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Abstract. We describe an approach to find an initial approx- covers approximately 25% of the land surface in the Northern
imation to the thermal properties of soil horizons. This tech-Hemisphere (Brown et al., 1997), it is very important to un-
nique approximates thermal conductivity, porosity, unfrozenderstand the causes affecting soil temperature regime. One
water content curves in horizons where no direct temperatur@approach to studying soil temperature dynamics and their
measurements are available. To determine physical propdependence on climate variability is to employ mathemat-
erties of ground material, optimization-based inverse tech-ical modeling (Goodrich, 1982; Nelson and Outcalt, 1987;
niques are employed to fit the simulated temperatures to th&ane etal., 1991; Zhuang et al., 2001; Ling and Zhang, 2003;
measured ones. Two major ingredients of these technique®leson et al., 2004; Sazonova et al., 2004jld4rs and Ro-

are an algorithm to compute the soil temperature dynamicsnanovsky, 2006)

and a procedure to find an initial approximation to the ground A mathematical model of soil freezing/thawing is based on
properties. In this article we show how to determine the ini- finding a solution of a non-linear heat equation over a speci-
tial approximation to the physical properties and present &ied domain, (see Andersland and Anderson, 1978; Yershov,
new finite element discretization of the heat equation with1998, and many references therein). The domain represents
phase change to calculate the temperature dynamics in soiyround material and is divided into several horizons (e.g. an
We successfully apply the proposed algorithm to recover thesrganic matt, an organically enriched mineral soil layer, and
soil properties for the Happy Valley site in Alaska using one- a mineral soil layer) each with its distinct properties charac-
year temperature dynamics. The determined initial approxiterized by mineral-chemical composition, texture, porosity,
mation is utilized to simulate the temperature dynamics overeat capacity and thermal conductivity. By parameterizing
several consecutive years; the difference between simulatethe coefficients in the heat equation within each horizon, it
and measured temperatures lies within uncertainties of meds possible to take into account temperature-dependent latent
surements. heat effects occurring when ground freezes and thaws. This
approach yields a realistic model of temperature dynamics
in soils. However, in order to produce quantitatively reason-
able results, itis necessary to prescribe physical properties of
each horizon.

Recently, the Arctic Climate Impact Assessment report Conventional Time Domain Reflectometry (Topp et al,
(ACIA, 2004) concluded that climate change is likely to sig- 1980) and drying methods are commonly used to estimate
nificantly transform present natural environments, particu-SCil water content at shallow depths. The Time Domain
larly across extensive areas in the Arctic and sub-Arctic.Réflectometry method is based on measurements of the ap-
Among the highlighted potential transformations is soil parent_dlelectrlc constant around a wave guide _mserted _|nt0
warming which can potentially cause an increase in the acthe soil. It has been demonstrated that there is a relation-
tive layer thickness and degradation of permafrost as well aShiP between the apparent dielectric constant and liquid wa-
have broader impacts on soil hydrology, northern ecosystemt€" content (Topp et al., 1980) enabling robust estimations

and infrastructure. Since permafrost is widely distributed and®f Water content in shallow soils with homogeneous com-
position. There are some difficulties however in measuring

Correspondence tdD. J. Nicolsky unfrozen water content of coarsely textured, heterogeneous
(ftdjn@uaf.edu) or organically enriched soils in Arctic tundra (Boike and
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Roth, 1997; Yoshikawa et al., 2004). More accurate mea-Here, the quantitg is the control vector that is a set of pa-
surements of the total water content (ice and water togethemameters defining soil properties of each soil horizon. The
can be acquired by thermalization of neutrons and gammaynthetic temperaturd,., is computed by the mathematical
ray attenuation. This is not always suitable for Arctic re- model parameterized by variablesdmt some depths; over
gions as it requires transportation of radioactive equipment tdhe time intervalz, .].

remote locations (Boike and Roth, 1997). An alternative to In this article, we deal with optimization techniques that
the above-mentioned methods and also to a number of othefind soil properties by minimizing the cost function (1).
(Schmugge et al., 1980; Tice et al., 1982; Ulaby et al., 1982;:Commonly, the cost functios is minimized iteratively start-
Stafford, 1988; Smith and Tice, 1988) is the use of inverseing from an initial approximatiory to the parameter§
modeling techniques. These techniques estimate the wat€Thacker and Long, 1988). Since the heat equation is non-
content and other thermal properties of soil using in-situ tem-inear, in general there are several local minima. Hence, it
perature measurements and by exploiting the mathematicas important that the initial approximation lies in the basin of
model. attraction of a proper minimum (Avriel, 2003).

A variety of inverse modeling techniques that recover the We present a semi-heuristic algorithm to determine an ini-
thermal properties of soil are known. Many of them rely tial approximationCo, for use as the starting point in mul-
on the commonly called source methods (Jaeger and Sastyariate minimization of cost functions such as (1). In this
1964), in which temperature response due to heating is meaarticle, we use in-situ measured temperafyeo formulate
sured at a certain distance from the heat source. The tempethe cost function/. We construct the initial approximation
ature response and geometry of the probe are used to cony minimizing cost functions over specifically selected time
pute the thermal properties by either direct or indirect meth-intervals(z, ¢.] in a certain order. For example, first, we pro-
ods. In the direct methods, the temperature measuremeng¥se to find thermal conductivity of the frozen soil using the
are explicitly used to evaluate the thermal properties. In thelemperature collected during winter, and then use these val-
indirect methods, one minimizes a discrepancy between theles to find properties of the thawed soil. In order to minimize
measured and the synthetic temperatures, the latter computdlle cost function it is necessary to compute the temperature
mathematically by exploiting the heat equation in which the dynamics multiple times for various control vect@sSince
coefficients are parameterized according to the specified thegn analytical solution of the non-linear heat equation is not
mal properties. generally available, we use a finite element method to find its

Application of direct methods such as the Simple FourierSolution. To compute latent heat effects, we propose a new
Methods (Carson, 1963), Perturbed Fourier Method (Hur_flxed grid technlque to eyalua}te the latent heat terms in the
ley and Wiltshire, 1993), and the Graphical Finite Difference Mass (compliance) matrix using enthalpy formulation. Our
Method (McGaw et al., 1978; Zhang and Osterkamp, 1995:techniques do not rely on temporal or _spatlal averaging of
Hinkel, 1997) yield accurate results for the thermal diffusiv- nthalpy, but rather evaluate integrals directly by employing
ity (the ratio of the thermal conductivity and the heat capac-2 certain change of variables. An advantage of this approach
ity), only when water does not undergo the phase change'S that it reduces the numerlca_ll oscillation of the temperature
Despite the fact that the direct methods are well establishedynamics at locations neaf @ isotherm.
for the heat equation without the phase change, no univer- TheT structure of this article is as fo[lows. In Sect. 2, we
sal framework exists in the case of the soil freezing/thawingdescribe a commonly used mathematical model of tempera-

because the heat capacity and thermal conductivity depent!ré changes in the active layer and near surface permafrost.

A common implementation of the indirect methods uses anheat equation with phase change. In Sect. 4, we introduce

analytical or numerical solution of the heat equation to eyal-main definitions, notations and state the variational approach

uate the synthetic temperature. Due to strong non-linearitiestO find the thermal properties. In Sect. 5, we provide an algo-

the analytical solution of the heat equation is known only fithm to construct an initial approximation to thermal proper-

for a limited number of cases (Gupta, 2003), whereas nu_t|es. In Sect. 6, we apply our method to estimate the thermal

merical solutions are typically computable. Given a nu- properties and thg coefficient.s determining the unfrozen wa-
merical solution computed by finite difference (Samarskii Itﬁ:] i;?gﬁgtait dasﬁg?tégﬁfds'gfﬁaesk% :Jnsesde;tl' Z,ritvr\:?nStlgit-e
and Vabishchevich, 1996) or finite element (Zienkiewicz and : ng prop gorithm. Ft
Taylor, 1991) methods, one can minimize a cost function nally, in Sect. 8, we provide conclusions and describe main
which measures a discrepancy between the meagiradd results.

syntheticT, temperatures. The typical expression for the cost

function, /, is given by 2 Modeling of soil freezing and thawing

For many practical applications, heat conduction is a dom-

e
~ D PRENY:
7€) NL (T (xi, 1) = Te(xi, 15 €)“dr. @ inant process, and hence the soil temperafirg°C] can
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be simulated by a 1-D heat equation with phase change-,
(Carslaw and Jaeger, 1959):

