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Abstract — The quail is a valuable farm and laboratory animal. Yet molecular information
about this species remains scarce. We present here the first genetic linkage map of the Japanese
quail. This comprehensive map is based solely on amplified fragment length polymorphism
(AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross
between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP
markers were detected with 24 Taql/EcoRI primer combinations. On average, 18 markers were
produced per primer combination. Two hundred and fifty eight of the polymorphic markers
were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups.
The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers
a total length of 1516 cM, with an average genetic distance between two consecutive markers of
7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken
genes that will enable to link the maps of both species and make use of the powerful comparative
mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for
quantitative trait loci (QTL) mapping.

Japanese quail / AFLP / genetic map / linkage groups / chromosomes

1. INTRODUCTION

Japanese quail are appreciated for meat and eggs. It is also a valuable
laboratory species because of its small body size, rapid generation interval and
high prolificacy [24]. It has been used in selection experiments (e.g. [6,34]),
and as a model for a variety of studies in embryonic development, genetics,
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perception and behaviour and their neurological basis, reproduction, nutrition,
production and pathology.

Japanese quail (Coturnix japonica), as the chicken (Gallus gallus), belongs
to the order Galliformes and the family Phasianidae. Both species have a
similar genome length (1.2 x 10° bp) and a karyotype of 2n = 78 chromosomes,
composed of morphologically distinguishable macrochromosomes (1-8 and the
ZW sex chromosomes) and individually indistinguishable microchromosomes.
Comparative cytogenetic studies, based on banding patterns or chromosome
painting using FISH, have revealed a highly conserved chromosome homology:
the few chromosome rearrangements observed were essentially pericentric
inversions in chromosomes 1, 2, 4 and 8 [35,37,40]. Today, the consensus
linkage map of the chicken genome has almost 2000 loci [8] whereas only
three linkage groups involving protein and plumage colour loci have been
reported for the quail [12,13,25,36].

In linkage studies, microsatellite markers are currently used because they
are highly polymorphic and codominantly inherited. However, they occur at
about a 5-7-fold lower frequency in avian genomes than in mammals [30] and
are thought to be biased in their distribution [30,38]. In addition, cross-species
microsatellite amplification in birds is successful only at a low rate. On average,
with chicken designed primers, 10—15% of the amplified markers in the Japan-
ese quail are found to correspond to the orthologous loci of the chicken [11,
28]. This does not guarantee these microsatellites to be polymorphic in
the populations studied. As a consequence, a sufficient set of markers for
genome mapping cannot be recovered by this method. Microsatellites have
only very recently been specifically developed in the Japanese quail [15,16,
21].

To develop a genetic map of the Japanese quail, we chose the amplified frag-
ment length polymorphism (AFLP) technique [45]. In contrast to microsatellite
markers, the AFLP technology screens a high number of loci and generates
numerous markers, simply using a generic set of primers, without requiring
prior knowledge of sequence data. It has been extensively applied to micro-
organisms and plants, but rarely to animals [1,9,42]. These applications include
many genetic diversity studies as well as the construction of linkage maps or
quantitative trait loci (QTL) mapping. In particular, the AFLP technique
was demonstrated to be useful in the chicken to add new markers on the EL
(East Lansing) reference map [17] and on the Wageningen linkage map [10].
Its suitability for other avian species has also been suggested. As in these
studies, we adopted the enzyme combination Tagl/EcoRI and trinucleotide
primer extensions to produce AFLP markers in the Japanese quail. We
present here the first linkage map for this species, based solely on AFLP
markers.



AFLP linkage map of the Japanese quail 561

2. MATERIALS AND METHODS

2.1. Mapping population

An F2 cross between two Japanese quail lines divergently selected for short
or long duration of tonic immobility [5,23], a fear-related freezing behaviour,
was performed. Six half-sib families originating from 6 F1 sires and 12 F1
dams were used as the mapping population. The average number of chicks per
F1 female was 58 & 6. For one full-sib family, all the chicks were analysed.
For the others, an average of 23 £ 3 chicks were genotyped. These F2 birds
were selected on the basis of their trait value, since this population also served
for a QTL study. A total of 348 animals was genotyped: 20 FO, 18 F1, 310 F2
animals.

