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Abstract. We describe an approach to find an initial approx-
imation to the thermal properties of soil horizons. This tech-
nique approximates thermal conductivity, porosity, unfrozen
water content curves in horizons where no direct temperature
measurements are available. To determine physical prop-
erties of ground material, optimization-based inverse tech-
niques are employed to fit the simulated temperatures to the
measured ones. Two major ingredients of these techniques
are an algorithm to compute the soil temperature dynamics
and a procedure to find an initial approximation to the ground
properties. In this article we show how to determine the ini-
tial approximation to the physical properties and present a
new finite element discretization of the heat equation with
phase change to calculate the temperature dynamics in soil.
We successfully apply the proposed algorithm to recover the
soil properties for the Happy Valley site in Alaska using one-
year temperature dynamics. The determined initial approxi-
mation is utilized to simulate the temperature dynamics over
several consecutive years; the difference between simulated
and measured temperatures lies within uncertainties of mea-
surements.

1 Introduction

Recently, the Arctic Climate Impact Assessment report
(ACIA, 2004) concluded that climate change is likely to sig-
nificantly transform present natural environments, particu-
larly across extensive areas in the Arctic and sub-Arctic.
Among the highlighted potential transformations is soil
warming which can potentially cause an increase in the ac-
tive layer thickness and degradation of permafrost as well as
have broader impacts on soil hydrology, northern ecosystems
and infrastructure. Since permafrost is widely distributed and
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covers approximately 25% of the land surface in the Northern
Hemisphere (Brown et al., 1997), it is very important to un-
derstand the causes affecting soil temperature regime. One
approach to studying soil temperature dynamics and their
dependence on climate variability is to employ mathemat-
ical modeling (Goodrich, 1982; Nelson and Outcalt, 1987;
Kane et al., 1991; Zhuang et al., 2001; Ling and Zhang, 2003;
Oleson et al., 2004; Sazonova et al., 2004; Mölders and Ro-
manovsky, 2006)

A mathematical model of soil freezing/thawing is based on
finding a solution of a non-linear heat equation over a speci-
fied domain, (see Andersland and Anderson, 1978; Yershov,
1998, and many references therein). The domain represents
ground material and is divided into several horizons (e.g. an
organic matt, an organically enriched mineral soil layer, and
a mineral soil layer) each with its distinct properties charac-
terized by mineral-chemical composition, texture, porosity,
heat capacity and thermal conductivity. By parameterizing
the coefficients in the heat equation within each horizon, it
is possible to take into account temperature-dependent latent
heat effects occurring when ground freezes and thaws. This
approach yields a realistic model of temperature dynamics
in soils. However, in order to produce quantitatively reason-
able results, it is necessary to prescribe physical properties of
each horizon.

Conventional Time Domain Reflectometry (Topp et al.,
1980) and drying methods are commonly used to estimate
soil water content at shallow depths. The Time Domain
Reflectometry method is based on measurements of the ap-
parent dielectric constant around a wave guide inserted into
the soil. It has been demonstrated that there is a relation-
ship between the apparent dielectric constant and liquid wa-
ter content (Topp et al., 1980) enabling robust estimations
of water content in shallow soils with homogeneous com-
position. There are some difficulties however in measuring
unfrozen water content of coarsely textured, heterogeneous
or organically enriched soils in Arctic tundra (Boike and

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/25959201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


42 D. J. Nicolsky et al.: Estimation of thermal properties of saturated soils

Roth, 1997; Yoshikawa et al., 2004). More accurate mea-
surements of the total water content (ice and water together)
can be acquired by thermalization of neutrons and gamma
ray attenuation. This is not always suitable for Arctic re-
gions as it requires transportation of radioactive equipment to
remote locations (Boike and Roth, 1997). An alternative to
the above-mentioned methods and also to a number of others
(Schmugge et al., 1980; Tice et al., 1982; Ulaby et al., 1982;
Stafford, 1988; Smith and Tice, 1988) is the use of inverse
modeling techniques. These techniques estimate the water
content and other thermal properties of soil using in-situ tem-
perature measurements and by exploiting the mathematical
model.

A variety of inverse modeling techniques that recover the
thermal properties of soil are known. Many of them rely
on the commonly called source methods (Jaeger and Sass,
1964), in which temperature response due to heating is mea-
sured at a certain distance from the heat source. The temper-
ature response and geometry of the probe are used to com-
pute the thermal properties by either direct or indirect meth-
ods. In the direct methods, the temperature measurements
are explicitly used to evaluate the thermal properties. In the
indirect methods, one minimizes a discrepancy between the
measured and the synthetic temperatures, the latter computed
mathematically by exploiting the heat equation in which the
coefficients are parameterized according to the specified ther-
mal properties.

Application of direct methods such as the Simple Fourier
Methods (Carson, 1963), Perturbed Fourier Method (Hur-
ley and Wiltshire, 1993), and the Graphical Finite Difference
Method (McGaw et al., 1978; Zhang and Osterkamp, 1995;
Hinkel, 1997) yield accurate results for the thermal diffusiv-
ity (the ratio of the thermal conductivity and the heat capac-
ity), only when water does not undergo the phase change.
Despite the fact that the direct methods are well established
for the heat equation without the phase change, no univer-
sal framework exists in the case of the soil freezing/thawing
because the heat capacity and thermal conductivity depend
strongly on the temperature in this case.

A common implementation of the indirect methods uses an
analytical or numerical solution of the heat equation to eval-
uate the synthetic temperature. Due to strong non-linearities,
the analytical solution of the heat equation is known only
for a limited number of cases (Gupta, 2003), whereas nu-
merical solutions are typically computable. Given a nu-
merical solution computed by finite difference (Samarskii
and Vabishchevich, 1996) or finite element (Zienkiewicz and
Taylor, 1991) methods, one can minimize a cost function,J ,
which measures a discrepancy between the measuredTm and
syntheticTc temperatures. The typical expression for the cost
function,J , is given by

J (C) ≈

∫ te

ts

(Tm(xi, t)− Tc(xi, t; C))2dt. (1)

Here, the quantityC is the control vector that is a set of pa-
rameters defining soil properties of each soil horizon. The
synthetic temperature,Tc, is computed by the mathematical
model parameterized by variables inC at some depthsxi over
the time interval[ts, te].

In this article, we deal with optimization techniques that
find soil properties by minimizing the cost function (1).
Commonly, the cost functionJ is minimized iteratively start-
ing from an initial approximationC0 to the parametersC
(Thacker and Long, 1988). Since the heat equation is non-
linear, in general there are several local minima. Hence, it
is important that the initial approximation lies in the basin of
attraction of a proper minimum (Avriel, 2003).

We present a semi-heuristic algorithm to determine an ini-
tial approximationC0, for use as the starting point in mul-
tivariate minimization of cost functions such as (1). In this
article, we use in-situ measured temperatureTm to formulate
the cost functionJ . We construct the initial approximation
by minimizing cost functions over specifically selected time
intervals[ts, te] in a certain order. For example, first, we pro-
pose to find thermal conductivity of the frozen soil using the
temperature collected during winter, and then use these val-
ues to find properties of the thawed soil. In order to minimize
the cost function it is necessary to compute the temperature
dynamics multiple times for various control vectorsC. Since
an analytical solution of the non-linear heat equation is not
generally available, we use a finite element method to find its
solution. To compute latent heat effects, we propose a new
fixed grid technique to evaluate the latent heat terms in the
mass (compliance) matrix using enthalpy formulation. Our
techniques do not rely on temporal or spatial averaging of
enthalpy, but rather evaluate integrals directly by employing
a certain change of variables. An advantage of this approach
is that it reduces the numerical oscillation of the temperature
dynamics at locations near 0◦C isotherm.

The structure of this article is as follows. In Sect. 2, we
describe a commonly used mathematical model of tempera-
ture changes in the active layer and near surface permafrost.
In Sect. 3, we outline a finite element discretization of the
heat equation with phase change. In Sect. 4, we introduce
main definitions, notations and state the variational approach
to find the thermal properties. In Sect. 5, we provide an algo-
rithm to construct an initial approximation to thermal proper-
ties. In Sect. 6, we apply our method to estimate the thermal
properties and the coefficients determining the unfrozen wa-
ter content at a site located in Alaska. In Sect. 7, we state
limitations and shortcomings of the proposed algorithm. Fi-
nally, in Sect. 8, we provide conclusions and describe main
results.