*Im

0.5 T T T T T T T T T T
—a— Bound water
—e— Bound and unbound water

d 0 Jd 0
-7 L—6(T.x) = —A—T 2
Cat (x, 1)+ 3t91( ,X) PG (x,1), 2

where x€[0,/], t€[0,t]; the quantities C=C(T, x)
[Im3 K11 andA=A(T, x) [Wm~1K~1] stand for the volu-
metric heat capacity and thermal conductivity of soil, respec-
tively; L [Jm3] is the volumetric latent heat of fusion of
water, and; is the volumetric liquid water content. We note
that this equation is applicable when migration of water is
negligible, there are no internal sources or sinks of heat, frost
heave is insignificant, and there are no changes in topography
and soil properties in lateral directions. Typically, the heat
Eq. (2) is supplemented by Dirichlet, Neumann, or Robin
boundary conditions specified at the ground surface,

and at the depth(Carslaw and Jaeger, 1959). In geothermal
studies, a Neumann boundary condition is typically set at the
depth!. In this study we use the measured temperatiijes

and7; to set the Dirichlet boundary conditions atdepth€)  Fjg. 1. Typical volumetric content of the unfrozen liquid water in
andx=I, respectively, i.eT (0, 1)=T,(t), T(l,t)=T;(t). In  soils as a function of temperature. The curve marked by triangles is
order to calculate the temperature dynanilas, r) at any  associated with soils in which all water is bound in soil pores, and
time r€[0, 7], Eq. (2) is supplemented by an initial condi- hence the water content gradually decreases with decreasing tem-
tion, i.e. T'(x, 0)=To(x), whereTy(x) is the temperature at perature irfC. To compute this curve we used parametrization (3)
x€[0, 1] at timer=0. in which T,,=—0.03°C andb=0.3. The curve marked by circles is

In certain conditions such as waterlogged Arctic lowlands, r¢ated to soils in which some percentage of water is not bound to
soil can be considered a porous media fully saturated wittn€ Soil particle and changes its phase at the temperatunehile
water. The fully saturated soil is a multi-component sys- other part of liquid water is bound in soil pores and freezes gradu-

. . - N . . ally as the temperature decreases.

tem consisting of soil particles, liquid water, and ice. It is
known that the energy of the multi-component system is min-
imized when a thin film of liquid water (at temperature below where¢=¢ (T, x) represents the liquid pore water fraction,
0°C) separates ice from the soil particles (Hobbs, 1974). AandT is in °C, see the curve marked by triangles in Fig. 1.
film thickness depends on soil temperature, pressure, mineNote that the constant& andb are the only parameters that
alogy, solute concentration and other factors (Hobbs, 1974)specify dependence of the unfrozen liquid water content on
One of the commonly used measures of liquid water belowtemperature. For example, small values afescribe the lig-
freezing temperature is the volumetric unfrozen water con-uid water content in some fine-grained soils, whereas large
tent (Williams, 1967; Anderson and Morgenstern, 1973; Os-values ofb are related to coarse-grained materials in which
terkamp and Romanovsky, 1997; Watanabe and Mizoguchiaimost all water freezes at the temperatfife The limiting
2002). It is defined as the ratio of liquid water volume in a case in which all water freezes at the temperafiyrés as-
representative soil domain at temperatfire the volume of  sociated with phase change between water and ice (no soil
this representative domain and is denotedf"). There  particles). This limiting case is commonly called the clas-
are many approximations t@ in the fully saturated soil sical Stefan problem and is represented by extremely large
(Lunardini, 1987; Galushkin, 1997). The most common ap-values ofb in (3).
proximations are associated with power or exponential func- |n this article, we use the following notation and defini-
tions. Based on our positive experience in (Romanovsky andions. We abbreviate by lettefs! ands, ice, liquid water,
Osterkamp, 2000), we parameterizeby a power function  and the soil particles, respectively. We express thermal con-
0/(T)=al|T|~"; a, b>0 for T <T,,<0°C (Lovell, 1957). The  ductivity » of the soil and its apparent volumetric heat ca-
constant7; is called the freezing point depression (Hobbs, pacity Capp according to (de Vries, 1963; Sass et al., 1971)
1974), and from the physical point of view it means that ice gs
does not exist in the soil il >T,. In thawed soils T>T), - d6,(T)
the amount of water in the saturated soil is equal to the soiP»(T)=?»§‘Y?»,~’( ))»/( ), Capp(T)=C(T)+L T
porosityn, and hence the functiof)(7') can be extended to
T>T, as6;(T)=n. Therefore, we assume that C(T) = 6i(T)Ci + 6,/(T)Cp + 0,C; ®)

T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Volumetric unfrozen liquid water content 6, m

Temperature, 0°C

(4)

1, T >T, 3 whereC is called the volumetric heat capacity of the soil.
(T, x)=nx)p(T, x), ¢p= T |P|T| "8, T <T,° 3) Here, the constantSy, A, ke{i, I, s} are the volumetric heat
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Table 1. A typical thickness of soil layers and commonly occurring range of thermal properties in a cryosol soil at the North Slope, Alaska.

Layer Layer thickness  Thermal conductivity ~ Porosity, Coefficientin (3)
in the frozen state, f n b

Moss or organic layer .05 [0.1,0.7] [0.1,0.7] [1.0,0.5]

Mineral-organic mixture @20 [0.9, 1.6] [0.2,0.6] [0.8,0.5]

Mineral soil >1.0 [1.3, 2.4] [0.2,0.4] [0.7,0.5]

capacity and thermal conductivity of theth constituent at  for various combinations of thermal properties. A number
0°C, respectively. The quantisy, ke{i, [, s} is the volume  of numerical methods (Javierre et al., 2006) exist to compute
fraction of each constituent. Exploiting the relati®gs-1—n temperature that satisfies the heat equation with phase change
and9;=n—6;, we introduce notation for the effective volu- (2). These methods vary from the simplest ones which yield
metric heat capacitie§ y andC;, and the effective thermal inaccurate results to sophisticated ones which produce ac-
conductivitiesi y and2, of soil for frozen and thawed states, curate temperature distributions. The highly sophisticated
respectively. Therefore formulae (4) and (5) yield methods explicitly track a region where the phase change
occurs and produce a grid refinement in its vicinity, and

Capp:C_lr_L@’ C=Cy(1-¢)+C:9, x:%lf*%?, (6) therefore take significantly more computational time to ob-
dT tain temperature dynamics. Implementing such complicated
where methods is not always necessary, since an extremely accurate
e 1enen solution is not particularly important when the mathematical
A=A A h=ATT model describing nature is significantly simplified.

In this subsection, we briefly review several fixed grid
techniques (Voller and Swaminathan, 1990) that accurately

For most soils, seasonal deformation of the soil skeleton isestlmate soil temperature dynamics and easily extend to

negligible, and hence temporal variations in the total Soilmulu-dmensmnal Versions of the heat Eq. (2). These meth-
. T ods provide the solution for arbitrary temperature-dependent
porosity n for each layer are insignificant. Therefore, the

thawed and frozen thermal conductivities for the fully satu- thermal properties of the soil and do not explicitly 'Frack_the
. . area where the phase change occurs. Recall that in soils the
rated soil satisfy

phase change occurs at almost all sub-zero temperatures. A
Ao [Al]n @ cornerstone of the fixed grid techniques is a numerical ap-
Iy Tyl proximation of the apparent heat capadilypp, A variety

of the approximation techniques can be found in (Voller and
Itis important to emphasize that evaporation from the groundg\yaminathan, 1990; Pham, 1995) and references therein. In
surface and from within the upper organic layer can causgyeneral, two classes of them can be identified. The first class
partial saturation of upper soil horizons (Hinzman et al,, js hased on temperature/coordinate averaging (Comini et al.,

hold within live vegetation and organic soil layers, and pos-ent heat capacity is approximated by

sibly within organically enriched mineral soil (Romanovsky
and Osterkamp, 1997). Capp— a_H(a_T)—l ®
In this article, we approximate the coefficiettgyp, A ac- dx \ dx
cording to (6), where the thermal propertieg, A;, C ¢, C; where
and parameters, T, b are constants within each soil hori- T
zon. Table 1 lists typical soil horizon geometry, commonly g — / CappdT,
occurring ranges for the porosity thermal conductivity. ¢ 0
and the values ob parameterizing the unfrozen water con- js the enthalpy. The second class of methods is based on
tent. temperature/time averaging (Morgan et al., 1978). In this
approach,

Cr=C;(A=m+Cin, C;=C;(1=m+Cin.