2.2. DNA isolation

Genomic DNA was extracted from blood samples with a rapid high-salt
protocol scaled to a 96-well microplate format. In each well, a 2 pL blood
sample was incubated 10 min at room temperature with 10 L cell lysis buffer
(20 mM EDTA, 60 mM NaCl, 0.2% saponine Sigma). Twenty nL of wash
buffer (10 mM EDTA, 75 mM NaCl) was added and, after centrifugation
(1300 g, 15 min, Megafuge 1.0 R, Heraeus Sepatech), the supernatant was
discarded. The nuclei lysis was performed overnight at 37 °C with 80 pwL of
an SDS-Proteinase K solution (10 mM EDTA, 10 mM NaCl, 10 mM Tris HCI,
0.5% SDS, 100 g - mL~! Proteinase K Quantum Appligene). To achieve
protein precipitation, 30 pL of a saturated (6 M) NaCl solution was added
and the sample was vigorously mixed and centrifuged (1300 g, 30 min). The
supernatant was transferred to a fresh 0.65 mL microplate well (Deep Well
Plate, 0.65 mL, ABGene) and the DNA was precipitated with 250 L absolute
ethanol. After centrifugation (1300 g, 30 min), the ethanol was discarded.
The DNA samples were air dried and redissolved in 200 L Tris-EDTA buffer
(10 mM Tris HCI, 0.1 mM EDTA pH 7.5). The DNA quantity and quality were
assessed by agarose gel electrophoresis.

2.3. AFLP analysis

AFLP markers were generated following the conditions summarised in
Table I. Preamplification primers were extended by one base, an adenine,
at their 3’ end. Amplification primers were extended by 2 additional selection
nucleotides. Primer combinations, of which 27 were analysed on the mapping
population, had been previously selected according to line-specific DNA pool
patterns.
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Table I. AFLP protocol.

Step Reaction mix Final volume Conditions
Restriction 400 ng genomic DNA

10 U Tagl (Neb) 40 pL RL! buffer ~ 3 h, 65°C

+

10 U EcoRI (Neb) 50 nL RL buffer overnight, 37 °C

10 L of the digestion mix checked on 0.8% agarose gel

remaining 40 wL used in the ligation step

Ligation +
50 pmol Tagl adapter? 50 pL RL buffer overnight, 37 °C
5 pmol EcoRlI adapter?
1 U T4 DNA ligase
(Q-Biogene)
1.2 mM ATP
dilution 2-, 5- or 10-fold according to restriction smear intensity
Pre- 5 pL diluted template DNA 20 pL PCR buffer 30, 94°C
amplification 0.2 pM Tagl + A primer* + 30s,59°C ¢ 31 cycles
0.2 uM EcoRI + A primer? 5 wL coloured 60s,72°C
0.2 mM dNTP loading buffer 9 min, 72°C
2 mM MgCl,
0.5 U Taq polymerase GeneAmp PCR
(Gibco BRL) system 9700 thermocycler

(Perkin-Elmer)

10 pL preamplified DNA checked on 0.8% agarose gel

remaining 15 pL diluted 10-fold

Amplification 2 pL diluted preamplified DNA 10 wL PCR buffer 305s,94°C
. 12 cycles
0.2 uM 3 nt Tagl-primer 305s,65°C 1 °Cleycle
0.2 uM 3 nt EcoRI-primer® 60 s, 72°C
0.2 mM dNTP 305s,94°C
2 mM MgCl, 30s,56°C ; 30 cycles
0.2 U Taq polymerase 60s,72°C
(Gibco BRL) 19 min, 72°C
GeneAmp PCR
system 9700 or 9600
thermocycler (PE)
Separation 2 nL equally mixed 5 min denaturation,
6-FAM, HEX and NED 94°C
labelled PCR products
8 wL formamide Hi-Di
(ABI®, PE)

0.12 L ROX 500 size standard (PE)

injection and resolution on capillary sequencer (ABI® 3700 DNA Analyzer, PE)