2 Modeling of soil freezing and thawing

For many practical applications, heat conduction is a dom-
inant process, and hence the soil temperatureT , [◦C] can
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be simulated by a 1-D heat equation with phase change
(Carslaw and Jaeger, 1959):

C
∂

∂t
T (x, t)+ L

∂

∂t
θl(T , x) =

∂

∂x
λ
∂

∂x
T (x, t), (2)

where x∈[0, l], t∈[0, τ ]; the quantities C=C(T , x)

[Jm−3 K−1
] andλ=λ(T , x) [Wm−1 K−1] stand for the volu-

metric heat capacity and thermal conductivity of soil, respec-
tively; L [Jm−3] is the volumetric latent heat of fusion of
water, andθl is the volumetric liquid water content. We note
that this equation is applicable when migration of water is
negligible, there are no internal sources or sinks of heat, frost
heave is insignificant, and there are no changes in topography
and soil properties in lateral directions. Typically, the heat
Eq. (2) is supplemented by Dirichlet, Neumann, or Robin
boundary conditions specified at the ground surface,x=0,
and at the depthl (Carslaw and Jaeger, 1959). In geothermal
studies, a Neumann boundary condition is typically set at the
depthl. In this study we use the measured temperaturesTu
andTl to set the Dirichlet boundary conditions at depthsx=0
andx=l, respectively, i.e.T (0, t)=Tu(t), T (l, t)=Tl(t). In
order to calculate the temperature dynamicsT (x, t) at any
time t∈[0, τ ], Eq. (2) is supplemented by an initial condi-
tion, i.e. T (x,0)=T0(x), whereT0(x) is the temperature at
x∈[0, l] at timet=0.

In certain conditions such as waterlogged Arctic lowlands,
soil can be considered a porous media fully saturated with
water. The fully saturated soil is a multi-component sys-
tem consisting of soil particles, liquid water, and ice. It is
known that the energy of the multi-component system is min-
imized when a thin film of liquid water (at temperature below
0◦C) separates ice from the soil particles (Hobbs, 1974). A
film thickness depends on soil temperature, pressure, miner-
alogy, solute concentration and other factors (Hobbs, 1974).
One of the commonly used measures of liquid water below
freezing temperature is the volumetric unfrozen water con-
tent (Williams, 1967; Anderson and Morgenstern, 1973; Os-
terkamp and Romanovsky, 1997; Watanabe and Mizoguchi,
2002). It is defined as the ratio of liquid water volume in a
representative soil domain at temperatureT to the volume of
this representative domain and is denoted byθl(T ). There
are many approximations toθl in the fully saturated soil
(Lunardini, 1987; Galushkin, 1997). The most common ap-
proximations are associated with power or exponential func-
tions. Based on our positive experience in (Romanovsky and
Osterkamp, 2000), we parameterizeθl by a power function
θl(T )=a|T |

−b; a, b>0 for T<T∗<0◦C (Lovell, 1957). The
constantT∗ is called the freezing point depression (Hobbs,
1974), and from the physical point of view it means that ice
does not exist in the soil ifT>T∗. In thawed soils (T>T∗),
the amount of water in the saturated soil is equal to the soil
porosityη, and hence the functionθl(T ) can be extended to
T>T∗ asθl(T )=η. Therefore, we assume that

θl(T , x)=η(x)φ(T , x), φ=

{
1, T ≥ T∗

|T∗|
b
|T |

−b, T < T∗

, (3)

Fig. 1. Typical volumetric content of the unfrozen liquid water in
soils as a function of temperature. The curve marked by triangles is
associated with soils in which all water is bound in soil pores, and
hence the water content gradually decreases with decreasing tem-
perature in◦C. To compute this curve we used parametrization (3)
in whichT∗=−0.03◦C andb=0.3. The curve marked by circles is
related to soils in which some percentage of water is not bound to
the soil particle and changes its phase at the temperatureT∗, while
other part of liquid water is bound in soil pores and freezes gradu-
ally as the temperature decreases.

whereφ=φ(T , x) represents the liquid pore water fraction,
andT is in ◦C, see the curve marked by triangles in Fig. 1.
Note that the constantsT∗ andb are the only parameters that
specify dependence of the unfrozen liquid water content on
temperature. For example, small values ofb describe the liq-
uid water content in some fine-grained soils, whereas large
values ofb are related to coarse-grained materials in which
almost all water freezes at the temperatureT∗. The limiting
case in which all water freezes at the temperatureT∗ is as-
sociated with phase change between water and ice (no soil
particles). This limiting case is commonly called the clas-
sical Stefan problem and is represented by extremely large
values ofb in (3).

In this article, we use the following notation and defini-
tions. We abbreviate by lettersi, l ands, ice, liquid water,
and the soil particles, respectively. We express thermal con-
ductivity λ of the soil and its apparent volumetric heat ca-
pacityCapp according to (de Vries, 1963; Sass et al., 1971)
as

λ(T )=λθss λ
θi (T )
i λ

θl(T )
l , Capp(T )=C(T )+L

dθl(T )

dT
(4)

C(T ) = θi(T )Ci + θl(T )Cl + θsCs (5)

whereC is called the volumetric heat capacity of the soil.
Here, the constantsCk, λk, k∈{i, l, s} are the volumetric heat
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Table 1. A typical thickness of soil layers and commonly occurring range of thermal properties in a cryosol soil at the North Slope, Alaska.

Layer Layer thickness Thermal conductivity Porosity, Coefficient in (3)
in the frozen state,λf η b

Moss or organic layer 0.05 [0.1,0.7] [0.1,0.7] [1.0,0.5]

Mineral-organic mixture 0.20 [0.9,1.6] [0.2,0.6] [0.8,0.5]

Mineral soil >1.0 [1.3,2.4] [0.2,0.4] [0.7,0.5]

capacity and thermal conductivity of thek-th constituent at
0◦C, respectively. The quantityθk, k∈{i, l, s} is the volume
fraction of each constituent. Exploiting the relationsθs=1−η

andθi=η−θl , we introduce notation for the effective volu-
metric heat capacitiesCf andCt , and the effective thermal
conductivitiesλf andλt of soil for frozen and thawed states,
respectively. Therefore formulae (4) and (5) yield

Capp=C+L
dθl

dT
, C=Cf (1−φ)+Ctφ, λ=λ

1−φ
f λ

φ
t , (6)

where

λf=λ1−η
s λ

η
i , λt=λ

1−η
s λ

η
l

Cf=Cs(1−η)+Ciη, Ct=Cs(1−η)+Clη.

For most soils, seasonal deformation of the soil skeleton is
negligible, and hence temporal variations in the total soil
porosity η for each layer are insignificant. Therefore, the
thawed and frozen thermal conductivities for the fully satu-
rated soil satisfy

λt

λf
=

[λl
λi

]η
. (7)

It is important to emphasize that evaporation from the ground
surface and from within the upper organic layer can cause
partial saturation of upper soil horizons (Hinzman et al.,
1991; Kane et al., 2001). Therefore, formula (7) need not
hold within live vegetation and organic soil layers, and pos-
sibly within organically enriched mineral soil (Romanovsky
and Osterkamp, 1997).

In this article, we approximate the coefficientsCapp, λ ac-
cording to (6), where the thermal propertiesλf , λt , Cf , Ct
and parametersη, T∗, b are constants within each soil hori-
zon. Table 1 lists typical soil horizon geometry, commonly
occurring ranges for the porosityη, thermal conductivityλf
and the values ofb parameterizing the unfrozen water con-
tent.

3 Solution of the heat equation with phase change

3.1 A review of numerical methods

In order to solve the inverse problem one needs to compute a
series of direct problems, i.e. to obtain the temperature fields

for various combinations of thermal properties. A number
of numerical methods (Javierre et al., 2006) exist to compute
temperature that satisfies the heat equation with phase change
(2). These methods vary from the simplest ones which yield
inaccurate results to sophisticated ones which produce ac-
curate temperature distributions. The highly sophisticated
methods explicitly track a region where the phase change
occurs and produce a grid refinement in its vicinity, and
therefore take significantly more computational time to ob-
tain temperature dynamics. Implementing such complicated
methods is not always necessary, since an extremely accurate
solution is not particularly important when the mathematical
model describing nature is significantly simplified.