3 Solution of the heat equation with phase change Hecurrent— Hprevious

: ©)

Capp - Teurrent— Tprevious
3.1 Areview of numerical methods

where subscripts mark time steps at which the valueH of
In order to solve the inverse problem one needs to compute andT are calculated. Although these methods have been pre-
series of direct problems, i.e. to obtain the temperature fieldsented in the context of large valuesdh (3), it is noted that
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they work best in the case of a naturally occurring wide phasebound liquid water in soil pores. The free water is associ-
change interval. Also, it is important to note that the approx-ated with a vertical line af =T, whereas the bound water is
imation (8) is not accurate for near zero temperature gradivepresented by a smooth curveTat T,. The curve marked
ents. In the case when the boundary conditions are givemy triangles reflects soil in which all water is bounded in soll
by natural variability (several seasonal freezing/thawing cy-pores and can be parameterized by (3) used in our modeling.
cles), near zero gradients at some depths may occur for some
time intervals. Hence, the temperature dynamics calculate@-2 Finite element formulation
by using (8) can have large computational errors.

An alternative fixed grid technique can be developed by
rewriting the heat equation (2) in a new form:

Let us consider a triangulation of the intery@l /] by a set
of nodes{x;}?_,. With each node;, we associate a contin-
uous functiomy; (x) such thaty; (x;)=6;;. We will refer to
OH 9 9 . {vi}!_, as the basis functions on the intery@)/]. Hence,
9t ax)‘a T, T=T(H), (10) the tlemperatur@(x, 1) on[0, /] is approximated by a linear
1 1 . —_— n . . . — . i
resulting in the enthalpy diffusion method (Mundim and combination:7 (x, )= Zi=1T’(tW‘(.x)’ whereT,__Tl(t) IS
Fortes, 1979). Advantages of discretizing (10) is that thet.he tempera_ture_ at t_he nogeat th? “”_"ef- _Substltutmg this
' ' linear combination into (2), multiplying it byy; and then

temperaturel’ =T (H) is a smooth function of enthalps/ integrating over the interv40, /], we obtain a system of dif-
and hence one can compute all partial derivatives. However,

for soils with a sharp boundary between thawed and com ferentlal equations (Zienkiewicz and Taylor, 1991):

pletely frozen states, the enthalpl/becomes a multivariate (T) T(,) = _K(MT), (13)

function when temperaturg nearsT,. Therefore, solution

of (10) results in that the front becomes artificially stretchedWhereTET(t)z[Tl(t) T>(t) ...T,(®)] is the vector of tem-

over at least one or even several finite elements. peratures at nodds;}?_; attimer. Here, thenxn matrices
In this article, we propose a fixed grid technique that ap-M (T):{mij}:?j:l andK (T):{kij}l’.’j:l are mass and stiffness

plies the basic finite element method (Zienkiewicz and Tay-matrices, respectively. Entry-wise they are defined as

lor, 1991) to Eq. (2). Finite element discretization of i ! g,
= T Widx+L | —Yiid 14
90, doaT mij foc( XV jdx+ /O S Vividx (14)
9t dT ar ! d :
| | | = [ w0 (15)
in the left hand side of (2) results in dx

The fully implicit scheme is utilized to discretize (13) with

X1 .

(/ 'Q//i(x)wj(x)L@(T(x, t))dx) dj (11)  respect to time. Denoting by the time increment at the
X dT dt k-th moment of timey, one has

where ¥;(x) and v;(x) are two piecewise linear basis [Mk +dtkKk]Tk =ML ks 1 (16)

functions at nodes and j, respectively, 7;(t) is the
value of temperature at thg-th node at timer, and
T(x,t)=)_,; ¥i(x)T;(t). We propose to evaluate this type
of integrals using the unfrozen liquid water conténas the
integration variable, i.e.

where TE=T (1), K¥=K(T¥), M¥=M(T¥). We impose
boundary conditions at=0 and some depth=/ by spec-
ifying T1(tx)=T, (tx) and T, (tx) =T (t).
GivenT¥~1 we find the solutioT* of (16) by Picard it-
eration (Kolmogorov and Fomin, 1975). The iteration pro-
ey o1 cess starts from the initial gue¥§ = T*~! that is used to
/XO w(x)Lﬁ(T(x’t))dx = L/go v (T, 0)do,  (12) compute temperatuf; at the first iteration. At iteration,
we computeTk and terminate iterations af when a cer-
wherey =y, andfo=6;(T (xo, 1)) andb1=6,(T (x1,1)).  tain convergence condition is met. The valueTéfis used
This substitution allows precise computation of the latentiq eyaluate the matriced =M (TK), andev_K(Tk) In
heat effect for arbitrary grid cells, since it is parameterizedyrp, these are utilized to compute the 1 iterationT# L by
by the limits of integratiordp, 61, instead of being calcu-  gquating o+
lated using the rapidly varying funct|o§9—’(T) on the el- X P K k1
ement[xg, x1] by a quadrature rule. As a consequence of M%s +dtK%s T g — M5 T2 = 0. (17)
the proposed substitution, evaluation of the integral in (11)At each iteration the convergence condition
may not to yield the right result unless the functii;) max; |T,f+l(tk)—T,f(tk)|§e is checked. If it hold, the
must be monotonically increasing for @ll<n, andT (x, 1) iterations are terminated at=s+1. If the number of
be monotonous ofixg, x1] at time¢. Figure 1 shows two iterations exceeds a certain predefined number, the time
instances of the unfrozen water content curves frequently ocincrementdz is halved and the iterations start again. Please,
curring in nature. The curve marked by circles is associatedhote that the convergence is guaranteed if the time increment
with soils in which free water freezes prior to freezing of the dr; is small enough.

www.the-cryosphere.net/1/41/2007/ The Cryosphere, 1, 41-58, 2007
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0.40 0.32 . case ofAT;=0, we can compute (19) directly sind6;/dT

1ss | iéﬂi'syfs'f:'m, oiom || is constant ovefx;_1x;]. However, if AT,=T;—T;_150,

’ —o— Consistent, 0.01m | | then we can consider an inverse function, thakiss taken
{ —=— Lumped, TA, 0.10m / . .

0.30 0314 —o— Lumped, TA, 0.01m as a function ofl" to obtain

E 0.25—. Xi@ . d _x,'—x,-,]_/xi@T'_T T —T:_dT
g‘ | /1_1 dTwlflwl X = (AT,')3 - dT( i )( i—1)
S 0.20- 0.30 i
@ ] Therefore
0 .15 ] ]
] , Ldg xi—xi—1 [
o.1o-. . 0.29 - 4 A d—Tllfi—llﬁidx = AT 9,-71(T —T)(Ti—1 —T)do,
0.05 ié?)ilsy.tslf:ﬂ 0.40m ] 1 1 (21)
1 —a— Lumped, TA, 0.10m |1
0.00 —— 0.28 . : . P . . . i
: s . 00 A o 0 wheref; _1 OI(T(x,_l,_t)) and@,_ 0;(T (x;, t_)). _Note thatin
i ) (21) the temperatur€ is a function of the liquid water con-
Time, days Time, days

tento, i.e. T:@,—l(el). Therefore, returning back to (18), we
have that each of the integrals in (18) is a linear combination

Fig. 2. Comparison of analytical (stars) and numerical solutions. Of the typesz2Aa+p1A1+oAo, where
Initially, the soil has—5°C temperature, and at the time-0, the 0,
temperature at its upper boundary is changed’t. At the lower Ap = / [9,‘1(1)]]‘511, k=012
boundary located at 5 m depth, zero flux boundary condition is spec- 0;

ified. On the left plot, we show a location of the®isotherm calcu-
lated for a uniform spatial discretizations with 0.1 m grid element.
The numerical solutions are computed by the proposed method (cir(3)'

cles) and by the scheme using the lumped approach with temporal i

enthalpy averaging (squares). In the right plot, we show an enlargecllg'4 Evaluation of the proposed method

area within the dotted rectangle and a location of theé Botherm
calculated for a uniform spatial discretizations with 0.1 m (filled) 10 €St the proposed method, we compare temperature dy-
and 0.01 m (hollow) grid elements. namics computed by the proposed method with an analytical

solution of the heat Eq. (2) in whidh—o0o. This analytical

solution is called Neumann solution (Gupta, 2003) and is typ-
3.3 Computation of the mass matrix ically used to verify numerical schemes. In the proposed nu-

merical scheme the mass matkikis tri-diagonal, and hence
One of the obstacles to obtain a finite dimensional approXi-+this scheme is called consistent. Other commonly utilized
mation that accurately captures the temperature dynamics igsumerical schemes are called mass lumped (Zienkiewicz and
related to evaluation of the mass matkix Since the basis Tay|or1 199]_) since they emp|oy the diagona| mass matrix:
functiony; does not vanish only on the interval _1, x; 1],

the matrixM is tri-diagonal. Therefore, to compute itgh
row we evaluate

-1

The constant§gy } are easily computable #(7) is given by

1 1
M = d'anappl\/(; 1//1dx, ey Cappn /0 1//,1dx). (22)

Here,Capp; is the value of the apparent heat capacigyp at
thei-th node computed either by spatial (8) or temporal (9)
averaging of latent heat effects.