I RL (restriction ligation) buffer: 10% OPA (Pharmacia Biotech) 5 mM dTT, 50 pg - mL~!' BSA;
2 Tagl adapter: 5'-GACGATGAGTCCTGAC-3’ 3-TACTCAGGACTGGC-5';
3 EcoRI adapter: 5'-CTCGTAGACTGCGTTACC-3' 3-CTGACGCAATGGTTAA-5';

# Taql primer: 5'-GATGAGTCCTGACCGA-3';
5 EcoRI primer: 5'-CTGCGTTACCAATTC-3';

6 amplification EcoRI primers are fluorescently labelled with 6-FAM, HEX or NED.
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Resulting electrophoregrams were checked with Genescan® 3.5 and ana-
lysed using Genotyper® 3.6 (ABI®, PE). Markers between 50 and 500 bp were
identified visually from FO and F1 animal patterns. Marker peaks were then
detected automatically and checked manually in all the lanes. AFLP markers
were named after the 7agl primer extension followed by the EcoRI primer
extension and the fragment size in bp. They were scored dominantly: band
absence (recessive homozygous) was coded 11, band presence (heterozygous
or dominant homozygous) 20. Missing data were coded as 00.

2.4. Map construction

Prior to linkage analysis, a x° test (P = 0.05) was performed for each marker
in each of the 12 full-sib families in order to check Mendelian inheritance. Data
displaying an unexpected segregation ratio were excluded.

Linkage analyses were conducted with CRI-MAP 2.4 [7]. First, the twopoint
option of CRI-MAP was used to calculate pairwise LOD scores and to identify
linkage groups at decreasing values of the LOD threshold, from 10 to 4. Second,
the linear order of markers within each linkage group was determined using the
build and flips options of CRI-MAP. To begin, build was run several times with
LOD values of 3 and 2, to find a well supported order for a subset of markers. As
many additional markers as possible were then inserted in their most probable
position relative to the previously ordered markers. The most likely order was
finally checked with flips. Map distances are given by CRI-MAP according to
the Kosambi function.

One linkage group was suspected to correspond to the sex chromosomes,
ZW. This was confirmed creating a biallelic sex marker, designed to follow
the inheritance of the W chromosome, and running the twopoint option of
CRI-MAP. Raw data were reconsidered in order to identify Z or W markers,
attested by a sex-specific segregation ratio, and to build a map for these two
chromosomes. Markers outside of this linkage group were also tested for
linkage to the biallelic sex marker.

3. RESULTS

3.1. AFLP markers

Of the selected primer combinations, twenty-four were analysed and 3
(ACGAAA, ACGAAC, ACGAGC) were not further studied because they pro-
duced patterns of poor quality. The 24 Taql/EcoRI primer combinations
analysed generated more than 4000 bands, of which 432 were considered
as polymorphic markers and typed in the population (Tab. II). On average,
each primer combination yielded 18 polymorphic markers.
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Table II. Primer combinations used — AFLP markers produced and mapped.

Primer Number of Number of polymorphic Number of mapped
combination peaks markers markers
AACAAA 298 56 25
AACATA 232 22 10
AACAGC 275 29 18
AGAAAA 83 19 13
AGAATA 91 14 4
AGAAGC 118 28 17
AACAAT 192 17 12
AACACC 125 15 10
AACAAG 120 18 12
AGTAAA 222 17 11
AGTACC 146 25 15
AGTAGG 171 20 10
AGCAAA 118 19 14
AGCATA 123 11 6
AGCAGG 146 24 13
ACGATC 283 12 8
ACGACC 134 5 1
ACGAAG 194 4 2
ACCATG 121 4 4
ACCACG 131 4 3
ACCAGG 189 7 4
AGAATG 149 28 22
AGAACC 245 23 17
AGAACT 232 11 7
4138 432 258

