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Abstract. The problem of variational data assimilation for a trieve the initial condition from observations. A constraint is
nonlinear evolution model is considered to identify the initial that the initial condition should verify the general properties
condition. The equation for the error of the optimal initial- of the atmosphere or of the ocean and therefore we cannot
value function through the errors of the input data is derived,expect that simple interpolation will fulfil this requirement.
based on the Hessian of the misfit functional and the second We can define “data assimilation” as the process mixing
order adjoint techniques. The fundamental control functionsmodels and data as sources of information. Optimal control
are introduced to be used for error analysis. The sensitivity oinethods (e.d.e Dimet and Talagrand 986 are now used in
the optimal solution to the input data (observation and modekeveral operational centers. The basic principle is to consider
errors, background errors) is studied using the singular vecthe initial condition as a control variable and optimize the ini-
tors of the specific response operators in the error equatiortial condition in order to minimize the discrepancy between
The relation between “quality of the model” and “quality of the observations and the solution of the model. A major ad-
the prediction” via data assimilation is discussed. vantage of this technique is the definition of an optimality
system (OS) which contains all the available information.

In practice the system includes errors of different nature:

1 Introduction — physical errors in the model due to approximations to

. - _ be used;
Numerical weather prediction has been operational for sev-

eral decades, numerical oceanic forecast is becoming opera- — numerical errors due to the discretization of the equa-
tional, and climate prediction is a challenge for the scientific tions and to numerical algorithms for solving the prob-
community. lem;

The following ingredients are necessary to carry out a fore-

cast: — observation errors.

Prediction should take into account all these sources of errors

— models: the geophysical fluids are governed by the IaWsand it is clear that the “best” model will not lead necessarily

of conservation of mass, momentum, and energy. Fron} “ N o . .
. . . . o the “best” prediction with the same set of observations.
the mathematical point of view we get a set of nonlinear . : .
o : ) . The purpose of this paper is to analyze the impact of errors
partial differential equations. These equations are of the o . . .
: ) . on the prediction in order to provide some information on
first order with respect to time. . - o .
the improvement of prediction. This is a new statement in
— observations: they are provided by in-situ measure-comparison with the former paper hg Dimet et al(20020).
ments (e.g. the international observation system) or by The paper presents the developments of the idedseof
remote sensing (e.g. observations from satellites). ObDimet et al.(2002} for the case when the original model

servations are heterogeneous both in quality and denis approximated by a difference analogue. We study the ef-
sity. fect of the errors of the input data to the error of the optimal

solution via variational data assimilation. We also study the
impact of errors on the prediction, involving the case of small
mesh sizes.

Correspondence tov. Shutyaev The paper is organized as follows. In Sect. 2, we give the
(shutyaev@inm.ras.ru) statement of the variational data assimilation problem for a

Prediction is obtained by an integration of the model from
an initial state at a given time. A major difficulty is to re-
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nonlinear evolution model to identify the initial condition. In  Problems in the form (Eq. 2.3) were studied Bgntryagin
Sect. 3, the equation of the error of the optimal solution iset al. (1962; Lions (1968 1988 (see alscAgoshkov and
derived through the errors of the input data using the Hessiamarchuk 1993 Blayo et al, 1998 Glowinski and Lions

of the misfit functional. The fundamental control functions 1994 Kurzhanskii and Khapalqv1991, Le Dimet and Ta-
are introduced in Sect. 4 to be used for error analysis. Théagrand 1986 Marchuk and Penenkd978 Marchuk et al.
sensitivity of the optimal solution to the input data is studied 1996 Navon 1995 Sasaki197Q and others).

in Sect. 5 using the singular vectors of the specific response The necessary optimality condition reduces the problem
operators in the error equation. The relation between qualitEg. 2.3) to the following systeml(ions, 1968:
of the model and quality of the prediction via data assimila- N

tion is discussed in Sect. 6. The Appendix presents the list of I _ Fh"), 1€ (0,T)

main notations that identifies the meanings of the variables
used.