In Fig. 2, we compare temperature dynamics computed by
the proposed consistent and a typical mass lumped scheme.
We plot a location of the T isotherm for several spatial dis-

L ag X de, cretizations, i.e. the distanaex; between two neighboring
/o d_T‘ﬁi—l(x)l//i (x)dx = /x_l d_T‘/’i—l(xWi(x)dx~ (19) nodesx; andx;_; is 0.1 or Q01 m. In this figure we see

that the location of the @ isotherm calculated by numeri-

We recall that in the standard finite element method, the temgg| schemes lies withinnx; bound near the analytical solu-
perature on the intervék; 1x;] is approximated by tion. However, temporal dynamics of the location of tA€0

o ' ‘ , isotherm differ among methods. In the solution (squares)
Te =411 0T O+ T (), (20) computed by the mass lumped approach with temporal en-
foranyx € [x;_1, x;] and fixed moment time Here,y; and  thalpy averaging (TA), dynamics of the© isotherm has
Y;_1 are piece-wise linear functions satisfyigg_1=1—1; some irregularities, i.e. the freezing front either advancing
on[x;_1, x;]. Forallx € [x;_1, x;], we can compute the tem- too fast or too slow. In average, however this algorithm pro-
peraturel” from (20) and values df;, T;_1. Note that in the  duces good results. Our proposed consistent method (circles)

Lde
| Grweomeodn j=i-1ii+1 (18)
o dT
where; stands for the column index. For the sake of brevity,

we consider the first integra}£i—1) in (18). This restricts
us only to the grid elemelfik;_1, x;], yielding
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T T T T T T T 0.6 T T T

—e— Consistent, 0.01m 1 —e— Consistent, 0.1m
21 Lumped, SA, 0.1m
—=— Lumped, TA, 0.1m

—*— Lumped, proposed, 0.1m

0.4

Temperature, 0°C
Temperature, 0°C

T T T T T T T T T T T T T T
1200 1400 1600 1800 1200 1400 1600 1800

Time, days Time, days

Fig. 3. Computed soil temperature dynamics at 0.3 m depth. Uni-Fig. 4. Temperature dynamics at 1 m depth computed by the pro-
form 0.01 and 0.1 m meshes are used to compute temperatures psed consistent (circles) and the mass lumped schemes (stars). The
the consistent (circles) and mass lumped approaches, respectivelpass lumped scheme is based on (23). In order to emphasis numer-
The spatial (SA) and temporal (TA) enthalpy averaging in lumped ical oscillations occurring in the case of small time steps in the con-
schemes are marked my triangles and squares, respectively. Insistent approach, we use a uniform grid with 0.1 m grid elements.
tially the temperature is zero, the upper boundary condition is givenThe oscillations are due to violation of the discrete maximum prin-
by Dirichlet type boundary condition with a slowly varying sinusoid ciple in the consistent scheme during active phase change processes.
having the amplitude of%Z and the period of there years; zero heat The initial and boundary conditions are the same as stated in caption
flux is specified at 2 m depth. of Fig. 3.

gives a better solution and smoother rate of advancing of thdhe formula can be found in the above cited references) or to
0°C isotherm, see Fig. 2, left. exploit the following regularization. We construct a lumped

In Fig. 3, we compare temperature dynamics computed b>yer5|onM ={rij} of the mass matriM given by
two mass lumped approaches exploiting spatial (8) and tem-. ~_ Zm 23)
poral (9) enthalpy averaging. A warm bias in the tempera- —
ture computed by the spatial averaging of the enthalpy is due /
to computational errors occurring when the temperature graand substituté/ for M in (16). Comparison of temperature
dient is approximately zero at some depth. Our experiencelynamics computed employing the proposed consigd¥ent
shows that this difference appears regardless of decreasingefined by (16) and its mass lumped modificatirdefined
the tolerance between iterations in (17). We note thatin all by (23) is shown in Fig. 4. The numerical oscillations near
above numerical experiments a finite element computer code°C disappear in the temperature dynamics computed by the
is the same except for a part associated with computation oproposed mass lumped approach (see Fig. 4). In Fig. 5, we
mass matrix, i.e. consistent (18) or mass lumped (22). Theseompare the proposed mass lumped approach (stars), and the
numerical experiments show that the straight-forward massne based on temporal enthalpy averaging (squares) by (8).
lumped schemes are typically inferior to consistent ones.  This figure shows that the numerical scheme using tempo-

Since our method (14) is based on the consistent approactal averaging of the enthalpy produces larger oscillation than
(the mass matriM is the tri-diagonal one), the numerical our solution. This comparison reveals that the proposed mass
solution oscillates if the time steps; are too small (Pin- lumped approach (23) reduces some numerical oscillations
der and Gray, 1977). For a fixed time stép, the oscilla-  and follows the “exact” solution (computed by the consis-
tions disappear if the spatial discretization becomes fine, i.etent approach with a fine spatial discretization) more closely
the inequalityn; ;+dtk; ;<0 holds wheri#j (Ciarlet, 2002;  than the solution computed by the lumped approach exploit-
Dalhuijsen and Segal, 1986). It is shown that these oscillaing (8).
tions occur due to violation of the discrete maximum princi-  In conclusion, we state that if a spatial discretization is fine
ple (Rank et al., 1983). Therefore, to avoid the oscillationsand time steps are sufficiently large (Pinder and Gray, 1977)
in the numerical solution (Dalhuijsen and Segal, 1986), wethen the consistent schemes do not show numerical oscilla-
propose either to use sufficiently large time steps (for whichtions, and hence they should be utilized. In the case of a
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' ' : ; : ' and the same time intervi, t]. Since the dat@dp(x, t) and
consistont, 0.01m its model counterparf (x, t; ©) are given on the same set of

—a— Lumped, TA, 0.1m : p X, I3 g . \

—— Lumped, proposed, 0.1m depths and time interval, we can easily compute a discrep-

ancy between them, usually measured by the cost function

o 1 1 [ 2
g J@=———) — | (Tpi.)-T(x.1:€)%dr.  (26)
~ -0.2 m(ts—te) < 0'42 ty
[ i=1"i g
g Here,t,, t. € [0, t] ando; stands for an uncertainty in mea-
3 surements by théth sensor. In our measurements all tem-
E 044 perature sensors assume the same precision, so{ajl}afre
equal. Given a way to measure this discrepancy as in (26) we
can finally formulate an inverse problem.
For the given datdp(x, ), we say that the contrad,
-0.6 . ; . ; . . . is a solution to an inverse problem if discrepancy between
1400 1500 1600 1700 1800

the data and its model counterpart evaluate@.ats mini-
Time, days mal (Alifanov, 1995; Alifanov et al., 1996; Tikhonov et al.,
1996). That is,

Fig. 5. Temperature dynamics at 1 m depth computed by the consis? (C+) = min J(©).

tent approach (circles), the proposed mass lumped approach (stars) . . oo

and the mass lumped approach with temporal enthalpy averaginJ) 0 illustrate steps which are necessary to solve this inverse
(squares). The temperatures computed mass lumped approach dp€oblem and find an optimat,. we provide the following
found on uniform grid with 0.1 m grid elements, whereas in the con-example. To formulate the inverse problem one has to have
sistent approach, the length of grid elements is 0.01 m. The initialthe measured temperaturBs(x, t). For the sake of this ex-
and boundary conditions are the same as stated in caption of Fig. imple, we replace the dalay(x, ¢t) by a synthetic tempera-
tureTg(x, t) = T (x, t; €") (@ numerical solution of the heat
Eg. (2) for the known combinatiofl’ of the thermal proper-

coarse spatial discretization, consistent schemes can violai s):

the discrete maximum principle, and hence the mass lumpe
schemes are more attractive. In this article, we construct a,_
fine spatial discretization and use the proposed consistent ap-
proach, while restricting the time stepfrom below.