The data comprised 1.4% of missing genotypes and 0.5% of inconsistencies
between parents and progeny alleles. Considering the presence vs. absence of
a band in the FO birds, 27.1% of the polymorphic markers were found to be
line specific (the marker peak was present in the FO birds of one of the two
lines only, but not necessarily in all the FO birds of this line) and another 12.0%
were present in both lines with significantly different frequencies (> 0.5). The
markers were rarely informative in all the families. On average, per full-sib
family, 60.6 & 4.8% of the markers were informative and 13.6 £ 5.9% showed
a deviation from the expected ratios at the P = 0.05 level. Following the x test
on Mendelian inheritance, 23.8% of the data were excluded. Only six markers
were completely excluded from linkage analysis, being either non informative
or segregating in a non-Mendelian fashion.
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3.2. AFLP linkage map

To define linkage groups, decreasing LOD threshold values were used. At a
LOD of 5, some of the major linkage groups were merged due to a few linkages
that were likely spurious. Also, the number of additional markers that were
integrated at this LOD value did not justify lowering the threshold. Therefore
a LOD cut-off value of 6 was preferred.

The AFLP linkage map comprises 258 markers (59.7%) distributed over
39 autosomal linkage groups plus the ZW linkage groups (Fig. 1) while 174
markers (40.3%) remain unlinked at the LOD threshold used. Linkage groups
vary from 2 to 28 markers. There are 11 major linkage groups of 8-28 markers
and 30 minor groups of 6 markers or less.

Of the 23 markers of the gonosome linkage group, eight W-specific markers
were found. One marker presents a normal autosomal segregation and is
therefore thought to belong to the pseudo-autosomal region. The other 14
markers, presenting male-specific inheritance, were considered as Z-specific
markers. A schematic representation is given for the W chromosome since no
recombination occurs along its specific part and hence, no order can be inferred.

The AFLP linkage map of the Japanese quail covers a total length of
1516 cM. Linkage groups range from 0.0 to 195.5 cM. The spacing between two
consecutive markers ranges from 0.0 to 37 cM, with an average of 7.6 + 6.2 cM.
There are 17 pairs of markers in complete linkage in the autosomal linkage
groups and 7 markers in the W linkage group. For the latter, such a segregation
pattern was expected and the markers are likely to correspond to different
loci. For the former, two markers can result from the amplification of the
same locus. The number of mapped loci can thus be estimated to be at least
258 — 17 = 241. On the whole, the markers are close together and regularly
distributed. The markers generated by the same primer combination are shared
out among different linkage groups, except for the AACATA combination that
produced many of the ZW markers.

4. DISCUSSION

Thanks to its multilocus nature and because potentially all possible primer
combinations can be tested, the AFLP technique enables the production of
a large number of polymorphic markers. The biological material used also
contributes to the level of revealed polymorphism and indeed, the quail is
generally considered as a highly polymorphic species. The proportions of
line-specific markers (27.1%) and of shared markers with significant frequency
differences (12.0%) help assess the level of between line polymorphism. The
AFLP patterns generated from Japanese quail DNA were complex. An average
of 18 polymorphic markers per primer combination was obtained, which is
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Figure 1. AFLP genetic linkage map of the Japanese quail. The map is composed of
39 autosomal linkage groups plus the ZW sex chromosome linkage groups. Markers
are indicated on the right, their position in centimorgans on the left. Within each group,
markers are presented in their most likely order. A theoretical representation of the W
chromosome linkage group is given since the distance between the pseudo-autosomal
and the W specific markers cannot be properly estimated (dashed line). Markers that
could not be inserted (3 in the Z chromosome linkage group, 2 in group 7, 3 in group
8, 1 in group 9 and 1 in group 26) and unlinked markers are not shown in the figure.
The map was drawn with MapChart 2.0© software [44].

(continued on the next page)
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twice as much as in the chicken (10.5 [17], 8.5 [10]), with the same enzyme
combination and the same primer extension length (3 nt).

Technical and biological reasons can explain segregation distortion [20,41].
Inconsistencies in the genotype proportions can be due to genotyping errors,
to fragments of the same size scored as a single marker whereas they are
derived from distinct loci or to a selective advantage as suggested in plants [3,
27] and fish [48]. Non-Mendelian segregating markers occur at various rates:
for instance 15% in peach rootstocks [20], 27.4% in rice [4], 56% in the
silkworm [41], and 64% in Brassica oleracea [43]. On average, in each family,
only 13.6 £ 5.9% of the AFLP markers developed in the Japanese quail were
distorted. As the markers were not informative in all the families, the average
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proportion of informative and Mendelian segregating markers, 47.0 £ 3.9%,
better represents the usefulness of the data. This figure is in accordance with
the studies mentioned earlier.

