The resulting measures were plotted versus the loga-
rithmic value of the box area instead of the box size length.

Multifractal Analysis (MFA) using a box counting algo-
rithm was carried out according to the method of moments
ranging from−5<q<5, and the Ŕenyi dimensions were cal-
culated from the log/log slope of the probability distribution
for the respective moments over the box area. An optimal
interval of box sizes was determined by estimating the char-
acteristic length of the river networks and by taking the next
higher power of 2 as the smallest box size. The optimized
box size for both river networks ranges from 64×128 to
512×1024 pixels and illustrates the multiscaling behaviour
of the Ebro and Tajo. By restricting the multifractal analy-
sis to the box size range, good generalized dimension (Dq )
spectra were obtained but with very few points and with a
low number of boxes for each size due to image size restric-
tions. The gliding box method was applied to the same box
size range, providing more consistent and representativeDq

values. The numerical differences between the results, as
well as the standard error values, are discussed.

Correspondence to:A. M. Tarquis
(anamaria.tarquis@upm.es)

1 Introduction

The analysis of the quantitative description of river net-
works has a long history. Already more than half a cen-
tury ago, Horton (1932 and 1945) first studied the origin of
river networks and the laws governing their dendritic struc-
tures, proposing a hierarchical classification of the streams
belonging to the river that were later used by several authors
(Mesa and Gupta, 1987). Years later, based on the contri-
butions made by Mandelbrot (1977, 1982), several authors
(Hjelmfelt, 1988; La Barbera and Rosso, 1989; Tarboton et
al., 1990; Veltri et al., 1996, among others) applied a fractal
analysis to the river network. They related the fractal di-
mension estimated to the bifurcation ratio, length ratio and
area ratio defined in the hortonian laws. For a while a big
controversy was created about the plane-filling nature of the
network rivers, until it was concluded that these sets exhibit a
self-affine fractal behavior (Ijjasz-Vasquez et al., 1992; Peck-
ham, 1995; Claps and Olivetto, 1996; Maritan et al., 1996;
Beauvais and Montgomery, 1997).

Fractal and multifractal concepts have been increasingly
applied in various fields of science for describing complexity
and self-similarity in nature, e.g. Rinaldo et al. (1993) and
Rodriguez-Iturbe and Rinaldo (1997) considered the river
networks as self-organized spatial structures. A geometri-
cal multifractal (Tel and Vicsek, 1987; Vicsek et al., 1990)
is a nonuniform fractal which unlike a uniform fractal ex-
hibits local density fluctuations. Its characterization requires
not a single dimension but a sequence of generalized fractal
dimensions (Dq). A multifractal analysis (MFA) to extract
these dimensions from a network river may have utility, if
there is marked variation in local density. In more general
terms, multifractal formalism involves decomposing self-
similar measures into intertwined fractal sets, which are each
characterized by their singularity strength and fractal dimen-
sion. This type of analysis was first applied to the river net-
work by Ijjasz-Vasquez et al. (1992) and Rinaldo et al. (1992)
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to study the multifractal or multiscaling nature (Coniglio and
Zannetti, 1989). Beside river network geometry (De Bartolo
et al., 2000), other important hydrological variables, such as
catchments areas, slopes (Rodriguez-Iturbe et al., 1994), to-
pography (Lavalĺee et al., 1993; Veneziano and Niemann,
2000a, b), network optimization (Rigon et al., 1993), Ri-
naldo and Rodriguez-Iturbe, 1998), dissipation energy (Ri-
naldo et al., 1991; Ijj́asz-Vasquez et al., 1993), channel initi-
ation function and the width function (Rodriguez-Iturbe and
Rinaldo, 1997) have been studied through MFA.

Recent studies showed that the fractal dimensions can
be used to model the hydrologic response of a river basin
through the Fractal Instantaneous Unit Hydrograph (FIUH)
(Fiorentino et al., 2002; Cudennec et al., 2004). This concept
was extended to the multifractal analysis, through the use
of the singularity spectrum,f (α), by Gaudio et al. (2006),
who proposed the Multifractal Instantaneous Unit Hydro-
graph (MIUH). Therefore, in the studies of the hydrologic
response in geomorphological terms, the numerical assess-
ment of the generalized fractal dimensions which appear as
exponents in the probability distribution function of travel
times is of great importance (Rinaldo et al., 1991), and sev-
eral authors are trying to related it to flood peaks (Gupta et
al., 1994; S. G. de Bartolo, personal communication).