cP=16x10°, c[V=21x10%, 1P=055 1{"=0.14, n®=030, bP=09, 7,"=-0.03
CcP=17x108, c?=2.3x10, 1{¥=0.90, »,*=0.66, @=0.30, »@=0.6, ,?=—0.03 ¢ .
cP=18x10, ¢¥=26x10F, 1P=1.90 1{¥=1.25, n®=0.25 p¥=08, 1,7=-0.03

The initial and boundary conditions in all calculations are
fixed and given by in-situ temperature measurements in 2001
4 Variational approach to find the soil properties and 2002 at the Happy Valley site located in the Alaskan
Arctic. We compute the temperature dynamics for a soil
In this section, we provide definitions and describe mainslab with dimension§0.02, 1.06] between 21 July 2001 and
components of the indirect method used to find the soil prop-6 May 2002, and evaluate the cost function{gt;={0.10,
erties by minimizing the cost function outlined in (1). 0.17, 025, 032, 040, 048, 055, 070, 0.86 m. Uniformly
We define the contrd? as a set consisting of thermal con- distributed noise ofi—0.04, 0.04] was added tdg(x, t), to
ductivitieskﬁi), A(f{)’ heat capacitieé(i), C(f") and parameters  Simulate noisy temperature data recorded by sensors (preci-
. ) sion of the sensor is 0.0€). The boundaries between the
horizons lie at 0.10 and 0.20 m depth.
‘ R o We find a control®’ that minimizes the cost functios
e={cP. ¢ 0 AP @ 1O by, (24)  defined by (26) in whichT:p(x, 1)=Ts(x, t). For the sake
of simplicity, we assume that all variables & are known
except for the paik?),n“). Therefore, the problem of find-
ing this pair can be solved by minimizing the cost function
Jon (A(fz),n@)) plane as follows. We compute temperature

n®, T, b describing the unfrozen water content for each
soil horizoni=1, ..., n, or

wheren is the total number of horizons. We say that a solu-

tion of the direct problem for the contr@lis T'(x, #; €) and

is defined by the set

Tx 60 =T 0n:i=1....m1el0rl (25) dynamics for various combinations Df),n(?’) and plot iso-

where{x;} ; is a set ofm fixed distinct points on0,/]. In '

(25), theT (x;, t) are point-wise values of temperature dis- T )

tributions satisfying (2) in which thermal properties of each the cost function is minimal gives the sought Valueigf

horizon are given according & andn®. The location of the minimum coincides with val-
The counterpart of (x, ¢; C) is the datal'p (x, t) defined uesk?)=0.9, n®=0.25, which were used to generate the

by a set of measured temperature at the same déptis,; synthetic data.

lines of J, see Fig. 6. The point 00\;2),77(3)) plane where
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In the above example, the control had only two unknown
variablesk(fz), n® and we minimized the corresponding cost

: L . . 0.09
function. Usually, a majority of variables in the contt®is 0_35/ 007 o7 i
unknown, and hence multivariate minimization is required. 3) e

Since computation of the cost function for all possible real- 7) 0.&/'_0'05\0.05 -

izations of the control on the discrete grid is extremely time- ) /—\Qoa ™
consuming, various iterative techniques are used (Fletcher, 0.25, ~03$-/ 5_/’
2000). O'Z’#o//’/i

We note that if the cost function has several minima due o7s 085 055 105 115 o5
to non-linearities of the heat Eq. (2) and if the initial ap- ' ' ) @ ) )
proximationCg is arbitrary then the iterative algorithm can A f

converge to an improper minimum. Nevertheless, with the

initial approximationCq within the basin of attraction of the

global minimum, the iterative optimization method should Fig. 6. Isolines of the cost functiod () computed using the syn-
converge to the proper minimum even if the model is nonlin-thetic temperature datég. The minimum of the cost function is
ear (Thacker, 1989). Consequently, proper determination ofarked by the start and is Iocatedxé%):o.g andy®=0.25, which
an initial approximatiorg is important.

After selection of the initial approximatiofig, the next
step is to minimize the cost functioh(C) with respect to all
parameters ii®. There is a great variety of iterative methods
that minimizeJ(C). The majority of them rely on compu-

tatioq of the gradignVJ((?) of'the cost function. The COM- e begin by noting that in the natural environment, the ther-
putation of V.J(C) is a complicated problem and is out of mga| properties and the water content are confined within
the scope of this article. An interested reader is referred t0y ¢ertain range depending on soil texture and mineralogy.
(Alifanov et al., 1996; Permyakov, 2004) and to referencestherefore, the coefficients in (2) and hence their initial ap-
therein. Since in this article we are primarily concerned with yroximations lie within certain limits. To ensure better deter-
evaluation of the initial approximation to the thermal prop- mination of the initial approximatioig, we employ an algo-
erties, we use the following universal algorithm to minimize ithm similar to coordinate-wise searching method (Bazaraa
the cost function. etal., 1993). In this method, one looks for a minimum along
We look for the minimum of the cost function by the one coordinate, keeping other coordinates fixed, and then
simplex search method described in (Lagarias et al., 1998)g0ks for the minimum along another coordinate keeping oth-
which is a direct search method (Bazaraa et al., 1993). Inyrs fixed and so on.
a two and three dimensional spaces, the simplex is a trian- \e propose to look for a minimum with respect to some
gle or a pyramid, respectively. At each iteration the value ofgpset of parameters i followed by a search along other

the function computed at the point, being in or near the cur-narameters i and so on. In details, our approach is formu-
rent simplex, is compared with the function’s values at the e in five steps:

vertices of the simplex and, usually, one of the vertices is re-
placed by the new point, giving a new simplex. The iteration 1. Select several time intervajg;} in the period of ob-
processes is continued until the simplex sizes are less thanan  servationg0, 7]

a priori specified tolerance. At the final iteration, we obtain

the setC of parameters that determine the thermal properties,
porosity and coefficients specifying the unfrozen water con-
tent for each soil horizon. However, we note that this algo-
rithm typically converges to the minimum slower than other

algorithms that require calculations of the gradient (Dennis
and Schnabel, 1987). 3

0.4+ F

is coincide with the values df}z), n® used to computé.

5.1 General methodology

2. Associate a certain subggt of parameter€ with each
A . The subse€; is such that the temperature dynam-
ics over the period\; is primarily determined byc;
and depend much less on changes in any other parame-
tersinC.

. Select a certain paiA ;, €;}, and look for a location
of the minimum of the cost functiod (C) keeping all

5 Selection of an initial approximation parameters it except forc; fixed.

) o S . 4. Update values of; in the controlC by the results ob-
Selection of a proper initial approximatida®y is an impor- tained at Step 3.
tant problem, since the proper choice@f ensures that the
minimization procedure converges to a global minimum. In 5. Select another paiA;, C;} that is different from the
this section we describe how to select a proper initial approx- pair{A;, C;} at the previous step. Goto Step 3 and re-
imation by considering several simpler subproblems. peat for the paifA;, C;}.
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T T a " — data), we evaluate the thermal conductivmf}i)} and use
these values during minimization at other intervals.

Aj: During the “summer and fall” time interval, active
phase change of soil moisture occurs. Hence, at this time,

0.1+ -

O o0l see Table 2, a contribution of the heat capacitynto the
g 0021 2% apparent heat capacityapp is negligibly small comparing
-3 ] to the contribution of the latent heat terbal6;/dT. There-
g 0.1 i fore, the rate of freezing/thawing primarily depends on the
£ soil porosityn and the thermal conductivity (Tikhonov and
= Samarskii, 1963). Thus we approximgte"’} using pub-
0.2+ ‘ Soil temperature at 0.25m depth 7 lished data by analyzing the soil texture and moisture con-
o ] tent. Note that temperature-dependent latent heat effects due
m ;ll-qeen:)pezr:itrl:g:eo;apnk?az(e)fchage to the existence of Enfrozen WaFf)erat this period have a sec-
03 173001 ' 102001 11112001 ond o_rder of _ma_gnitude _effect (see discussi_or_1 below). There-
Time, days fore, if no prior information about the coefficients T, pa-

rameterizing the unfrozen water content is available then they
can be prescribed by taking into account the soil texture and
Fig. 7. Temperature dynamics at 0.25 m depth at Happy Valley siteanalyzmg measure_d temperature dynamlcs_ at the beginning
during the summer of 2001 year. The graph shows that uncertaint;?f freeze-up (see Fig. 7). We seek“bet,t,er e_stlmatésﬁf at

in temperature measurements#6.02C. Within this uncertainty, e next steps, namely during the “fall” period.

the shadowed region represents a temperature range where the soil SInce, during the “summer and fall” interval, the tempera-
starts to freeze. Therefore, the temperatuig,of freezing point  ture dynamics primarily depends on the porositgnd ther-
depression lies within the shadowed regions, i.e-i6.p4 C/C°C]. mal conductivityx, we have to find 0“'){1\10), U(j)}, since

{)»5;”} are already found at the previous step, i.e. the “winter”

. . . . . interval. Taking into account the relationship (7) between
We continue this iterative processes until the difference be- 9 P (7)

. t the thermal conductivities for completely frozen and thawed
tween the previous and current values of parametesis : :
- soil, we approximate
below a critical tolerance.