In this subsection, we briefly review several fixed grid
techniques (Voller and Swaminathan, 1990) that accurately
estimate soil temperature dynamics and easily extend to
multi-dimensional versions of the heat Eq. (2). These meth-
ods provide the solution for arbitrary temperature-dependent
thermal properties of the soil and do not explicitly track the
area where the phase change occurs. Recall that in soils the
phase change occurs at almost all sub-zero temperatures. A
cornerstone of the fixed grid techniques is a numerical ap-
proximation of the apparent heat capacityCapp. A variety
of the approximation techniques can be found in (Voller and
Swaminathan, 1990; Pham, 1995) and references therein. In
general, two classes of them can be identified. The first class
is based on temperature/coordinate averaging (Comini et al.,
1974; Lemmon, 1979) of the phase change. Here, the appar-
ent heat capacity is approximated by

Capp =
∂H

∂x

(∂T
∂x

)−1
, (8)

where

H =

∫ T

0
CappdT ,

is the enthalpy. The second class of methods is based on
temperature/time averaging (Morgan et al., 1978). In this
approach,

Capp =
Hcurrent−Hprevious

Tcurrent− Tprevious
, (9)

where subscripts mark time steps at which the values ofH

andT are calculated. Although these methods have been pre-
sented in the context of large values ofb in (3), it is noted that
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they work best in the case of a naturally occurring wide phase
change interval. Also, it is important to note that the approx-
imation (8) is not accurate for near zero temperature gradi-
ents. In the case when the boundary conditions are given
by natural variability (several seasonal freezing/thawing cy-
cles), near zero gradients at some depths may occur for some
time intervals. Hence, the temperature dynamics calculated
by using (8) can have large computational errors.

An alternative fixed grid technique can be developed by
rewriting the heat equation (2) in a new form:

∂H

∂t
=

∂

∂x
λ
∂

∂x
T , T = T (H), (10)

resulting in the enthalpy diffusion method (Mundim and
Fortes, 1979). Advantages of discretizing (10) is that the
temperatureT=T (H) is a smooth function of enthalpyH
and hence one can compute all partial derivatives. However,
for soils with a sharp boundary between thawed and com-
pletely frozen states, the enthalpyH becomes a multivariate
function when temperatureT nearsT∗. Therefore, solution
of (10) results in that the front becomes artificially stretched
over at least one or even several finite elements.

In this article, we propose a fixed grid technique that ap-
plies the basic finite element method (Zienkiewicz and Tay-
lor, 1991) to Eq. (2). Finite element discretization of

L
∂θl

∂t
= L

dθl

dT

∂T

∂t

in the left hand side of (2) results in( ∫ x1

x0

ψi(x)ψj (x)L
dθl

dT

(
T (x, t)

)
dx

) dTj
dt
, (11)

where ψi(x) and ψi(x) are two piecewise linear basis
functions at nodesi and j , respectively, Tj (t) is the
value of temperature at thej -th node at timet , and
T (x, t)=

∑
i ψi(x)Ti(t). We propose to evaluate this type

of integrals using the unfrozen liquid water contentθl as the
integration variable, i.e.∫ x1

x0

ψ(x)L
dθl

dT

(
T (x, t)

)
dx = L

∫ θ1

θ0

ψ
(
T (θl, t)

)
dθl, (12)

whereψ=ψiψj , andθ0=θl(T (x0, t)) andθ1=θl(T (x1, t)).
This substitution allows precise computation of the latent
heat effect for arbitrary grid cells, since it is parameterized
by the limits of integrationθ0, θ1, instead of being calcu-
lated using the rapidly varying functiondθl

dT
(T ) on the el-

ement[x0, x1] by a quadrature rule. As a consequence of
the proposed substitution, evaluation of the integral in (11)
may not to yield the right result unless the functionT (θl)
must be monotonically increasing for allθl<η, andT (x, t)
be monotonous on[x0, x1] at time t . Figure 1 shows two
instances of the unfrozen water content curves frequently oc-
curring in nature. The curve marked by circles is associated
with soils in which free water freezes prior to freezing of the

bound liquid water in soil pores. The free water is associ-
ated with a vertical line atT=T∗ whereas the bound water is
represented by a smooth curve atT<T∗. The curve marked
by triangles reflects soil in which all water is bounded in soil
pores and can be parameterized by (3) used in our modeling.

3.2 Finite element formulation

Let us consider a triangulation of the interval[0, l] by a set
of nodes{xi}ni=1. With each nodexi , we associate a contin-
uous functionψi(x) such thatψi(xj )=δij . We will refer to
{ψi}

n
i=1 as the basis functions on the interval[0, l]. Hence,

the temperatureT (x, t) on [0, l] is approximated by a linear
combination:T (x, t)=

∑n
i=1 Ti(t)ψi(x), whereTi=Ti(t) is

the temperature at the nodexi at the timet . Substituting this
linear combination into (2), multiplying it byψj and then
integrating over the interval[0, l], we obtain a system of dif-
ferential equations (Zienkiewicz and Taylor, 1991):

M(T)
d

dt
T(t) = −K(T)T(t), (13)

whereT≡T(t)=[T1(t) T2(t) . . . Tn(t)]
t is the vector of tem-

peratures at nodes{xi}ni=1 at timet . Here, then×n matrices
M(T)={mij }

n
ij=1 andK(T)={kij }

n
ij=1 are mass and stiffness

matrices, respectively. Entry-wise they are defined as

mij=

∫ l

0
C(T , x)ψiψjdx+L

∫ l

0

dθl

dT
ψiψjdx (14)

kij=

∫ l

0
λ(T , x)

dψi

dx

dψj

dx
dx. (15)

The fully implicit scheme is utilized to discretize (13) with
respect to time. Denoting bydtk the time increment at the
k-th moment of timetk, one has[
M k

+ dtkK k
]
Tk = M kTk−1, k > 1 (16)

where Tk=T(tk), K k
=K(Tk), M k

=M(Tk). We impose
boundary conditions atx=0 and some depthx=l by spec-
ifying T1(tk)=Tu(tk) andTn(tk)=Tl(tk).

GivenTk−1, we find the solutionTk of (16) by Picard it-
eration (Kolmogorov and Fomin, 1975). The iteration pro-
cess starts from the initial guessTk0 = Tk−1 that is used to
compute temperatureTk1 at the first iteration. At iterations,
we computeTks and terminate iterations atse when a cer-
tain convergence condition is met. The value ofTks is used
to evaluate the matricesM k

s=M(Tks ), andK k
s=K(Tks ). In

turn, these are utilized to compute thes+1 iterationTks+1 by
equating

[M k
s + dtkK k

s]Tks+1 − M k
sTk−1

= 0. (17)

At each iteration the convergence condition
maxk |T s+1

k (tk)−T
s
k (tk)|≤ε is checked. If it hold, the

iterations are terminated atse=s+1. If the number of
iterations exceeds a certain predefined number, the time
incrementdtk is halved and the iterations start again. Please,
note that the convergence is guaranteed if the time increment
dtk is small enough.
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Fig. 2. Comparison of analytical (stars) and numerical solutions.
Initially, the soil has−5◦C temperature, and at the timet=0, the
temperature at its upper boundary is changed to 1◦C. At the lower
boundary located at 5 m depth, zero flux boundary condition is spec-
ified. On the left plot, we show a location of the 0◦C isotherm calcu-
lated for a uniform spatial discretizations with 0.1 m grid element.
The numerical solutions are computed by the proposed method (cir-
cles) and by the scheme using the lumped approach with temporal
enthalpy averaging (squares). In the right plot, we show an enlarged
area within the dotted rectangle and a location of the 0◦C isotherm
calculated for a uniform spatial discretizations with 0.1 m (filled)
and 0.01 m (hollow) grid elements.

3.3 Computation of the mass matrix

One of the obstacles to obtain a finite dimensional approxi-
mation that accurately captures the temperature dynamics is
related to evaluation of the mass matrixM . Since the basis
functionψi does not vanish only on the interval[xi−1, xi+1],
the matrixM is tri-diagonal. Therefore, to compute itsi-th
row we evaluate∫ l

0

dθl

dT
ψj (x)ψi(x)dx j = i − 1, i, i + 1, (18)

wherej stands for the column index. For the sake of brevity,
we consider the first integral (j=i−1) in (18). This restricts
us only to the grid element[xi−1, xi], yielding∫ l

0

dθl

dT
ψi−1(x)ψi(x)dx =

∫ xi

x−1

dθl

dT
ψi−1(x)ψi(x)dx. (19)

We recall that in the standard finite element method, the tem-
perature on the interval[xi−1xi] is approximated by

T (x, t)=ψi−1(x)Ti−1(t)+ψi(x)Ti(t), (20)

for anyx ∈ [xi−1, xi] and fixed moment timet . Here,ψi and
ψi−1 are piece-wise linear functions satisfyingψi−1=1−ψi
on[xi−1, xi]. For allx ∈ [xi−1, xi], we can compute the tem-
peratureT from (20) and values ofTi , Ti−1. Note that in the

case of1Ti=0, we can compute (19) directly sincedθl/dT
is constant over[xi−1xi]. However, if1Ti=Ti−Ti−1 6=0,
then we can consider an inverse function, that is,x is taken
as a function ofT to obtain∫ xi

xi−1

dθl

dT
ψi−1ψidx =

xi − xi−1

(1Ti)3

∫ xi

xi−1

dθl

dT
(Ti − T )(T − Ti−1)dT

Therefore∫ l

0

dθl

dT
ψi−1ψidx =

xi − xi−1

(1Ti)3

∫ θi

θi−1

(T − Ti)(Ti−1 − T )dθ,

(21)

whereθi−1=θl(T (xi−1, t)) andθi=θl(T (xi, t)). Note that in
(21) the temperatureT is a function of the liquid water con-
tentθl , i.e.T=θ−1

l (θl). Therefore, returning back to (18), we
have that each of the integrals in (18) is a linear combination
of the typeβ2A2+β1A1+β0A0, where

Ak =

∫ θi

θi−1

[θ−1
l (z)]kdz, k = 0,1,2.