Reviewing the literature reveals that obtaining a reliable
value of the generalized dimensions is not an easy calcu-
lation (Tel et al., 1989). Vicsek (1990) proposed practical
methods to compute theDq . He assumed the box size to be
much greater than the smallest elementary cell in the sys-
tem and much smaller than the system size. Merits and
limitations of the MFA have been discussed by Chhabra et
al. (1989), Aharony (1989, 1990), Beghdadi et al. (1993),
Andraud et al. (1994), Meakin (1998), Bird et al. (2006),
Dathe et al. (2006) and Perrier et al. (2006).

The difficulties arising, in practice, are due to the fact
that the relevant quantities used in the multifractal concept
are estimated asymptotically, and in this case, these estima-
tions are coarse and limited by the finite resolution of the
image (Ahammer et al., 2003) and the measure build on
it, as the number of pixels representing the object in a box
(Buczhowski et al., 1998). In other words, the theoretical
limit (when the box-size tends to zero) cannot be reached in
practice. On the other hand, MFA normally involves par-
titioning the space of study into nonoverlapping boxes to
construct samples with multiple scales, known as the box
counting (BC) method. The number of samples at a given
scale, applying BC, is restricted by the size of the partition-
ing space and data resolution, which is usually another main
factor influencing statistical estimation in MFA (Cheng and
Agterberg, 1996). To avoid these problems several methods
have been proposed (Liebovitch and Toth, 1989; Block et
al., 1990; Veneziano et al., 1995; Yamaguti and Prado, 1997;
Oiwa and Fiedler-Ferrara, 1998; Feeny et al., 2000) and a few
applied to the river network, such as the sand box method (De
Bartolo et al., 2004), generalization of the correlation method

(De Bartolo et al., 2006; Gaudio et al., 2006), and the fixed
mass method (De Bartolo et al., 2006).

The two objectives of this work are to study: 1) the effect
of the range box sizes chosen when a BC method is applied,
2) the effect of the subdivision method applied in the calcu-
lation of generalized fractal dimensions (Dq), comparing the
BC method and the gliding box method (GB) that has been
applied by Grau et al. (2006) in pore systems but never in the
river networks. With these purposes two river basin images
with distinctive spatial arrangement were analyzed to obtain
theirDq values.

2 The concept of multifractals

Multifractal analysis and the different representations that
can be made are complex (see Mach et al., 1995, and ref-
erences therein); we will try to summarize this in the case
presented here. MFA in 2-D images involves partitioning the
plane into boxes to construct samples with multiple scales.
The BC method combines pixels to form larger mutually ex-
clusive boxes, each containing a different set of pixels. In
this case, to cover as maximum as area as possible, centered
in the middle of the image, we begin with a rectangle of
L1×L2 pixels (an areaA), and a partitioned process is ap-
plied with a box sizer1×r2, corresponding to an area ofa,
then the number of boxes with sizea (n(a)) will follow the
proportion:

n(a) ∝

(
A

a

)
. (1)

Higher is the size of the boxes (a) lower is the number of
boxes (n(a)) and it might not be large enough to properly
represent the distribution of the measure over the plane.

The GB method was originally used for lacunarity analysis
(Allain and Cloitre, 1991) and later was modified by Cheng
(1997a, b) to apply it to MFA and used by Grau et al. (2006)
in pore systems. Basically, the GB method constructs sam-
ples by gliding a box of certain size (a) over the grid map
in all possible directions. An “up-scaling” partitioning pro-
cess will begin with a minimum size or area box (amin) up
to a certain size less thanA. If the minimum size box corre-
sponds toamin=r1 min×r2 min, then the proportionality of the
number of boxes of sizea=r1×r2 (n∗(a)) is:

n∗(a) ∝

(
L1 − r1 + r1 min

r1 min

)
×

(
L2 − r2 + r2 min

r2 min

)
. (2)

In our case one length size is double the other one,
L2=2×L1, and this proportion remains for all the parame-
ters in Eq. (2) (r2, r2 min). So we can conclude:

n∗(a) ∝

(
L1 − r1 + r1 min

r1 min

)2

(3)

beingamin≤a≤A.
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An advantage of the GB method is the large sample size
that usually leads to better statistical results. Because this
partitioning overlaps, the measure defined on these boxes is
not statistically independent and the definition of the measure
in the gliding boxes is different, as explained below.