The selected periods; do not have to coincide with tra-
ditional subdivision of a year. The choice af, is naturally
dictated by seasons in the hydrological year, which starts at
the end of summer and consists several seasons. If the peridffe remind that the water contefitin the upper soil horizon
of observations is one year, typical intervalg are “winter”, changes during the year due to moisture evaporation and pre-
“summer and fall’, “fall” and “extended summer and fall”, cipitation and is not always equal#" . Hence formula (27)
see Table 2. We note that the intervalg can overlap each does not hold foj=1. Hence, during the “summer and fall”
other, and quantities andz, determining lower and upper period our goal is to estima{a(i)}?:l andkt(l), and then de-
limits of integration in (26) are equal to the beginning and teymine thermal conductivity'”’ for the rest of soil layers
end of the time interval\,. For different geographical re-
gions, the timing for the “winter”, “summer and fall” and
“fall” can be different. Typical timing of period$A} for
the North Slope of Alaska is shown in Table 2, and are now

' P
A9 = )\;])[A_I] ., j=2...,n. (27)
l

j=2,...,nusing (27).
Az Recall that while evaluating the thermal properties
09, ASP} and the soil porosityn}, we assumed that the

discussed. coefficients{p, 7"’} are known. However they also have
to be determined. We remind that the coefficigiité , 7.9}
5.2 Subproblems cannot be computed prior to calculation of”, A(ji)} and

A1: The "winter” period corresponds to the time when the .{"(i)}’ since{b"), T*(l)} are related to the second order effects

rate of change of the unfrozen liquid water conteris neg- " témperature dynamics during “summer and faI!;’)ang)“wm-
ligibly small; the heat Eq. (2) models the transient heat con-€r” intérvals. Once an initial approximation @, 4’}
duction with thermal properties=A ¢, C=Cy, and %20. and {n?"} is established, we consider the “fall” period (see
During the “winter”, temperature dynamics depend only on Table 2) during which the temperature dynamics strongly de-
the thermal diffusivityC /2 ; of the frozen soil, and hence pends or{s”, T,”’} and allows us to capture second order ef-
the simultaneous determination of both parametrsand  fects in temperature dynamics (Osterkamp and Romanovsky,
Ay is an ill-conditioned problem. Assuming that the heat 1997).

capacity{C;f)} is known (depending on the soil texture and ~ A4: In the previous three periods, we obtained approxi-

moisture content we can approximate it using publishedmations to all variable&ii),k(jﬁ), c, C;i), n®, p@ 10y,
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Table 2. Typical choice of parameters in the contfbfor “cold” permafrost regions.

Periods C; Typical Ay Characteristic Step
“Winter” {Aif)} December-April Completely frozen grouril<—5°C 1
“Summer and Fall” {n@‘)},xﬁl) May—November Developing/-ed active layer and its freezing 2
“Fall” D, 7y September-December  Active layer freezifig; —5°C 3

“Extended Summer and Fall” {#®, T*(i)} May-January Developing/-ed active layer and its freezing 4

However, we can improve the approximation by consider-particular installation site. Prior to the installation, all sen-
ing the “extended summer and fall” period, see Table 2.sors were referenced t¢© in an ice slush bath and have
This period is associated with a time interval when the soilthe precision of 0.04C. An automatic reading of tempera-
first thaws and then later becomes completely frozen. Sincéure were taken every five minutes, then averaged hourly and
previously, we minimized the cost function depending sep-stored in a data logger memory.

arately on the porosityn®} (“summer and fall”) and on During the installation, soil horizons were described and
(1"} (“fall”), we minimize the cost function depending si- their thicknesses were measured. The soil has three distinct

multaneously orfn®} and{7."’} during “extended summer horizons: organic cover, organically enriched mineral soil,

We list in Table 2 all steps and time periodg which ~ 0-10 and 020 m depth.

are necessary to find the initial approximation. One of the N the all following numerical simulations we consider a
sequences of minimization steps is slab of ground representing the Happy Valley soil between

“winter’ — “summer and fall’— 0.02 and 106 m depth. For the computational purposes, the
“tall” _ “extended summer and fall’ upper and lower boundary conditions are given by the ob-
From our experience with this algorithm, we conclude thatServed temperatures at depth dd@and 106 m. Also in all
in some circumstances it is necessary to repeat minimizatiogomputations, the temperatures are compared with the set of

over some time periods several times, e.g. measured temperatures at the dephs={0.10, 017, 025,
“‘winter”  — “summer and fall’— 0.32, 040, 048, 055, 070, 086} m.
“fall” — “extended summer and fali*> _ _ L
“tall” s “extended summer and fall” 6.2 Selection of an initial approximation

until the consecutive iterations modify the thermal properties

insignificantly. The “winter” period is associated to the ground temperature

below —5°C, occurring on 15 January 2002 through 15 May
2002 at the Happy Valley site. The heat capacityfor each
layer is evaluated based on the soil type, texture and is taken
from (Hinzman et al., 1991; Romanovsky and Osterkamp,
1995; Osterkamp and Romanovsky, 1996).

We estimate. ; for each layer by looking for a minimum

; ; @ ,@ 403
The temperature measurements were taken in the tusso¥ the cost function/ in the 3-D spaceld;", A 7", A "}.

tundra site located at the Happy Valley (69N ,14850 W) The_minimizati(_)n_ problt_am in this space can be simplfified by
in the northern foothills of the Brooks Range in Alaska from looking for a minimum in the foIIowmg series of 2-D prob-
22 July 2001 until 22 February 2005. We used data from oolems. For example, for sevleral physically acceptable values
July 2001 until 15 May 2002 to estimate soil properties, and©f the thermal conductivity}), we compute temperature dy-
from 15 May 2002 until 22 February 2005 to validate the namics for various values fo.z), }\(f:.)’) and plotisolines of the
estimated properties. The site was instrumented by elevegost functionJ. In the series of plots in Fig. 8, we notice
thermistors arranged vertically at depths @ 010, 017,  that a location of the minimum on tf(e(fz), A?)) plane shifts
0.25,032, 040, 048, 055,070, 086 and 106 m. The tem- o - .

perature sensors were embedded into a plastic pipe (the MR Shy chgnggs. The minimum of the cost function at each
probe), that was inserted into a small diameter hole drilled®r0Ss section IS almost the same, and t_he problem of selecting
into the ground. The empty space between the MRC and théhe right (_:omblnatlon of parameters arises. Here, knowledge
ground was filled with a slurry of similar material to diminish of -the soil strupture bect,om_es r.elevant. .lt IS knqwn. that the
an impact of the probe to the thermal regime of soil. OurfrostSOII type of third I(ager Is silt highly enriched V\f)th Ice, S0
heave measurements show that the vertical displacement §fom Table 1 16<5.;" <2.0. Therefore, we seleaff =0.55,

the ground versus the MRC probe is negligibly small at thiskf)zl.o andx?):l.s, and use them in all other consecutive

6 Application. Happy Valley site

6.1 Short site description
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: 0/&/

Fig. 8. The isolines of the cost functios on the plane()i;z), A?)) for different values of the thermal conductivi}i)gcl) keeping constant

at each plot. The values m‘fl) from the left to the right are 0.35, 0.55 are 0.70, respectively. The star in the central plot marks a selected
combination of the thermal conductivities.

steps (see Table 3, columns 6,7 and 8). More precise resulislane, by varyingk,(l), nD in the control, while all other

could be obtained if a sensor measuring the thermal conducvariables inC are fixed. In the left plot in Fig. 9, we plot

tivity was placed in at least one of the horizons, see discusisolines ofJ on all three pIaneSkfl), D), @™, n®@), and

sion in Sect. 7. @, n®).