Linkage groups were identified with a high threshold, related to the number
of markers to be tested. Increasing the twopoint threshold favours closely
linked markers and the closer markers are, the more complicated it becomes
to resolve their order. Ordering the markers can present other difficulties. The
information content of AFLP markers is lower than that of other marker types
because of their biallelic dominant nature. Furthermore, informativeness in our
design is shared out between several families. Finally, our map contains only
AFLP markers. In many studies, markers such as RFLP (restriction fragment
length polymorphism), CAPS (cleaved amplified polymorphic sequence),
microsatellites or genes are used together with AFLP markers. They can
provide clues about the chromosome assignment of linkage groups or links
to existing maps [2,31], but they can also give a framework to which AFLP
markers are added [4]. Here, the markers are presented in their most likely
order. Alternative orders can exist, whose likelihoods differ from that of the
proposed order by a LOD value of less than 2 or 3. Additional markers will
help improve the map robustness.

The map is relatively dense with an average interval size between adjacent
markers of 7.6 cM. Although some linkage groups present higher marker
densities, no tight clustering of the markers was observed, as opposed to other
species [29,32] where it seems to be a consequence of the enzyme combinations
used. Within primer combinations, no clustering was observed either, except for
markers of the AACATA combination that map on the Z and W chromosomes.
Herbergs et al. [10] also found a high number of Z linked markers working
in the chicken with the same enzyme combination. The number of markers
of similar size on the W chromosome is also surprising. In both cases, the
presence of repetitive sequences on these chromosomes, as described in the
chicken [26,35,39], can be suspected to account for this observation.

A large number of chromosomes makes it difficult to build an exhaustive
map, especially in the case of avian species and their microchromosomes.
So, even if the number of linkage groups is actually similar to that of
chromosomes, some of them might likely correspond to different parts of
the same chromosome, while some microchromosomes are not represented.
However, AFLP markers can be expected to provide a better coverage of
microchromosomes than microsatellites. Indeed, as a result of the GC-rich
and gene-dense nature of microchromosomes [22,38] together with the type of
polymorphism revealed by each technique, microsatellites are underrepresented
on these chromosomes [30], whereas the AFLP technique, using 7agl or other
enzymes, such as Mspl or HinP1I [17] with GC-rich recognition sites, could
better target these zones.



AFLP linkage map of the Japanese quail 569

Our map spans a total length of 1516 cM. Considering that 60% of the mark-
ers are mapped and ignoring the two ends of each linkage group, an estimation
of the genetic length of the Japanese quail genome would be ~ 2530 cM. This
is in agreement with recent cytological maps of lampbrush chromosomes in
the Japanese quail [33]. This is also comparable to the first estimates of the
chicken genome genetic length [19]. However, a greater genetic length can
be expected for the quail since the more recent consensus linkage map in the
chicken spans ~ 3800 cM [8].

In order to allocate linkage groups to chromosomes and to have physical
data to assess genome coverage, an efficient strategy is to map a set of genes
of known location in the chicken on the Japanese quail AFLP map. This will
allow to take advantage of the power of comparative genetic and cytogenetic
approaches between these species. AFLP markers have been shown to map
to the same loci in different populations, for instance in barley [47], oat [14],
maize [46], chicken [18] or trout [32]. They can be expected to behave in the
same manner in the quail and therefore some of the markers developed in this
study might be useful in other quail lines or populations. On the contrary, using
markers of common size and common primer combination origin in quail and
chicken for comparative mapping purposes would be hazardous.

This Japanese quail AFLP map will be enriched with genes. Recently
developed microsatellites in this species are also available [15,16,21]. This
map already provides a basis for identifying and studying regions, and eventu-
ally genes, involved in the genetic control of complex traits (QTL).
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