(2.4)
(ph |t:0 = uh’

9 *h . % «
{ SU (B () et = —CV(Ch e~ g, (o)

2 Statement of the problem o _, =0
1= ’

Consider the mathematical model of a physical process tha&

" —uby - (p*h| =0 (2.6)

is described by the evolution problem 1=0""
g _ F@@). te©.T) with the unknowns”, ¢**, andu”, where(F"’ (¢™))* is the
i ar — _h ’ (2.1)  adjoint to the Frechet derivative @", andC"" is the ad-
Plizo =" jointto C* defined by(C"¢", ¥)y,,,=(@", C"* )y, ¢" €

whereg=¢(r) i the unknown function belonging foranyo ", ¥€Yobs. We assume that the system (Egs. 2.4-2.6) has a
the Hilbert space&, uin X, F is a nonlinear operator mapping unique solution.

X into X. LetY=L»(0, T; X), || - |ly=C(, ,)§/2_ Suppose that Hgyi_ng solve.d_ the systgm (Eqs. 2.4-2.6)de(0, T), \{vith

for a givenii € X there exists a unique solutigieY to the the initial-condition functioru”” we can make a prediction,

problem (Eq. 2.1) for example, on the interval0, 2T), i.e. solve the prob-
.2.1). I ;

We will consider also the problem approximating (in some €M (EQ. 2.2) for€(0, 27) and findg |27 The question

sense) Eq. (2.1) in the form: arises: how to estimate the difference between the prognos-

tic value”| _,, and the exact (true) valug|,_,,? Very

M — Fh(gh), 1e.T) often, the value of this difference may show a quality of the
PRI ’ (22)  prediction: the less is the norm of the difference the better

¢ |t=0 = is the quality of the prediction. Another important question
where  ¢'=g"(t)ex™, uhexh, Fhxh_ xh is what is the behaviour of the prediction error if we change

one model of the form Eg. (2.2) to another (that is, with re-
spect toh). By changingh, we could change a “quality of

The parametei: defines a set of models approximating the model” ( for example, in finite-dimensional approxima-

Eq. (2.1). This parameter may be related to the mesh size df°nS: by deminishing we have usually a model of a better

a finite-difference (or finite-element) approximation of the 2Ccuracy, i.e. of a better “quality”).
original problem. Here, assuming that the solution of the problem (Eqgs. 2.4—

Let us introduce the functional 2.6) exists, we study the mentioned questions using the prop-
1 erties of the Hessian of the misfit functional and singular vec-
o -
S(Mh) — E”uh _ u8”§h + E”Chwh — Qobs ”im i tors of the specific response operators.

Yh=L,(0, T; X"), and X" is some finite-dimensional
Hilbert space (for example, a difference analogueXgf

wherea=const>0, uéeX” is a prior initial-value function
(background state)y,»s €Yops is @ prescribed function (ob-
servational data),» is a Hilbert space (observation space), The system (Eqs.2.4-2.6) with the three unknowns

C" 1 Y"—Yops alinear bounded operator. ¢", ¢*", u" may be treated as an operator equation of the
We will assume the initial-condition functiar’ to be un-  form

known. To find it we consider the following data assimilation
problem: findu andg” such that they satisfy Eq. (2.2), and F(U", Us) =0, (3.1)
on the set of solutions to Eq. (2.2), the functiosél”) takes
the minimum value, i.e.

3 Error equation and Hessian

WhereUh:((Ph, (ﬂ*h, uh)’ Ud:(ug’ Pobs)-
Let us project the problem Eg. (2.1) onto the difference

h h.
38% = Fh(gh), 1e(0T) spacex”:
h h 0
¢, _g=u (2.:3) % — (F(@)n. te©.7)
Swh) = inf S(). _ ‘at — o (3-2)
veXh Phli—g = Uh;
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where the lower subscrifgt means the projection, for exam- where

ple, ¢»=(¢); is the projection of the exact solutigh onto o 1

Xx". This means that we consider the problem (Eq. 2.1) atS1(u) = 2 [lu — % + §||Chg0 — &g . (3.10)
mesh points.

Let us introduce the functions Consider the Hessiaf of the functional (Eq3.10); it is

W Y . defined by the successive solutions of the following problems
&1 =ug—un, §=0obs—C" @p. (e.g.Le Dimet et al, 20023:

The functionif andgﬁ' play the roles of a background error oy W - _
and an observation error, respectively. The problem (Eqg. 3.2){ o ~ @y =0,1€0T), (3.11)

may be written in the form: Vli=0 = v,
3¢ _ dy* o x
{ S =Fen-g, 1e©T) (3.3) { ~ O (FY @)yt = —CMChy. 1 e ©.T) (3.12)
g0h|t:0 = Un; w*|t=T = O’
where&2=F"(¢,)—(F ()5 is the approximation error of [y = qv — y*|,_o. (3.13)

the operato# on the exact solutio@. The functioréé’ plays _ N
the role of a model error. Together with Eq. (3.3), the follow- Below we introduce three auxiliary operatoR§, Rz, Rs.