The “summer and fall” period is selected to capture the At the (A,(l), nD) plane, the cost function attains its min-
maximal depth of active layer occurring between 28 Au-imal value on a boundary of this plane, see Fig. 9, upper
gust 2001 and 6 December 2001. We take values of théeft, and is minimal in the center of the planeg?, @),
heat capacityC, from (Hinzman et al., 1991; Romanovsky (5@, ®). The last two planes allows us to find that
and Osterkamp, 1995; Osterkamp and Romanovsky, 1996),(Y=0.6, ®=0.55 and;®=0.27, whereas contours at the
Comparing measured temperatures to the ones computefitst plane show that the value af” lies between 0.11 and

for 2", {(n®)3_, varying within a range of their natural (.13, see Fig. 9, left column. We suppose thadt is 0.12
variability, we found thatkﬁl)e[o.oa 0.15], nY€[0.3, 0.9], and proceed further. After updating the control with the com-
n@e[0.3,0.9] andn®€[0.15, 0.45]. Once the variability of ~ puted values, we evaluate the cost function on the same set
these parameters is found, we search for a minimum of thef planes one more time; parameters in the control before
cost function in the 4-D Spac{g\l(l), D, @ »®1 where  minimization are shown in Table 3 the “Summer and Fall”
each parameter varies within the found boundaries. We not@nd row. After computing the cost function, we draw its iso-
that during minimization of/ in this 4-D space, other vari- lines and show them in Fig. 9, right. Note that at this step
ables inC are fixed and their values are listed in 1st “Summer the cost function attains its minima located in the center of
and Fall” row in Table 3. For example, values of the thermal the computational grid. We update the control wjth=0.6,
conductivityk(1)=0.55,A}z)zl.o andx(f)zl.s are obtained  7?=0.55, 71¥=0.27, 4 =0.12. Note that the location of

at the previous step after minimization over the “winter” in- the minimum did not change significantly. Our experience
terval. Also, an approximation to the coefficient¥=0.7,  shows that changes of soil properties by 5%-10% or less are
79=_0.03,i=1,2, 3 in (3) is obtained by analyzing soil insignificant, since the corr_esponding_di_fference in soil tem-
texture and type, and dynamics of the measured temperatur¥@ratures is comparable with uncertainties qf measurements.
near 0C, see Fig. 7. We emphasis that the approximation to! nerefore, we do not have to do additional iterations on the
the parameters and T, is tentative and is going to be im- Sa@me set of planes, and we proceed to the next step and re-
proved at the consequent steps. duce uncertainties in coefficients andb.

For the sake of brevity, we omit details in consequent steps

We note that it is not necessary to find a minimum in the iated with “fall” and “extended d fall” int
four dimensional space accurately but rather only to estimaté>S0ciated with 1all and “extended summer and fall” inter=
vals, since the search of parameters is completed similar to as

its location as significant uncertainties in other parametersd ved in the * d fall” sten. W hasize that
still exist. Therefore, we look for the minimum by evaluating escribed in the "summer and fall” step. Yve emphasize tha

. D A @ 2 (3 we are just interested in calculation of an initial approxima-
;::nfaossgufgﬁg&g oy, n™), (P 0y and @@, 1) o the control which could serve as a starting point in the
' global minimization of the cost function. By no means, do
First, we setjV=0.6,72=0.6,7®=0.3 and:{"=0.12,  we try to substitute the global minimization by this heuristic
which correspond to the middle of their variability ranges. procedure. However, a good starting point can save compu-
Then, we evaluate the cost functioh on the ()»51), n®) tational time and improve accuracy of a final result.
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Table 3. Values of parameters in the control at the beginning of each minimization step. The listed steps are typical to recover the initial
approximation to the soil properties. The parameters which values are in the parenthesis with the same subindex define minimization plane.

For example, in the third rovkt(l) and @ are in the parenthesis and have the same subindex equal to 1. Therefore, this pair define a

minimization plane(.(", D). On this plane we minimize the cost function dependingh andn@, while value of other parameters
are fixed and given in other sections of the current row.

Iterations n® e n® e Y S I T 7,? 7

Winter 040 070 025 00 - - - 07 o7 07 —0.03 -003  -003
Summerand Fall, 1st ~ (0.60);, (0.6023 (0303 (0127 055 100 180 07 07 07 —0.03 -003  -003
Summerand Fall, 2nd ~ (0.60p (05512 (0.2723 (0123 055 100 180 07 07 07 —0.03 -003  -003

Fall, 1st 060 055 027 012 055 100 180 (0.M); (072 (073 (-003; (-003, (~0.03)3

Fall, 2nd 060 055 027 012 055 100 180 (0.7; (067 (0.793 (—003; (-003, (~0.03)3

Ext. Summerand Fal’t ~ (0.60); (055, (0273 012 055 100 180 065 06 075 (=002 (=003, (-0.03)3

Ext. Summerand Fall’?  (0.70; (055, (0273 012 055 100 180 065 06 075 (-0025; (-0.03, (—0.03)3

Final Result 070 055 027 012 055 100 180 065 06 075  —0025 -0025  —0.03

6.3 Global minimization and sensitivity analysis the observed temperature within the uncertainty of thermistor

measurements. During the summer, the difference between
While evaluating an initial approximation, we sought minima the measured and calculated temperatures is larger but does
of the cost functiond (C) measuring discrepancy over peri_ not exceed 0.3C for sensors in the mineral soil. This Iarger
ods{A}. In this subsection, we perform global minimiza- discrepancy between the measured and computed tempera-
tion of the cost function with respect to all parameter€in tures can be partially explained by over-simplifying physics
over the entire period of measurements 22 July 2001 until 15nd neglecting water dynamics in the upper organic horizons.
May 2002 used for calibration. Also, we analyze sensitivity ~ Finally, in order to show that the found initial approxima-
of an initial approximation derived from minimizing the cost tion (the last row in Table 3) lies close to the true values of
function globally with respect to all parameters. soil properties, we use it to compute the soil temp.erat.ure dy-
In global minimization problems, a starting point from namics through 22 Feb_ruary 2005. Note that the time interval
which iterations begin is given by the initial approximation Tom 22 May 2002 until 22 February 2005 was not used to

evaluated in the previous subsection, see Table 3, the ladind the soil properties. In Fig. 13, we plot the measured
row. As a result of global minimization problem, we obtain nd calculated temperature dynamics at 0.55m depths. The
the parameters (thermal properties, porosity and coefficientB!0tS With solid symbols mark temperature dynamics com-

specifying the unfrozen water content for each soil horizon)Puted for the found initial approximation, and for the best
which can depend on valugsandz, determining the period 9SS values (in the middle of the variability range, shown in

over which discrepancy between observed and modeled teml@Pl€ 1). We note that the guessed values are used to provide
peratures is measured. In global minimization problems, thd?€nchmark temperature dynamics against which we show ef-
constant, is associated with an end of “winter” interval dur- fe€ctiveness of our approach. The benchmark temperature is
ing which the soil is completely frozen. But since, the soil much warmer d“””g summer, and the freeze-up occurs sev-
is frozen for several months for a cold permafrost region, the€r@! days later than in the measured temperature. The bench-
cost function does not significantly dependszpif 7, varies ~ Mark temperature dynamics during winter closely follows
within two week limits. However, the value of is asso- the.mgiasured temperatgre dynamics, since the middle of the
ciated with beginning of “summer and fall” interval during Variability range, for which the benchmark temperature was
which the ground is thawed. Since, the ground is thawingcomp‘,”ed* almost matches the found initial apprOX|mat|on_.
during a relatively short period of time for cold permafrost 1€ difference between the measured temperature dynamics
regions, we consider several valuesrond minimize the anq the one calculated for the found initial approximation is
cost function with respect to all parameters. typically less than 0.2%C.