The constants{βk} are easily computable ifθl(T ) is given by
(3).

3.4 Evaluation of the proposed method

To test the proposed method, we compare temperature dy-
namics computed by the proposed method with an analytical
solution of the heat Eq. (2) in whichb→∞. This analytical
solution is called Neumann solution (Gupta, 2003) and is typ-
ically used to verify numerical schemes. In the proposed nu-
merical scheme the mass matrixM is tri-diagonal, and hence
this scheme is called consistent. Other commonly utilized
numerical schemes are called mass lumped (Zienkiewicz and
Taylor, 1991) since they employ the diagonal mass matrix:

M = diag(Capp,1

∫ 1

0
ψ1dx, . . . , Capp,n

∫ 1

0
ψndx). (22)

Here,Capp,i is the value of the apparent heat capacityCappat
the i-th node computed either by spatial (8) or temporal (9)
averaging of latent heat effects.

In Fig. 2, we compare temperature dynamics computed by
the proposed consistent and a typical mass lumped scheme.
We plot a location of the 0◦C isotherm for several spatial dis-
cretizations, i.e. the distance1xi between two neighboring
nodesxi and xi−1 is 0.1 or 0.01 m. In this figure we see
that the location of the 0◦C isotherm calculated by numeri-
cal schemes lies within1xi bound near the analytical solu-
tion. However, temporal dynamics of the location of the 0◦C
isotherm differ among methods. In the solution (squares)
computed by the mass lumped approach with temporal en-
thalpy averaging (TA), dynamics of the 0◦C isotherm has
some irregularities, i.e. the freezing front either advancing
too fast or too slow. In average, however this algorithm pro-
duces good results. Our proposed consistent method (circles)
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Fig. 3. Computed soil temperature dynamics at 0.3 m depth. Uni-
form 0.01 and 0.1 m meshes are used to compute temperatures by
the consistent (circles) and mass lumped approaches, respectively.
The spatial (SA) and temporal (TA) enthalpy averaging in lumped
schemes are marked my triangles and squares, respectively. Ini-
tially the temperature is zero, the upper boundary condition is given
by Dirichlet type boundary condition with a slowly varying sinusoid
having the amplitude of 3◦C and the period of there years; zero heat
flux is specified at 2 m depth.

gives a better solution and smoother rate of advancing of the
0◦C isotherm, see Fig. 2, left.

In Fig. 3, we compare temperature dynamics computed by
two mass lumped approaches exploiting spatial (8) and tem-
poral (9) enthalpy averaging. A warm bias in the tempera-
ture computed by the spatial averaging of the enthalpy is due
to computational errors occurring when the temperature gra-
dient is approximately zero at some depth. Our experience
shows that this difference appears regardless of decreasing
the toleranceε between iterations in (17). We note that in all
above numerical experiments a finite element computer code
is the same except for a part associated with computation of
mass matrix, i.e. consistent (18) or mass lumped (22). These
numerical experiments show that the straight-forward mass
lumped schemes are typically inferior to consistent ones.

Since our method (14) is based on the consistent approach
(the mass matrixM is the tri-diagonal one), the numerical
solution oscillates if the time stepsdtk are too small (Pin-
der and Gray, 1977). For a fixed time stepdtk, the oscilla-
tions disappear if the spatial discretization becomes fine, i.e.
the inequalitymij+dtkkij<0 holds wheni 6=j (Ciarlet, 2002;
Dalhuijsen and Segal, 1986). It is shown that these oscilla-
tions occur due to violation of the discrete maximum princi-
ple (Rank et al., 1983). Therefore, to avoid the oscillations
in the numerical solution (Dalhuijsen and Segal, 1986), we
propose either to use sufficiently large time steps (for which

Fig. 4. Temperature dynamics at 1 m depth computed by the pro-
posed consistent (circles) and the mass lumped schemes (stars). The
mass lumped scheme is based on (23). In order to emphasis numer-
ical oscillations occurring in the case of small time steps in the con-
sistent approach, we use a uniform grid with 0.1 m grid elements.
The oscillations are due to violation of the discrete maximum prin-
ciple in the consistent scheme during active phase change processes.
The initial and boundary conditions are the same as stated in caption
of Fig. 3.

the formula can be found in the above cited references) or to
exploit the following regularization. We construct a lumped
versionM̃={m̃ij } of the mass matrixM given by

m̃ii =

∑
j

mij (23)

and substitutẽM for M in (16). Comparison of temperature
dynamics computed employing the proposed consistentM
defined by (16) and its mass lumped modificationM̃ defined
by (23) is shown in Fig. 4. The numerical oscillations near
0◦C disappear in the temperature dynamics computed by the
proposed mass lumped approach (see Fig. 4). In Fig. 5, we
compare the proposed mass lumped approach (stars), and the
one based on temporal enthalpy averaging (squares) by (8).
This figure shows that the numerical scheme using tempo-
ral averaging of the enthalpy produces larger oscillation than
our solution. This comparison reveals that the proposed mass
lumped approach (23) reduces some numerical oscillations
and follows the “exact” solution (computed by the consis-
tent approach with a fine spatial discretization) more closely
than the solution computed by the lumped approach exploit-
ing (8).

In conclusion, we state that if a spatial discretization is fine
and time steps are sufficiently large (Pinder and Gray, 1977)
then the consistent schemes do not show numerical oscilla-
tions, and hence they should be utilized. In the case of a

www.the-cryosphere.net/1/41/2007/ The Cryosphere, 1, 41–58, 2007



48 D. J. Nicolsky et al.: Estimation of thermal properties of saturated soils

Fig. 5. Temperature dynamics at 1 m depth computed by the consis-
tent approach (circles), the proposed mass lumped approach (stars)
and the mass lumped approach with temporal enthalpy averaging
(squares). The temperatures computed mass lumped approach are
found on uniform grid with 0.1 m grid elements, whereas in the con-
sistent approach, the length of grid elements is 0.01 m. The initial
and boundary conditions are the same as stated in caption of Fig. 3.

coarse spatial discretization, consistent schemes can violate
the discrete maximum principle, and hence the mass lumped
schemes are more attractive. In this article, we construct a
fine spatial discretization and use the proposed consistent ap-
proach, while restricting the time steptk from below.

4 Variational approach to find the soil properties

In this section, we provide definitions and describe main
components of the indirect method used to find the soil prop-
erties by minimizing the cost function outlined in (1).

We define the controlC as a set consisting of thermal con-
ductivitiesλ(i)t , λ

(i)
f , heat capacitiesC(i)t , C

(i)
f and parameters

η(i), T
(i)
∗ , b(i) describing the unfrozen water content for each

soil horizoni=1, . . . , n, or

C = {C
(i)
f , C

(i)
t , λ

(i)
t , λ

(i)
f , η

(i), T (i)∗ , b(i)}ni=1, (24)

wheren is the total number of horizons. We say that a solu-
tion of the direct problem for the controlC is T (x, t; C) and
is defined by the set

T (x, t; C) = {T (xi, t) : i = 1, . . . , m; t ∈ [0, τ ]}, (25)

where{xi}
m
i=1 is a set ofm fixed distinct points on[0,l]. In

(25), theT (xi, t) are point-wise values of temperature dis-
tributions satisfying (2) in which thermal properties of each
horizon are given according toC.

The counterpart ofT (x, t; C) is the dataTD(x, t) defined
by a set of measured temperature at the same depths{xi}

m
i=1

and the same time interval[0, τ ]. Since the dataTD(x, t) and
its model counterpartT (x, t; C) are given on the same set of
depths and time interval, we can easily compute a discrep-
ancy between them, usually measured by the cost function

J (C)=
1

m(ts−te)

m∑
i=1

1

σ 2
i

∫ te

ts

(TD(xi, t)−T (xi, t; C))2dt. (26)

Here,ts, te ∈ [0, τ ] andσi stands for an uncertainty in mea-
surements by thei-th sensor. In our measurements all tem-
perature sensors assume the same precision, so all of{σi} are
equal. Given a way to measure this discrepancy as in (26) we
can finally formulate an inverse problem.