2.1 Box-counting method

Generalized dimensions calculated using the BC technique
basically accounts for the mass contained in each box. An
image is divided inton(a) boxes, and for each box the frac-
tion of the river network in that box is calculated (µi)

µi =
mi

mT

=
mi

n(a)∑
i=1

mi

, (4)

wheremi is the number of river network pixels (for example,
black pixels) andmT is the total number of black pixels in an
image. In this case, the river network space area is the mea-
sure, whereas the support is the rectangle grid andµi can be
interpreted as a probability measure (Plotnick et al., 1996).
In practice, using the box counting method, for every boxi

the probability of “containing object”, also called the parti-
tion function (χ(q, a)), is obtained for different momentsq,
which can vary from−∞ to +∞.

χ(q, a) =

n(a)∑
i=1

[χi(q, a)] q ∈ < (5)

whereχi (q, a) =µ
q
i . χi is a weighted measure that repre-

sents the percentage of black pixels in theith box, andq

is the weight or moment of the measure. When computing
boxes of sizea, the possible values ofmi are from 0 toa. So
let Nj (a) be the number of boxes containingj pixels of net-
work space in that grid. Equation (5) will then be (Barnsley
et al., 1988):

χ(q, a)=

n(a)∑
i=1

(µi)
q
=

n(a)∑
i=1

(
mi

mT

)q

=

a∑
j=1

Nj (a)

(
j

mT

)q

, (6)

beingmT =

a∑
j=1

j Nj (a).

Using the distribution function theNj (a) calculation be-
comes simpler and computational errors are smaller (Barns-
ley et al., 1988). This has been extensively used in black
and white images (see Tarquis et al., 2003, and references
therein).

A log-log plot of a self-similar measure,χ(q, a), vs.a at
various values forq gives:

χ (q, a) ∼ aτ(q), (7)

whereτ(q) is theqth mass exponent (Hentschel and Procac-
cia, 1983; Feder, 1989). We can expressτ(q) as:

τ(q) = lim
a→0

log(χ(q, a))

log(a)
. (8)

Based on the work of Ŕenyi (1955) the generalized dimen-
sion, Dq , can be introduced by the following scaling rela-
tionship (Grassberger, 1983; Hentschel and Procaccia, 1983;
Hasley et al., 1986; Feder, 1989):

Dq = limr→0
log[χ (q, a)]

(q−1) loga
. (9)

The sum in the numerator of Eq. (9) is dominated by the
highest values ofµi for q>0, and by the lowest values ofµi

for q<0; therefore,

τ(q) = (q − 1)Dq or Dq =
τ(q)

(q − 1)
. (10)

Moments forq=1, 2 . . . describe mathematically defined
fractal dimensions. They can be found by inserting aq value
in Eqs. (9) or (10). Forq=1 the calculation is trickier, Eq. (9)
cannot be applied, and in this case we use the relationship:

D1 = lima→0

n(a)∑
i=1

χi (1, a) log[χi (1, a)]

loga

= lima→0

n(a)∑
i=1

µi(a) log[µi(a)],

loga
(11)

which is the (classical) information dimension: the numera-
tor in Eq. (11) corresponds to the entropy of a probability dis-
tribution. This is one of the analogies between multifractals
and statistical mechanics. Forq=2 the correlation dimension
D2 can be obtained as

D2 = lim
a→0

log
n(a)∑
i=1

µ2
i

loga
. (12)

It describes the probability of finding pixels belonging to the
object within a given distance when starting on a pixel be-
longing to the object. Fractal dimensions for higher moments
can be estimated, according to Eq. (9). Homogeneous struc-
ture is indicated when theDq values are close together, such
as in a monofractal case, regardless which value hasq.

2.2 Gliding box method

Similarly to the BC method, it is necessary to define the mea-
sure in the gliding boxes. Letn∗(m, a) be the number of
gliding boxes of sizea and mass (number of pore pixels)m.
Dividing it by n∗(a) the probability functionβ(m, a) is ob-
tained for a gliding box of sizea containing massm.

The statistical moments of this distribution are:

χ∗(q, a) =

a∑
m=1

β(m, a)mq

=
1

n∗(a)

n∗(a)∑
i=1

m
q
i (a) ≈ E{mq

} , (13)
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whereχ∗(q, a) is theqth order moment ofβ(m, a) and the
sum is for all the gliding boxes withmi>0.