ing system is satisfied: Let Ri=a E, whereE is the identity operator ik". Let us
. introduce the operata®, : Y,,,— X" acting on the functions
: _88% — (F" (@) *o* = —C"* (C"g), — Chy), (3.4) g€Y,ps according to the equation
¢l =0. Rog = 6|1, (3.14)
a(iy —itp) —¢*li=0=0 (3.5)  whered* is the solution to the adjoint problem

et =4 — (F"(@gn)*o* =C""g, 1€, T
thatg,»s=C" @), which implies that that the solution in finite ar — (F7 (@n) § 10D (3.15)

dimensional Hilbert space is exactly mapped to the obser- 9*|I=T =0
vations. The same is true concerning Egs. (3.5) and (2.6): \ye introduce also the operatfig : Y"— X" defined suc-
Eq. (3.5) is just like Eq. (2.6) except th@@:ﬁh, which im- cessively by the equations:
plies that the background state coincides with the exact solu-

tion in finite dimensional Hilbert space. We introduce these [ 961 _ FM(@no1=gq, q €7,
“trivial” Egs. (3.4) and (3.5) artificially, in order to subtract 3t 611—0 = 0

then Egs. (3.3)—(3.5) from Eqgs. (2.4)—(2.6) and to obtain the h '
system for the errors. { 303

with ¢*=0. Note that Eq. (3.4) is just like Eq. (2.5) except { _36*

(3.16)

— (F"(g)y*67 = —=C"'C'61, 1€ (0.T) (347

We haveup=iiy+&], ops=C"@p+E8, 1€ X", EL eV ,ps. 31 o 0
L= =%

Let ¢" be an error of the model solution defined at mesh
points: 8¢"=¢"—&,, and su” be the initial-value error: .
Su'=u" — ,. Then, subtracting Egs. (3.3)—(3.5) from R3¢ = b1li=0. (3.18)
Egs. (2.4)—(2.6) and eliminating the second-order terms, W&rom Egs. (3.11)—(3.18) we conclude that the system
get forsp", su” the system: (Egs. 3.6-3.8) is equivalent to the single equationsfdr

88(ph

s — FM (@)t =8, 1€ (0, T), (3.6) Hou" = Rif{ + Rofj + Rafy. (3.19)

SoM|—o = Su” . Ch . _
= ’ The HessianH acts in X" with domain of definition
D(H)=X", itis self-adjoint and non-negative. df>0, the

9 *h _ B - e in .
— = — (FM @) o™ = (F" (g1)8¢")* 9" — operatorH is positive definite (in the case,,=Y", C"=E,
—CM(Choy" — &), (3.7)  the operatod is positive definite even i&=0). The follow-
o, _pr =0, ing estimate is valid:
au — &) — ¢*—0 = 0. @.8) (Hv.Vxn = tmin(v, v)xn, Vv € x", (3.20)

The problem (Eqgs. 3.6-3.8) is a linear data assimiI<';1tion\’\/r](:"re“’“in is the least eigenvalue of the operaidr and
HKmin=c.

problem; forp*=0 it is equivalent to the following minimiza The spectrum of the operatdf is defined by the spec-

tion problem: finc andy such that trum of the operatoC”*C" through the Rayleigh relation
%_(f P Ge =l 1e©T) (Hv,v)/(v, v) (e.9.Dunford and Schwart2963. From the
‘/’|r=o —u (3.9) equality

S1(w) = inf $1(v), (Hv, v)yn = a(v, v)yn + (C"y, C"y)y,,., (3.21)
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it is easily seen that the spectrum bounds of the HesHian
are defined by

(" chy,
i = o+ inf (& EV Vo
UEXh (U, U)xh

chchy,
Mmaxza‘l' Sup( 1/f W)Yobs
vexh (v, V) xn

wherey is the solution to Eq. (3.11).