For the given dataTD(x, t), we say that the controlC∗

is a solution to an inverse problem if discrepancy between
the data and its model counterpart evaluated atC∗ is mini-
mal (Alifanov, 1995; Alifanov et al., 1996; Tikhonov et al.,
1996). That is,

J (C∗) = min
C
J (C).

To illustrate steps which are necessary to solve this inverse
problem and find an optimalC∗ we provide the following
example. To formulate the inverse problem one has to have
the measured temperaturesTD(x, t). For the sake of this ex-
ample, we replace the dataTD(x, t) by a synthetic tempera-
tureTS(x, t) = T (x, t; C′) (a numerical solution of the heat
Eq. (2) for the known combinationC′ of the thermal proper-
ties):

C′
=


C
(1)
f =1.6×106, C

(1)
t =2.1×106, λ

(1)
f =0.55, λ(1)t =0.14, η(1)=0.30, b(1)=0.9, T (1)∗ =−0.03

C
(2)
f =1.7×106, C

(2)
t =2.3×106, λ

(2)
f =0.90, λ(2)t =0.66, η(2)=0.30, b(2)=0.6, T (2)∗ =−0.03

C
(3)
f =1.8×106, C

(3)
t =2.6×106, λ

(3)
f =1.90, λ(3)t =1.25, η(3)=0.25, b(3)=0.8, T (3)∗ =−0.03

 .
The initial and boundary conditions in all calculations are
fixed and given by in-situ temperature measurements in 2001
and 2002 at the Happy Valley site located in the Alaskan
Arctic. We compute the temperature dynamics for a soil
slab with dimensions[0.02,1.06] between 21 July 2001 and
6 May 2002, and evaluate the cost function at{xi}i={0.10,
0.17, 0.25, 0.32, 0.40, 0.48, 0.55, 0.70, 0.86 m. Uniformly
distributed noise on[−0.04,0.04] was added toTS(x, t), to
simulate noisy temperature data recorded by sensors (preci-
sion of the sensor is 0.04◦C). The boundaries between the
horizons lie at 0.10 and 0.20 m depth.

We find a controlC′ that minimizes the cost functionJ
defined by (26) in whichTD(x, t)=TS(x, t). For the sake
of simplicity, we assume that all variables inC′ are known
except for the pairλ(2)f ,η

(3). Therefore, the problem of find-
ing this pair can be solved by minimizing the cost function
J on (λ(2)f ,η

(3)) plane as follows. We compute temperature

dynamics for various combinations ofλ(2)f ,η
(3) and plot iso-

lines ofJ , see Fig. 6. The point on(λ(2)f ,η
(3)) plane where

the cost function is minimal gives the sought values ofλ
(2)
f

andη(3). The location of the minimum coincides with val-
uesλ(2)f =0.9, η(3)=0.25, which were used to generate the
synthetic data.

The Cryosphere, 1, 41–58, 2007 www.the-cryosphere.net/1/41/2007/



D. J. Nicolsky et al.: Estimation of thermal properties of saturated soils 49

In the above example, the control had only two unknown
variablesλ(2)f , η

(3) and we minimized the corresponding cost
function. Usually, a majority of variables in the controlC is
unknown, and hence multivariate minimization is required.
Since computation of the cost function for all possible real-
izations of the control on the discrete grid is extremely time-
consuming, various iterative techniques are used (Fletcher,
2000).

We note that if the cost function has several minima due
to non-linearities of the heat Eq. (2) and if the initial ap-
proximationC0 is arbitrary then the iterative algorithm can
converge to an improper minimum. Nevertheless, with the
initial approximationC0 within the basin of attraction of the
global minimum, the iterative optimization method should
converge to the proper minimum even if the model is nonlin-
ear (Thacker, 1989). Consequently, proper determination of
an initial approximationC0 is important.

After selection of the initial approximationC0, the next
step is to minimize the cost functionJ (C) with respect to all
parameters inC. There is a great variety of iterative methods
that minimizeJ (C). The majority of them rely on compu-
tation of the gradient∇J (C) of the cost function. The com-
putation of∇J (C) is a complicated problem and is out of
the scope of this article. An interested reader is referred to
(Alifanov et al., 1996; Permyakov, 2004) and to references
therein. Since in this article we are primarily concerned with
evaluation of the initial approximation to the thermal prop-
erties, we use the following universal algorithm to minimize
the cost function.

We look for the minimum of the cost function by the
simplex search method described in (Lagarias et al., 1998),
which is a direct search method (Bazaraa et al., 1993). In
a two and three dimensional spaces, the simplex is a trian-
gle or a pyramid, respectively. At each iteration the value of
the function computed at the point, being in or near the cur-
rent simplex, is compared with the function’s values at the
vertices of the simplex and, usually, one of the vertices is re-
placed by the new point, giving a new simplex. The iteration
processes is continued until the simplex sizes are less than an
a priori specified tolerance. At the final iteration, we obtain
the setC of parameters that determine the thermal properties,
porosity and coefficients specifying the unfrozen water con-
tent for each soil horizon. However, we note that this algo-
rithm typically converges to the minimum slower than other
algorithms that require calculations of the gradient (Dennis
and Schnabel, 1987).

5 Selection of an initial approximation

Selection of a proper initial approximationC0 is an impor-
tant problem, since the proper choice ofC0 ensures that the
minimization procedure converges to a global minimum. In
this section we describe how to select a proper initial approx-
imation by considering several simpler subproblems.

Fig. 6. Isolines of the cost functionJ (C) computed using the syn-
thetic temperature dataTS. The minimum of the cost function is

marked by the start and is located atλ
(2)
f

=0.9 andη(3)=0.25, which

is coincide with the values ofλ(2)
f

, η(3) used to computeTS.

5.1 General methodology

We begin by noting that in the natural environment, the ther-
mal properties and the water content are confined within
a certain range depending on soil texture and mineralogy.
Therefore, the coefficients in (2) and hence their initial ap-
proximations lie within certain limits. To ensure better deter-
mination of the initial approximationC0, we employ an algo-
rithm similar to coordinate-wise searching method (Bazaraa
et al., 1993). In this method, one looks for a minimum along
one coordinate, keeping other coordinates fixed, and then
looks for the minimum along another coordinate keeping oth-
ers fixed and so on.

We propose to look for a minimum with respect to some
subset of parameters inC, followed by a search along other
parameters inC and so on. In details, our approach is formu-
lated in five steps:

1. Select several time intervals{1k} in the period of ob-
servations[0, τ ]

2. Associate a certain subsetCj of parametersC with each
1j . The subsetCj is such that the temperature dynam-
ics over the period1j is primarily determined byCj
and depend much less on changes in any other parame-
ters inC.

3. Select a certain pair{1j ,Cj }, and look for a location
of the minimum of the cost functionJ (C) keeping all
parameters inC except forCj fixed.

4. Update values ofCj in the controlC by the results ob-
tained at Step 3.

5. Select another pair{1i,Ci} that is different from the
pair {1j ,Cj } at the previous step. Goto Step 3 and re-
peat for the pair{1i,Ci}.
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Fig. 7. Temperature dynamics at 0.25 m depth at Happy Valley site
during the summer of 2001 year. The graph shows that uncertainty
in temperature measurements is±0.02◦C. Within this uncertainty,
the shadowed region represents a temperature range where the soil
starts to freeze. Therefore, the temperature,T∗, of freezing point
depression lies within the shadowed regions, i.e. in [−0.04◦C/0◦C].

We continue this iterative processes until the difference be-
tween the previous and current values of parameters inC is
below a critical tolerance.

The selected periods1k do not have to coincide with tra-
ditional subdivision of a year. The choice of1k is naturally
dictated by seasons in the hydrological year, which starts at
the end of summer and consists several seasons. If the period
of observations is one year, typical intervals1k are “winter”,
“summer and fall”, “fall” and “extended summer and fall”,
see Table 2. We note that the intervals1k can overlap each
other, and quantitiests and te determining lower and upper
limits of integration in (26) are equal to the beginning and
end of the time interval1k. For different geographical re-
gions, the timing for the “winter”, “summer and fall” and
“fall” can be different. Typical timing of periods{1k} for
the North Slope of Alaska is shown in Table 2, and are now
discussed.