The difference betweenχ∗(q, a) Eq. (13) andχ(q, a) is
that:

χ(q, a) ≈

(
A

a

)
E{mq

} . (14)

Combining Eqs. (13) and (14) gives:

χ(q, a) ≈

(
A

a

)
χ∗(q, a) . (15)

If we use this relation in Eqs. (8) and (9) we have that:

τ(q) = lim
r→0

log(χ∗(q, a))

log(a)
+ lim

a→0

log
(

A
a

)
log(a)

. (16)

The second limit is easy to resolve given a value of−1. It is
concluded that (Cheng, 1997a, b):

τ(q) = lim
a→0

log(χ∗(q, a))

log(a)
− 1 . (17)

Once this estimation is done, Eq. (10) can be applied to es-
timateDq . For the case ofq=1 the following relationship is
applied based on Cheng and Agerberg’s (1996) work:

D1 = lima→0

1
n∗(a)

n∗(a)∑
i=1

mi (a) × log[mi (a)]

loga
. (18)

3 Material and methods

3.1 River networks

The Ebro basin is located in the north of Spain and includes
85 399 km2, from which 84 452 are in Spain, 552 km2 in
France and 445 km2 in Andorra. The Tajo basin includes
58 941 km2, 55 645 km2 in Spain and 3296 km2 in Portu-
gal. Both are large basins within the temperate zone of the
world with water and sediment regimes controlled by climate
(Sundborg and Jansson, 1991). These Spanish rivers have
rain as the principal supply of water. Both rivers have a plu-
vial type of hydrological regime (Pardé, 1955), which in the
Northern Hemisphere is characterized by a water discharge
maximum during the winter season, when maximum pre-
cipitation combines with minimum evaporation. Minimum
discharge occurs during summer, which is the warmest sea-
son. During the 1940–2006 period, the mean annual water
flow of the Ebro river was 18.23 km3 year−1, from 29.73 to
8.39 km3 year−1 (Gasćo et al., 2004). The mean annual water
flow of the Tajo river was 4.32 km3 year−1 (maximum 6.57
and minimum 1.91), but this water flow actually diminished
because of the Tajo-Segura diversion, which was as much as
0.6 km3 year−1.

Black and white images of both basins were donated
by CEDEX (Ministerio de Fomento) at 0.5 km of resolu-
tion. The Ebro and Tajo river basins had an image size of

617×1059 and 515×1059 pixels, respectively. Once these
images where transformed into a matrix of 0 (white pixel)
and 1 (black pixel) the mass distribution of black pixels was
analyzed by applying a multifractal analysis and extracting
the generalized fractal dimensions.

3.2 Multifractal analysis

MFA has been carried out using first a box counting algo-
rithm which estimates the probability of containing mass
(river network) for every single box of size 1×2 to 512×1024
pixels in steps of (1×2)×2k, 0≤k≤9. For both images a size
of 512×1024 pixels was selected without losing data from
the river network; in doing so, this avoids artifacts which
can occur when the boxes do not cover the image entirely
at the borders. The generalized dimensions are obtained as
the slope of the partition function over box size, both taken
as logarithm (Eq. 6b) and the relationτ(q)=(1−q)Dq . This
method is known as the method of moments (Evertsz and
Mandelbrot, 1992), asDq is estimated for every momentq.
D1 is simply determined asτ (Eq. 1).

The computational implementation to calculate the parti-
tion function is taking into account that we have a binary im-
age where each pixel is either 0 or 1; see Tarquis et al. (2003)
for more details. A crucial step in MFA is to determine the
range of box sizes and the range of orderq over which this
analysis is applied (Saucier and Muller, 1998).

The minimum box size (amin) is obtained here based on
configuration entropy analysis, which is easy to implement
and has already been used for several types of images (Tar-
quis et al., 2006; Dathe et al., 2006). Configuration en-
tropy analysis studies the effect of scale in any measure (a
scalar quantity that leads to a positive distribution) defined
in a plane. A distribution of the measure is obtained when
the measure is estimated for different sizes of areas and ev-
ery sub-area (Andraud et al., 1994). For small sub-areas (or
boxes in an image), the local distributions show a certain be-
havior that can characterize the spatial pattern of the larger
image.