Results of minimization are listed in Table 4. It shows that
the results of global minimization do not significantly depend 7 - Discussion and limitation of the proposed method
on constants, if the interval[z,, t.] represents thawed and
frozen states of the soil. Using averaged values of the therWe concentrate on finding soil thermal properties by mini-
mal properties, we compute the temperature dynamics for thenizing the multivariate cost function. There are many well
entire period of observations. Comparison of the calculatedknown methods that find a minimum &f including stochas-
and measured temperatures at different depths and at time iic, heuristic and gradient type algorithms (Goldberg, 1989;
tervals used for calibration are shown in Figs. 10, 11 and 12Fletcher, 2000; Robert and Casella, 2004). Since we focus
During the winter, the calculated temperature closely followson a gradient type algorithm, a special care is necessary to
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Fig. 9. Selection of the thermal conductivi? and the soil porosity®, n@, @ by minimizing the cost function associated with the
“summer and fall” interval. The left and right column are associated with the first and the second iterations, respectively. The stars mark
selected values of parameters after completing the iteration. Note that at the second iteration stars and locations of all minima are coincide.

select the initial approximation to the soil properties. For ex-ing the initial approximation, since they are not get trapped
ample, if the gradient type algorithm is started outside thein a neighborhood of the local minimum. However, a qual-
basin of attraction of the proper minimum, then due to exis-ity control of soil properties recovered by either stochastic
tence of multiple local minima it can converge to physically or heuristic algorithm arises. For example, it is feasible that
non-realistic combination of parametersgidnStochastic and  several local minima can have the same value and correspond
heuristic algorithms can possibly avoid the problem of select-to substantially different combinations of parameters in the
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Table 4. Global minimization with respect to all parameters in the control. Each realization is specified by the time [mtervpbver
which the discrepancy between the data and computed temperature dynamics is evaluated. In all case, thg isohStfaty 2002.

ts 7@ el n® A;l) A}l) )L(fZ) )‘3‘3) »D »@ »®d T *(1> T *(2> T *(3)
August,18 0703 0560 Q272 Q120 0562 Q983 1797 Q655 0596 Q750 -0.0251 -0.0253 -0.0301
August,22 0721 Q557 Q272 Q122 (0559 Q973 1809 0673 0558 Q757 -0.0256 —0.0249 -0.0295
August,26 0718 0546 0272 Q122 0559 Q962 1801 0657 0597 Q755 -—-0.0250 -0.0251 —0.0303
August,30 0712 Q0549 0272 Q121 0556 Q967 1801 (655 0601 Q755 -—0.0251 -0.0251 —0.0302
September,3 @12 0544 Q274 Q123 0559 0980 1816 0665 Q551 Q750 -—0.0255 -0.0255 -—0.0298
September,7 (@18 0534 0274 Q123 0560 0966 1789 0660 0603 Q747 —0.0250 -0.0252 -0.0297

3 T T T T T T T T i T i T i T
—a— ——0.10m depth
—a— —0—0.17m depth

74 —a——o— 0.32m depth ]

—e— —0— 0.25m depth 1 —a— —~—0.48m depth
—+——~—0.70m depth

o
1
Temperature, 0°C
(-]
1

Temperature, 0°C

]
w
1

[Hollow - measured, solid - calculated |

[Hollow - measured, solid - calculated]

-6

\ T T T T
T j T j T j T 2/1/2002 3/1/2002 4/1/2002
9/1/2001 10/1/2001 11/1/2001 12/1/2001

Time, d
Time, days ime, days

. . Fig. 11. Measured (hollow) and calculated (solid) temperature at
Fig. 10. Measured (hollow) and calculated (solid) temperature at0.32, 0.48, and 0.70 m depth. The time interval is associated with

0.10, 0.17 and 0.25m depth. The time interval is associated with ™" = "= ==
“ P the “winter” period.
the “summer and fall” period.

control vectorC. Thus, straight forward application of these
algorithms can result in soil properties that are different from  Since, due to a short distance between points at which the
the physically realistic soil properties several fold. upper and lower boundary conditions are specified, there is
In this article, we find an initial approximation to the ther- uncertainty in evaluation of the thermal conductivity for the
mal properties. This initial approximation can be later usedfrozen ground. This uncertainty is related to a progressive lag
in gradient type algorithm both as a starting point and a regu-in the phase of the temperature wave, defined by the Second
larization. We admit that we find one of the possible realiza-Fourier Law (Carslaw and Jaeger, 1959). The longer the lag,
tions for the initial approximations. However, in the processthe better the thermal conductivity can be estimated. For the
of its computation, we obtain limiting boundaries on param- Happy Valley site, the temperature lag at 1 m depth is about
eters inC which can constrain multivariate minimization, in- 10 days. Our experience suggests that the 20—30 day time lag
dependent on the type of algorithm, i.e. stochastic, heuristicis adequate to estimate thermal conductivity robustly. In the
or the gradient type. case of shorter time lags, we advocate placing of a thermal
We describe a technique to find an initial approximation conductivity sensor in the mineral soil horizon. The thermal
to the thermal properties of soil horizons. This technique ap-conductivity sensor consists of a heating element and a ther-
proximates the thermal conductivity, porosity, unfrozen wa- mocouple embedded in a needle. More information regard-
ter content curve in horizons where no direct temperaturang the sensor can be found in (Thermal Logic, 2001) and
measurements are available. One of the limitations is thatn references therein. One of the limitations on usage of the
it requires values of heat capacities, since at certain time pethermal conductivity sensor is that it generates correct values
riods it is possible to estimate thermal diffusivity only but not of the thermal conductivity for thawed or completely frozen
thermal conductivity and heat capacity separately. soil in which active phase change processes do not occur.
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Fig. 12. Measured (hollow) and calculated (solid) temperature at

0.55, 0.70 and 0.86m .depth during the entire period of measureFig. 13. Measured (hollow) and calculated (solid) temperature at
ments used for calibration.

0.55m depth during the entire period of measurements. The val-
idation represents temperature dynamics computed for the found
. __approximation to the soil thermal properties. The benchmark repre-
It should b.e noted that recovery of the; the;rmal prope'rtlessems temperatures computed for the best guess soil properties, i.e.
of the organic cover (e.0. moss layer) is given as an iNte<, the middle of ranges listed in Table 1.
grated approach in the following sense. Complex physical

processes occurring in the organic cover that include non-

condtjgtlve T_eattt.ransfer (Kaf?e f.t alt.EZOOl? are takt(.en 'ntﬂ.aﬁbetween the measured and calculated temperatures over a
count by estimating some efiective thermal properties WhiCh.q i, time interval. We find the minimum by adopting a

are constants for the ent|re_ season. We acl_<n0wledge that thc:eoordinate-wise iterative search technique to the specifics of
e_sUmated thermal properties of the organic layer could beour inverse problem. At each iteration, we select a particular
different in na_ture, butyve recover them in such a way that theset of soil properties and associate with them a certain time
temperature in the active layer and permafrost should CoITer 1 erval over which we minimize the cost function. After
spond to the measured one.

. employing the proposed sequence of iterations, it is possible
In the proposed model we used 1-D assumption regard Ploying prop d P

. e . : . ._to find the approximation to all thermal properties and soil
ing the heat diffusion in the active layer, which sometimes 'Sporosity PP prop
not applicable due to hummocky terrain in the Arctic tundra. '

Another assumption used in the model is that frost heave and Alth;) ugh therT_ adre_tsteveral I|m|tat|(_)|ns to th? pr(;pozed ap-
thaw settlement is negligibly small and there is no ice lensProach, wWe applied it to récover Soil properties for Happy

formation in the ground during freezing. Therefore, the pro_VaIIey site near Dalton highway in Alaska. The difference

posed method could be only applied where these assumptio etween the simulated and measured temperature dynamics
are satisfied over the periods of calibration is typically less than°@3

The proposed method allows computation of a vqumetricThe difference between the simulated and measured temper-

. . : : atures over the consecutive time interval not used in calibra-
contenty of water which changes its phase during freezing ortion is less than 0 which shows a good aareement with
thawing. Water content of liquid water that is tightly bound ' 9 g

to soil particles and is not changing its phase can not be estir_neasurements, and validates that the found initial approxi-

mated, see Fig. 1. mation lies close to the true values of soil properties.

In order to compute the cost function, it is necessary to
calculate the soil temperature dynamics. Therefore, we de-
8 Conclusions veloped a new finite element discretization of the Stefan-type
problem on fixed coarse grids using enthalpy formulation.
We present a technigue to calculate an approximation to th@®ne of the advantages of the new method is that it allows
soil thermal properties, porosity, and parametrization of thecomputation of the temperature dynamics for the classical
unfrozen water content in order to use it in gradient type it- Stefan problem without any smoothing of the enthalpy. Also,
erative minimization methods both as a starting point and asiew approach shows equal or better performance compar-
a regularization. To compute the approximation, we min-ing to other finite element models of the ground thawing and
imize the multivariate cost function describing discrepancyfreezing processes.
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