5.2 Subproblems

11: The “winter” period corresponds to the time when the
rate of change of the unfrozen liquid water contentθl is neg-
ligibly small; the heat Eq. (2) models the transient heat con-
duction with thermal propertiesλ=λf , C=Cf , and dθl

dT
'0.

During the “winter”, temperature dynamics depend only on
the thermal diffusivityCf /λf of the frozen soil, and hence
the simultaneous determination of both parametersCf and
λf is an ill-conditioned problem. Assuming that the heat

capacity{C(i)f } is known (depending on the soil texture and
moisture content we can approximate it using published

data), we evaluate the thermal conductivity{λ
(i)
f } and use

these values during minimization at other intervals.
12: During the “summer and fall” time interval, active

phase change of soil moisture occurs. Hence, at this time,
see Table 2, a contribution of the heat capacityC into the
apparent heat capacityCapp is negligibly small comparing
to the contribution of the latent heat termLdθl/dT . There-
fore, the rate of freezing/thawing primarily depends on the
soil porosityη and the thermal conductivityλ (Tikhonov and
Samarskii, 1963). Thus we approximate{C

(i)
t } using pub-

lished data by analyzing the soil texture and moisture con-
tent. Note that temperature-dependent latent heat effects due
to the existence of unfrozen waterθl at this period have a sec-
ond order of magnitude effect (see discussion below). There-
fore, if no prior information about the coefficientsb, T∗ pa-
rameterizing the unfrozen water content is available then they
can be prescribed by taking into account the soil texture and
analyzing measured temperature dynamics at the beginning
of freeze-up (see Fig. 7). We seek better estimates ofb, T∗ at
the next steps, namely during the “fall” period.

Since, during the “summer and fall” interval, the tempera-
ture dynamics primarily depends on the porosityη and ther-
mal conductivityλ, we have to find only{λ(j)t , η(j)}, since
{λ
(j)
f } are already found at the previous step, i.e. the “winter”

interval. Taking into account the relationship (7) between
the thermal conductivities for completely frozen and thawed
soil, we approximate

λ
(j)
t = λ

(j)
f

[λl
λi

]η(j)
, j = 2, . . . , n. (27)

We remind that the water contentθl in the upper soil horizon
changes during the year due to moisture evaporation and pre-
cipitation and is not always equal toη(1). Hence formula (27)
does not hold forj=1. Hence, during the “summer and fall”
period our goal is to estimate{η(i)}ni=1 andλ(1)t , and then de-

termine thermal conductivityλ(j)t for the rest of soil layers
j=2, . . ., n using (27).
13: Recall that while evaluating the thermal properties

{λ
(i)
t , λ

(i)
f } and the soil porosity{η(i)}, we assumed that the

coefficients{b(i), T (i)∗ } are known. However they also have
to be determined. We remind that the coefficients{b(i), T

(i)
∗ }

cannot be computed prior to calculation of{λ
(i)
t , λ

(i)
f } and

{η(i)}, since{b(i), T (i)∗ } are related to the second order effects
in temperature dynamics during “summer and fall” and “win-
ter” intervals. Once an initial approximation to{λ(i)t , λ

(i)
f }

and {η(i)} is established, we consider the “fall” period (see
Table 2) during which the temperature dynamics strongly de-
pends on{b(i), T (i)∗ } and allows us to capture second order ef-
fects in temperature dynamics (Osterkamp and Romanovsky,
1997).
14: In the previous three periods, we obtained approxi-

mations to all variables{λ(i)t , λ(i)f , C(i)t , C(i)f , η(i), b(i), T (i)∗ }.
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Table 2. Typical choice of parameters in the controlC for “cold” permafrost regions.

Periods Cj Typical1k Characteristic Step

“Winter” {λ
(i)
f

} December–April Completely frozen ground,T<−5◦C 1

“Summer and Fall” {η(i)},λ(1)t May–November Developing/-ed active layer and its freezing 2

“Fall” {b(i), T (i)∗ } September–December Active layer freezing,T>−5◦C 3

“Extended Summer and Fall” {η(i), T (i)∗ } May–January Developing/-ed active layer and its freezing 4

However, we can improve the approximation by consider-
ing the “extended summer and fall” period, see Table 2.
This period is associated with a time interval when the soil
first thaws and then later becomes completely frozen. Since
previously, we minimized the cost function depending sep-
arately on the porosity{η(i)} (“summer and fall”) and on
{T

(i)
∗ } (“fall”), we minimize the cost function depending si-

multaneously on{η(i)} and{T
(i)
∗ } during “extended summer

and fall”, while other parameters are fixed.
We list in Table 2 all steps and time periods1k which

are necessary to find the initial approximation. One of the
sequences of minimization steps is

“winter” → “summer and fall”→
“fall” → “extended summer and fall”

From our experience with this algorithm, we conclude that
in some circumstances it is necessary to repeat minimization
over some time periods several times, e.g.

“winter” → “summer and fall”→
“fall” → “extended summer and fall”→
“fall” → “extended summer and fall”

until the consecutive iterations modify the thermal properties
insignificantly.

6 Application. Happy Valley site

6.1 Short site description

The temperature measurements were taken in the tussock
tundra site located at the Happy Valley (69◦8′ N ,148◦50′ W)
in the northern foothills of the Brooks Range in Alaska from
22 July 2001 until 22 February 2005. We used data from 22
July 2001 until 15 May 2002 to estimate soil properties, and
from 15 May 2002 until 22 February 2005 to validate the
estimated properties. The site was instrumented by eleven
thermistors arranged vertically at depths of 0.02, 0.10, 0.17,
0.25, 0.32, 0.40, 0.48, 0.55, 0.70, 0.86 and 1.06 m. The tem-
perature sensors were embedded into a plastic pipe (the MRC
probe), that was inserted into a small diameter hole drilled
into the ground. The empty space between the MRC and the
ground was filled with a slurry of similar material to diminish
an impact of the probe to the thermal regime of soil. Our frost
heave measurements show that the vertical displacement of
the ground versus the MRC probe is negligibly small at this

particular installation site. Prior to the installation, all sen-
sors were referenced to 0◦C in an ice slush bath and have
the precision of 0.04◦C. An automatic reading of tempera-
ture were taken every five minutes, then averaged hourly and
stored in a data logger memory.

During the installation, soil horizons were described and
their thicknesses were measured. The soil has three distinct
horizons: organic cover, organically enriched mineral soil,
and mineral soil. The boundaries between the horizons lie at
0.10 and 0.20 m depth.

In the all following numerical simulations we consider a
slab of ground representing the Happy Valley soil between
0.02 and 1.06 m depth. For the computational purposes, the
upper and lower boundary conditions are given by the ob-
served temperatures at depth of 0.02 and 1.06 m. Also in all
computations, the temperatures are compared with the set of
measured temperatures at the depths{xi}={0.10, 0.17, 0.25,
0.32, 0.40, 0.48, 0.55, 0.70, 0.86} m.

6.2 Selection of an initial approximation

The “winter” period is associated to the ground temperature
below−5◦C, occurring on 15 January 2002 through 15 May
2002 at the Happy Valley site. The heat capacityCf for each
layer is evaluated based on the soil type, texture and is taken
from (Hinzman et al., 1991; Romanovsky and Osterkamp,
1995; Osterkamp and Romanovsky, 1996).

We estimateλf for each layer by looking for a minimum

of the cost functionJ in the 3-D space{λ(1)f , λ
(2)
f , λ

(3)
f }.

The minimization problem in this space can be simplified by
looking for a minimum in the following series of 2-D prob-
lems. For example, for several physically acceptable values
of the thermal conductivityλ(1)f , we compute temperature dy-

namics for various values ofλ(2)f , λ(3)f and plot isolines of the
cost functionJ . In the series of plots in Fig. 8, we notice
that a location of the minimum on the(λ(2)f , λ

(3)
f ) plane shifts

asλ(1)f changes. The minimum of the cost function at each
cross section is almost the same, and the problem of selecting
the right combination of parameters arises. Here, knowledge
of the soil structure becomes relevant. It is known that the
soil type of third layer is silt highly enriched with ice, so
from Table 1 1.6<λ(3)f <2.0. Therefore, we selectλ(1)f =0.55,

λ
(2)
f =1.0 andλ(3)f =1.8, and use them in all other consecutive
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Fig. 8. The isolines of the cost functionJ on the plane(λ(2)
f
, λ
(3)
f
) for different values of the thermal conductivityλ(1)

f
keeping constant

at each plot. The values ofλ(1)
f

from the left to the right are 0.35, 0.55 are 0.70, respectively. The star in the central plot marks a selected
combination of the thermal conductivities.

steps (see Table 3, columns 6,7 and 8). More precise results
could be obtained if a sensor measuring the thermal conduc-
tivity was placed in at least one of the horizons, see discus-
sion in Sect. 7.