In the work presented, the configuration entropy is esti-
mated for the river network. The distribution of local poros-
ity in a rectangular lattice image of sizeL1×L2 is obtained
by subdividing the image inton(a) boxes of sizea from
a=1×2 to a=

1
8(L1×L2), and in every box the number of

pixels belonging to the river network is recorded.
The probability ofj pixels representing the network in a

box of sizea (pj (a)) is defined as:

pj (a) =
Nj (a)

n(a)
, (19)

whereNj (a) is the number of boxes withj pixels represent-
ing the network river andn(a) is the number of boxes of area
a. The configuration entropyH (Andraud et al., 1997)

H(a) = −

a∑
j=0

pj (a) log(pj (a)) (20)
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 Fig. 1. River network binary images at 0.5 km resolution:(a) Tajo and(b) Ebro.

Table 1. Characteristic length obtained for the river network from the respective binary images, using the configuration entropy method. The
minimum box area chosen for the multifractal analysis is the next higher value 2k that multiplies the elementary box 2×4 pixels.

River
Characteristic area Maximum entropy Minimum area size Maximum area size

(amin) (H*(amin)) pixels pixels

Tajo 53×106 0.848 64×128 512×1024
Ebro 60×120 0.781 64×128 512×1024

expresses the uncertainty of computing the network when
covering an image with boxes of areaa.

To compare entropy values corresponding to different box
areasa, H(a) is normalized to the normalized configuration
entropyH ∗(a):

H ∗(a) =
H(a)

Hmax(a)
(21)

with Hmax(a)= log(a+1) .
The curve obtained when plotting the normalized entropy

versusa can be used as a descriptor of the image morphol-
ogy. In many instances, the curve presents a local maximum
H ∗(amin). The value where the maximum is located is called
the characteristic lengthamin. The existence or non-existence
of amin provides complementary information of spatial ar-
rangements (Rodriguez-Iturbe and D’Odorico, 1998). Re-
sults with the characteristic length and the maximum entropy
of the Tajo and Ebro rivers network investigated can be found
in Table 1.

OnceDq values have been extracted from both river net-
works, applying the BC method in the optimize box size
range selected, the GB method was then applied. In this work
we have applied the multiplier method to estimateτ(q) (see
Cheng, 1999, for more details), which is based on the follow-
ing equation:

< τ(q) >= −
log(< M(q, a) >)

log( a
amin

)
− 1, (22)

where<> stands for the statistical moment,M represents
the multiplier measured on each pixel as:

M(q, a) =

(
µ(amin)

µ(a)

)q

. (23)

The advantage of using Eq. (22) in comparison with Eq. (17)
is that the estimation is independent of box areaa which al-
lows for the use of successive box sizes to estimateτ(q).
Equation (23) imposes thatµ(amin) shouldn’t be null; other-

wise the proportion
(

µ(amin)
µ(a)

)
will always be 0 or undefined

for anya value.
Onceτ(q) is estimated, Eq. (10) is applied to obtain the

generalized dimensions.

4 Results and discussion

4.1 The partition function

Values for the partition functionχ(q, a) have been estimated
for the whole available box size range of 2×4 to 512×1024
pixels, in steps of 2k, 0≤k≤8. The partition functions reveal
similar shapes for both river basins (Fig. 2). Forq>0, the
partition functions show a positive slope with a distinct lin-
ear behavior. Forq≤0 the partition functions have a negative
slope with a pronounced deviation from linearity forq equal
or close to−5. The area size at which the behavior is differ-
ent for the three images is around 64×128 pixels. These two
phases were not evident with positiveq values (see Fig. 2).

The existence of a plateau phase of log(χ(q, a)) can be
explained by the nature of the measure we were studying.
At a values close to 1×2, the variation in number of black
pixels is based on a few pixels, having the most simplicity
whena=2, where the measure can only have a value of 0,
1 or 2. Thus, for small areas the proportions among their
values are mainly constant. However, when the area passes a
certain size a scaling pattern begins.
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Fig. 2. Bi-log plot of χ(a, q) versus box area (a) at different mass exponent (q): (a) Tajo and(b) Ebro.

This involves coefficients of determination which are
clearly smaller than 1 when estimating the mass exponent
τ(q), according to Eq. (8).