The “summer and fall” period is selected to capture the
maximal depth of active layer occurring between 28 Au-
gust 2001 and 6 December 2001. We take values of the
heat capacityCt from (Hinzman et al., 1991; Romanovsky
and Osterkamp, 1995; Osterkamp and Romanovsky, 1996).
Comparing measured temperatures to the ones computed
for λ(1)t , {η(i)}3

i=1 varying within a range of their natural

variability, we found thatλ(1)t ∈[0.09,0.15], η(1)∈[0.3,0.9],
η(2)∈[0.3,0.9] andη(3)∈[0.15,0.45]. Once the variability of
these parameters is found, we search for a minimum of the
cost function in the 4-D space{λ(1)t , η

(1), η(2), η(3)}, where
each parameter varies within the found boundaries. We note
that during minimization ofJ in this 4-D space, other vari-
ables inC are fixed and their values are listed in 1st “Summer
and Fall” row in Table 3. For example, values of the thermal
conductivityλ(1)f =0.55,λ(2)f =1.0 andλ(3)f =1.8 are obtained
at the previous step after minimization over the “winter” in-
terval. Also, an approximation to the coefficientsb(i)=0.7,
T
(i)
∗ =−0.03, i=1,2,3 in (3) is obtained by analyzing soil

texture and type, and dynamics of the measured temperatures
near 0◦C, see Fig. 7. We emphasis that the approximation to
the parametersb andT∗ is tentative and is going to be im-
proved at the consequent steps.

We note that it is not necessary to find a minimum in the
four dimensional space accurately but rather only to estimate
its location as significant uncertainties in other parameters
still exist. Therefore, we look for the minimum by evaluating
the cost function on(λ(1)t , η

(1)), (η(1), η(2)) and(η(2), η(3))
planes as follows.

First, we setη(1)=0.6, η(2)=0.6, η(3)=0.3 andλ(1)t =0.12,
which correspond to the middle of their variability ranges.
Then, we evaluate the cost functionJ on the (λ(1)t , η

(1))

plane, by varyingλ(1)t , η
(1) in the control, while all other

variables inC are fixed. In the left plot in Fig. 9, we plot
isolines ofJ on all three planes(λ(1)t , η

(1)), (η(1), η(2)), and
(η(2), η(3)).

At the (λ(1)t , η
(1)) plane, the cost function attains its min-

imal value on a boundary of this plane, see Fig. 9, upper
left, and is minimal in the center of the planes(η(1), η(2)),
(η(2), η(3)). The last two planes allows us to find that
η(1)=0.6, η(2)=0.55 andη(3)=0.27, whereas contours at the
first plane show that the value ofλ(1)t lies between 0.11 and
0.13, see Fig. 9, left column. We suppose thatλ

(1)
t is 0.12

and proceed further. After updating the control with the com-
puted values, we evaluate the cost function on the same set
of planes one more time; parameters in the control before
minimization are shown in Table 3 the “Summer and Fall”
2nd row. After computing the cost function, we draw its iso-
lines and show them in Fig. 9, right. Note that at this step
the cost function attains its minima located in the center of
the computational grid. We update the control withη(1)=0.6,
η(2)=0.55, η(3)=0.27, λ(1)t =0.12. Note that the location of
the minimum did not change significantly. Our experience
shows that changes of soil properties by 5%–10% or less are
insignificant, since the corresponding difference in soil tem-
peratures is comparable with uncertainties of measurements.
Therefore, we do not have to do additional iterations on the
same set of planes, and we proceed to the next step and re-
duce uncertainties in coefficientsT∗ andb.

For the sake of brevity, we omit details in consequent steps
associated with “fall” and “extended summer and fall” inter-
vals, since the search of parameters is completed similar to as
described in the “summer and fall” step. We emphasize that
we are just interested in calculation of an initial approxima-
tion to the control which could serve as a starting point in the
global minimization of the cost function. By no means, do
we try to substitute the global minimization by this heuristic
procedure. However, a good starting point can save compu-
tational time and improve accuracy of a final result.
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Table 3. Values of parameters in the control at the beginning of each minimization step. The listed steps are typical to recover the initial
approximation to the soil properties. The parameters which values are in the parenthesis with the same subindex define minimization plane.

For example, in the third rowλ(1)t andη(1) are in the parenthesis and have the same subindex equal to 1. Therefore, this pair define a

minimization plane(λ(1)t , η(1)). On this plane we minimize the cost function depending onλ
(1)
t andη(1), while value of other parameters

are fixed and given in other sections of the current row.

Iterations η(1) η(2) η(3) λ
(1)
t λ

(1)
f

λ
(2)
f

λ
(3)
f

b(1) b(2) b(3) T
(1)
∗ T

(2)
∗ T

(3)
∗

Winter 0.40 0.70 0.25 0.10 – – – 0.7 0.7 0.7 −0.03 −0.03 −0.03
Summer and Fall, 1st (0.60)1,2 (0.60)2,3 (0.30)3 (0.12)1 0.55 1.00 1.80 0.7 0.7 0.7 −0.03 −0.03 −0.03
Summer and Fall, 2nd (0.60)1 (0.55)1,2 (0.27)2,3 (0.12)3 0.55 1.00 1.80 0.7 0.7 0.7 −0.03 −0.03 −0.03
Fall, 1st 0.60 0.55 0.27 0.12 0.55 1.00 1.80 (0.7)1 (0.7)2 (0.7)3 (−0.03)1 (−0.03)2 (−0.03)3
Fall, 2nd 0.60 0.55 0.27 0.12 0.55 1.00 1.80 (0.7)1 (0.6)2 (0.75)3 (−0.03)1 (−0.03)2 (−0.03)3
Ext. Summer and Fall 1st (0.60)1 (0.55)2 (0.27)3 0.12 0.55 1.00 1.80 0.65 0.6 0.75 (−0.02)1 (−0.03)2 (−0.03)3
Ext. Summer and Fall 2nd (0.70)1 (0.55)2 (0.27)3 0.12 0.55 1.00 1.80 0.65 0.6 0.75 (−0.025)1 (−0.03)2 (−0.03)3

Final Result 0.70 0.55 0.27 0.12 0.55 1.00 1.80 0.65 0.6 0.75 −0.025 −0.025 −0.03

6.3 Global minimization and sensitivity analysis

While evaluating an initial approximation, we sought minima
of the cost functionsJ (C) measuring discrepancy over peri-
ods{1k}. In this subsection, we perform global minimiza-
tion of the cost function with respect to all parameters inC

over the entire period of measurements 22 July 2001 until 15
May 2002 used for calibration. Also, we analyze sensitivity
of an initial approximation derived from minimizing the cost
function globally with respect to all parameters.

In global minimization problems, a starting point from
which iterations begin is given by the initial approximation
evaluated in the previous subsection, see Table 3, the last
row. As a result of global minimization problem, we obtain
the parameters (thermal properties, porosity and coefficients
specifying the unfrozen water content for each soil horizon)
which can depend on valuests andte determining the period
over which discrepancy between observed and modeled tem-
peratures is measured. In global minimization problems, the
constantte is associated with an end of “winter” interval dur-
ing which the soil is completely frozen. But since, the soil
is frozen for several months for a cold permafrost region, the
cost function does not significantly depends onte if te varies
within two week limits. However, the value ofts is asso-
ciated with beginning of “summer and fall” interval during
which the ground is thawed. Since, the ground is thawing
during a relatively short period of time for cold permafrost
regions, we consider several values ofts and minimize the
cost function with respect to all parameters.

Results of minimization are listed in Table 4. It shows that
the results of global minimization do not significantly depend
on constantsts , if the interval[ts, te] represents thawed and
frozen states of the soil. Using averaged values of the ther-
mal properties, we compute the temperature dynamics for the
entire period of observations. Comparison of the calculated
and measured temperatures at different depths and at time in-
tervals used for calibration are shown in Figs. 10, 11 and 12.
During the winter, the calculated temperature closely follows

the observed temperature within the uncertainty of thermistor
measurements. During the summer, the difference between
the measured and calculated temperatures is larger but does
not exceed 0.3◦C for sensors in the mineral soil. This larger
discrepancy between the measured and computed tempera-
tures can be partially explained by over-simplifying physics
and neglecting water dynamics in the upper organic horizons.

Finally, in order to show that the found initial approxima-
tion (the last row in Table 3) lies close to the true values of
soil properties, we use it to compute the soil temperature dy-
namics through 22 February 2005. Note that the time interval
from 22 May 2002 until 22 February 2005 was not used to
find the soil properties. In Fig. 13, we plot the measured
and calculated temperature dynamics at 0.55 m depths. The
plots with solid symbols mark temperature dynamics com-
puted for the found initial approximation, and for the best
guess values (in the middle of the variability range, shown in
Table 1). We note that the guessed values are used to provide
benchmark temperature dynamics against which we show ef-
fectiveness of our approach. The benchmark temperature is
much warmer during summer, and the freeze-up occurs sev-
eral days later than in the measured temperature. The bench-
mark temperature dynamics during winter closely follows
the measured temperature dynamics, since the middle of the
variability range, for which the benchmark temperature was
computed, almost matches the found initial approximation.
The difference between the measured temperature dynamics
and the one calculated for the found initial approximation is
typically less than 0.25◦C.

7 Discussion and limitation of the proposed method

We concentrate on finding soil thermal properties by mini-
mizing the multivariate cost functionJ . There are many well
known methods that find a minimum ofJ , including stochas-
tic, heuristic and gradient type algorithms (Goldberg, 1989;
Fletcher, 2000; Robert and Casella, 2004). Since we focus
on a gradient type algorithm, a special care is necessary to
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Fig. 9. Selection of the thermal conductivityλ(1)t and the soil porosityη(1), η(2), η(3) by minimizing the cost function associated with the
“summer and fall” interval. The left and right column are associated with the first and the second iterations, respectively. The stars mark
selected values of parameters after completing the iteration. Note that at the second iteration stars and locations of all minima are coincide.

select the initial approximation to the soil properties. For ex-
ample, if the gradient type algorithm is started outside the
basin of attraction of the proper minimum, then due to exis-
tence of multiple local minima it can converge to physically
non-realistic combination of parameters inC. Stochastic and
heuristic algorithms can possibly avoid the problem of select-

ing the initial approximation, since they are not get trapped
in a neighborhood of the local minimum. However, a qual-
ity control of soil properties recovered by either stochastic
or heuristic algorithm arises. For example, it is feasible that
several local minima can have the same value and correspond
to substantially different combinations of parameters in the
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Table 4. Global minimization with respect to all parameters in the control. Each realization is specified by the time interval[ts , te] over
which the discrepancy between the data and computed temperature dynamics is evaluated. In all case, the constantte is 15 May 2002.

ts η(1) η(2) η(3) λ
(1)
t λ

(1)
f

λ
(2)
f

λ
(3)
f

b(1) b(2) b(3) T
(1)
∗ T

(2)
∗ T

(3)
∗

August,18 0.703 0.560 0.272 0.120 0.562 0.983 1.797 0.655 0.596 0.750 −0.0251 −0.0253 −0.0301
August,22 0.721 0.557 0.272 0.122 0.559 0.973 1.809 0.673 0.558 0.757 −0.0256 −0.0249 −0.0295
August,26 0.718 0.546 0.272 0.122 0.559 0.962 1.801 0.657 0.597 0.755 −0.0250 −0.0251 −0.0303
August,30 0.712 0.549 0.272 0.121 0.556 0.967 1.801 0.655 0.601 0.755 −0.0251 −0.0251 −0.0302
September,3 0.712 0.544 0.274 0.123 0.559 0.980 1.816 0.665 0.551 0.750 −0.0255 −0.0255 −0.0298
September,7 0.718 0.534 0.274 0.123 0.560 0.966 1.789 0.660 0.603 0.747 −0.0250 −0.0252 −0.0297

Fig. 10. Measured (hollow) and calculated (solid) temperature at
0.10, 0.17 and 0.25 m depth. The time interval is associated with
the “summer and fall” period.

control vectorC. Thus, straight forward application of these
algorithms can result in soil properties that are different from
the physically realistic soil properties several fold.

In this article, we find an initial approximation to the ther-
mal properties. This initial approximation can be later used
in gradient type algorithm both as a starting point and a regu-
larization. We admit that we find one of the possible realiza-
tions for the initial approximations. However, in the process
of its computation, we obtain limiting boundaries on param-
eters inC which can constrain multivariate minimization, in-
dependent on the type of algorithm, i.e. stochastic, heuristic,
or the gradient type.

We describe a technique to find an initial approximation
to the thermal properties of soil horizons. This technique ap-
proximates the thermal conductivity, porosity, unfrozen wa-
ter content curve in horizons where no direct temperature
measurements are available. One of the limitations is that
it requires values of heat capacities, since at certain time pe-
riods it is possible to estimate thermal diffusivity only but not
thermal conductivity and heat capacity separately.

Fig. 11. Measured (hollow) and calculated (solid) temperature at
0.32, 0.48, and 0.70 m depth. The time interval is associated with
the “winter” period.

Since, due to a short distance between points at which the
upper and lower boundary conditions are specified, there is
uncertainty in evaluation of the thermal conductivity for the
frozen ground. This uncertainty is related to a progressive lag
in the phase of the temperature wave, defined by the Second
Fourier Law (Carslaw and Jaeger, 1959). The longer the lag,
the better the thermal conductivity can be estimated. For the
Happy Valley site, the temperature lag at 1 m depth is about
10 days. Our experience suggests that the 20–30 day time lag
is adequate to estimate thermal conductivity robustly. In the
case of shorter time lags, we advocate placing of a thermal
conductivity sensor in the mineral soil horizon. The thermal
conductivity sensor consists of a heating element and a ther-
mocouple embedded in a needle. More information regard-
ing the sensor can be found in (Thermal Logic, 2001) and
in references therein. One of the limitations on usage of the
thermal conductivity sensor is that it generates correct values
of the thermal conductivity for thawed or completely frozen
soil in which active phase change processes do not occur.
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Fig. 12. Measured (hollow) and calculated (solid) temperature at
0.55, 0.70 and 0.86 m depth during the entire period of measure-
ments used for calibration.

It should be noted that recovery of the thermal properties
of the organic cover (e.g. moss layer) is given as an inte-
grated approach in the following sense. Complex physical
processes occurring in the organic cover that include non-
conductive heat transfer (Kane et al., 2001) are taken into ac-
count by estimating some effective thermal properties which
are constants for the entire season. We acknowledge that the
estimated thermal properties of the organic layer could be
different in nature, but we recover them in such a way that the
temperature in the active layer and permafrost should corre-
spond to the measured one.

In the proposed model we used 1-D assumption regard-
ing the heat diffusion in the active layer, which sometimes is
not applicable due to hummocky terrain in the Arctic tundra.
Another assumption used in the model is that frost heave and
thaw settlement is negligibly small and there is no ice lens
formation in the ground during freezing. Therefore, the pro-
posed method could be only applied where these assumption
are satisfied.

The proposed method allows computation of a volumetric
contentη of water which changes its phase during freezing or
thawing. Water content of liquid water that is tightly bound
to soil particles and is not changing its phase can not be esti-
mated, see Fig. 1.

8 Conclusions

We present a technique to calculate an approximation to the
soil thermal properties, porosity, and parametrization of the
unfrozen water content in order to use it in gradient type it-
erative minimization methods both as a starting point and as
a regularization. To compute the approximation, we min-
imize the multivariate cost function describing discrepancy

Fig. 13. Measured (hollow) and calculated (solid) temperature at
0.55 m depth during the entire period of measurements. The val-
idation represents temperature dynamics computed for the found
approximation to the soil thermal properties. The benchmark repre-
sents temperatures computed for the best guess soil properties, i.e.
in the middle of ranges listed in Table 1.

between the measured and calculated temperatures over a
certain time interval. We find the minimum by adopting a
coordinate-wise iterative search technique to the specifics of
our inverse problem. At each iteration, we select a particular
set of soil properties and associate with them a certain time
interval over which we minimize the cost function. After
employing the proposed sequence of iterations, it is possible
to find the approximation to all thermal properties and soil
porosity.

Although there are several limitations to the proposed ap-
proach, we applied it to recover soil properties for Happy
Valley site near Dalton highway in Alaska. The difference
between the simulated and measured temperature dynamics
over the periods of calibration is typically less than 0.3◦C.
The difference between the simulated and measured temper-
atures over the consecutive time interval not used in calibra-
tion is less than 0.5◦C which shows a good agreement with
measurements, and validates that the found initial approxi-
mation lies close to the true values of soil properties.

In order to compute the cost function, it is necessary to
calculate the soil temperature dynamics. Therefore, we de-
veloped a new finite element discretization of the Stefan-type
problem on fixed coarse grids using enthalpy formulation.
One of the advantages of the new method is that it allows
computation of the temperature dynamics for the classical
Stefan problem without any smoothing of the enthalpy. Also,
new approach shows equal or better performance compar-
ing to other finite element models of the ground thawing and
freezing processes.
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