4.2 Generalized dimensions using the box counting method

If we considered all of the regression points, theDq values
obtained, mainly forq<0, were quite different from ones ob-
tained when we restrict the range of areas to calculate the
slope of the regression line (Fig. 3). Between all the possible
criteria, anyDq can be obtained, but forq≥0 the differences
were not significant. Many authors have pointed out this fact
since the first applications of multifractal analysis to experi-
mental results (Vicsek, 1990; Evertsz and Mandelbrot, 1992;
Crawford et al., 1999; Cheng, 1999; Bird et al., 2006; Tarquis
et al., 2006; Grau et al., 2006).

An explanation as to why some coefficients of determina-
tion (R2) are rather poor can be found in the graphs of the
partition function. When the slope of log (χ(a, q)) over log
(a) does not yield a straight line for alla, different gener-
alized dimensions will be obtained for specific ranges ofa.
This is why the range of box sizes chosen to determineDq

is crucial regarding the final result, especially for negativeq

moments.
Digital images (basically a matrix with 0 and 1 elements)

always have a limited resolution, and only a few pixels can
cause great changes in the partition function, especially for
negativeq. Following Evertsz and Mandelbrot (1992), it
should be checked carefully whether the slope ofχ(a, q)

overa (the mass exponentτ(q)) yields a straight line before
further data processing takes place.

The implications thatDq changes so dramatically in this
case make any comparison of the amplitude (D−5−D+5) im-
possible, as it has been used in several works (Tarquis et al.,
2001). The differences found among theDq representation
are mainly found in the negative part.

The characteristic length obtained from configuration en-
tropy analysis was taken as a measure for the smallest box
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Fig. 3. Generalized dimensions (Dq ) from q=−5 toq=+5 for points of the regression line based on the bi-log plot ofχ(a, q) to the range of
areas from 512×1024 pixels to:(a) 8×16 pixels;(b) 16×32 pixels,(c) 32×64 pixels and(d) 64×128 pixels. Bars correspond to the standard
errors of the estimation.

size. The next higher value, according to 2k, was 64×128
(k=6) for both river basins (Table 1). The maximum box size
corresponds to the biggest box we have analyzed, 512×1024
pixels. Confirmed by the configuration entropy and the at-
tempt to maximizeR2 values and visual observations of the
partition function, the box size range that should be chosen is
from 64×128 till 512×1024 pixels for both river basins. The
corresponding generalized dimensions based on the selected
range of box sizes are shown in Fig. 3d. They all exhibit pro-
nounced decreasingDq values with increasingq and reveal
a similar behavior. This problem has also been examined in
detail by Saucier and Muller (1993, 1998, 1999), who pro-
posed a systematic method to choose the scaling range for
multifractal analysis. The advantage of their method is that
a minimum and maximum box size is selected, however, in
computational terms the MFA would become more compli-
cated.

The standard errors of theDq estimates were lowest in the
linear region (error bars in Fig. 3d), and the corresponding
R2 values were much higher (data not shown). This is not
surprising if we realize that only three points are being used.
In addition, the number of boxes of each size is very low,

for size 64×128 pixels the number of boxes is 64, for size
128×256 pixels the number of boxes is 16, for size 256×512
pixels the number of boxes is 4 when analyzing an image of
512×1024 pixels.

Regardless that both river networks were fitted in a rect-
angle of 512×1024 pixels and the planes were subdivided
with a box following this proportion (1×2), the effect of the
drainage basins’ shape is not totally eliminated, creating an
underestimation ofχ(a, q) values for larger boxes. However,
the bias due to the shape of the drainage basins, is smaller
than the bias associated with the limited resolution that af-
fects the smaller boxes.

Detailed results forD0, D1 andD2 can be found in Ta-
ble 2, including theq ranges where the mass exponentτ(q)

exceeds theR2 values higher than 0.95. For values ofD0, the
capacity dimensions are 0.89 for Tajo and 0.94 for Ebro, tak-
ing into account that the scaling has been based on area size
and not on length. Even when a range of sizes is selected
an overestimation ofD0 can result, achieving a Euclidian di-
mension (Dathe et al., 2006; Grau et al., 2006), whereD0
values are less than 1.
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Table 2. Generalized dimensions (Dq ) for the first three positive momentsq for both river basins. Ranges of q where the slope of the
partition function exceedsR2

≥0.95 are given, as well as the standard errors of the slope and the correspondingR2.

River -q +q D0 R2 D1 R2 D2 R2 1(D0–D5) 1(D−5–D5)

Tajo −5.0 5 0.89±0.03 1.00 0.84±0.00 1.00 0.82±0.01 0.99 0.096 0.721
Ebro −2.5 5 0.94±0.01 1.00 0.90±0.00 1.00 0.89±0.02 0.99 0.081 0.477
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Fig. 4. The qth mass exponent (τ(q)) obtained with the gliding
box method, fromq=−5 to q=+5, using the range of areas from
512×1024 to 64×128 pixels for:(a) Tajo (light blue) and(b) Ebro
(dark blue). Bars represent the standard errors of the estimation.

The main distinction between both river networks is the
difference betweenD−5 and D5; 1(D−5−D+5)=0.721 is
found for Tajo and1(D−5−D+5)=0.477 for Ebro is smaller.
The differences in the generalized dimensions forq=0, 1, 2
can also be observed in Fig. 3d, where the lower part of the
Dq curves (q≥0) decreases more for Tajo than for the Ebro
river network and it can be quantified by1(D−5−D+5) (Ta-
ble 2).

Standard errors given in Table 2 are the standard errors
of the slope obtained with linear regression. The smallest
standard error which could be found is se=0.00 forD1 of the
Tajo and Ebro river network.

4.3 Generalized dimensions using gliding box method

The size range restriction found in the box counting method
is avoided using the gliding box method. For both river net-
works,<M(q, a)> was calculated and then a bi-log plot of
<M(q, a)> versus a

amin
was made, in order to estimateτ(q)

(Fig. 4). All plots showed a linear relationship, as expected,
for a large number of points, to calculate a linear regres-
sion in the range of box sizes selected before, and this is
reflected in the low values of the standard errors of the es-
timations (Fig. 4, bars of each point). Both rivers show an
almost identicalτ(q) from q=-1 till q=2. In addition, both of
them presentτ(q=1)=0, characterizing a conservative mea-
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Fig. 5. Generalized dimensions (Dq ) from q=−5 toq=+5 based on
the Tajo (light blue) and Ebro (dark blue) using the same box area
ranges based on:(a) box-gliding; (b) box-counting. Bars represent
the standard errors.

sure (Cheng, 1997b). Forq≤−1 a significant difference in
theτ(q) curve between both river networks is observed.

Values ofDq were calculated and a comparison between
both methods for each river network was studied. In the glid-
ing box method (Fig. 5a) both curves point out statistical dif-
ferences for negativeq values, showing smaller standard er-
rors than with the box counting method (Fig. 5b). Thanks
to this reduction in the standard errors the comparison of
1(D−5−D+5) andDq values for negativeq are statistically
more significant. Another important advantage of the GB
method is the reduction in the shape effect, due to the overlap
of the boxes. This creates a higher number of boxes includ-
ing the drainage basin area.
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In observing the difference betweenDq for both methods
there is always a reduction in the GB method than in the
BC method; however, the standard errors are smaller with
the first method. In the case of positiveq values both meth-
ods gave the same results, which are in agreement with those
found by Grau et al. (2006) for pore systems.

5 Conclusions

Generalized dimensionsDq have been obtained for the
Tajo and Ebro river networks by applying the box counting
method using a different range of box areas (a). Depending
on the range selectedDq estimation leads to clearly distinct
values with high standard errors. This study has illustrated
how crucial the range of box sizes chosen is in determining
Dq values, especially for negativeq moments. This is even
more important when binary images (build up with 0 and 1
element) are analyzed and only a few pixels can cause great
changes in the partition function whenq<0.

We have applied the configuration entropy, following the
work of Tarquis et al. (2006) and Dathe et al. (2006), to se-
lect the minimum area that should be used, in order to ob-
tain good results in theDq estimations but realizing that the
number of boxes measured and the number of points for the
regression analysis was low.

Using the same area range, theDq values have been cal-
culated by applying the gliding box method. The results
obtained by the “box-counting” and “gliding-box” methods
for multifractal modeling of river networks show that the
“gliding-box” provides more consistent results due to the cre-
ation of a greater number of large size boxes in comparison
with the “box-counting” method, mainly whenq<0, obtain-
ing a higher number of points for the regression analysis and
reducing the bias associated with the shape of the drainage
basins.

In terms of modeling, it is important to characterize the
multiscale heterogeneity of river networks in a useful way,
but the application of fractal/multifractal analyses should be
done carefully to avoid problems in interpretation and model
building.
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