Thus, the operatoc”*C" plays an important role for
the spectrum of the operatdd. If the operatorC’*C"
is ill-conditioned, then the operataH may also be ill-
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It is easily seen that the eigenvalue problem (Eqg. 4.1) is
equivalent to the system:

8 —
% — F"(@n)er =0, t € (0, T), (4.2)
Prli=0 = Vi,

o) _
{— S = (P Gy = —CCha 1< O.T) g
¢k |t=T = 0’

vk — P li=0 = Mk Vk. (4.4)

By the analogy with the PoincauSteklov operator theory
(Lebedev and Agoshkow 983, we say that the system of

conditioned, and this should be taken into account when solvfunctions {¢x, ¢}, vk} satisfying (Egs. 4.2-4.4) is the sys-

ing Eq. (3.19).
In the case wheriF’”(@,):A is ar-independent operator,
the Egs. (3.11)—(3.13) imply
T
w — eAt’ w* — _/e_A*(t_S)Ch*Chl/de,

t
T
Hv=av+ / Al cheMvds, v e X
0
Hence,
T
H =«aE +/eA*SCh*CheAsds. (3.22)
0

Therefore, in this case, the operat@”C" defines the Hes-
sianH explicitly.

As follows from Eq. (3.19), the erratu” of the optimal
solution depends on the errds, £2, £2 linearly and contin-
uously. The influence of the errog4, &2, £2 on the value of
Su’ is determined by the operatats 1R, H 1R,, H1R3,

respectively. The values of the norms of these operators m

tem of “fundamental control functions”. For data assimila-
tion problems, these functions were introduced3hytyaev
(1995.

Using the fundamental control functions, we can obtain
the solution of the error Eq. (3.19) in the explicit form. Equa-
tion (3.19) is equivalent to the system (Eqgs. 3.6—3.8) and may
be written as the following system:

W PGy =0, 1€ @.T), (4.5)
V=0 = du”,

oy* = Nk *

{—a—‘ﬁ—(Fh’(cph)g Yr=—CChy, 1€ O.T) 44
W |t:T = O’

aauh — !/f*|t=0 = P, (47)

where P=R1&!'+Ro£)+R3£4 is the right-hand side of

Eq. (3.19).

The solutiony, ¥*, su” of the system (Egs. 4.5-4.7) may
be represented in the form:

V=Y ap, V=) agf, ' =) awv, (48)
X k X

aj‘/here‘pk’ @;» v are the fundamental control functions de-

be considered as an influence criteria: the less is the norrined by Eas. (4.2)—(4.4)=(P, vi) xn / tik-

of the operatord ~1R;, the less impact oéu” is given by

From Eq. (4.8), we have the representation for the Fourier

. =S T e i h h.
the corresponding errgy". This criteria may be used also to coefficients(u™), of the errorsu:

choose the regularization parametdiikhonov et al, 1995
Morozov, 1987).

4 Fundamental control functions for error analysis

1

SuMy = ap = E(ng:f + RoEX + Ragl, vp) . (4.9)
Note that

(R1EJ, vi) xn = (€, vi) xn. (4.10)

Since the model (Eq. 2.2) is finite-dimensional, the Hessiangy definition of Ry, R3,

H has a complete orthonormal systemXfi of eigenfunc-
tions vy corresponding to the eigenvalues:

Huvp = pjug, (4.1)

where (v, v))x=8, k,[=1,2,..., and §y is the Kro-
necker delta. The singular value decompositiorHotoin-
cides with the eigenvalue decompositiagthi=U DU*, where
D=diag(u1, L2, ...) is a diagonal martix, and is the ma-
trix of eigenvectors o .

(RaE , vi) o = (0%, v xh»
(Rag5, vi) xn = (0F],_q» V) x1-

where6* is the solution of Eqg. (3.15) fog:f;‘é’, andoy, 07
are the solutions of Egs. (3.16)—(3.17) f@tsé’. From
Egs. (3.15) and (4.2) we get

(9*|t=0’ Uk)Xh = (Ch*%'él, (pk)Yh,
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Hence, whereT} : X" X" TS : X"V, Tf : X">Y" are

" n h the adjoints tdl;, i=1, 2, 3, and thei-th inequality becomes
(R85, v xi = (&2, €70V, 4.11) 45 equality wherg! is the singular vector of; correspond-
Analogously, from Egs. (3.17) and (4.2), ing to the largest singular valug;,,, =||T;*T;||. The values

. — ri=y/IIT;*T;|| may be considered as “sensitivity coefficients”
67|, _g v x1 = (=01, C" C"gr)yn. which clearly demonstrate the measure of influence of the
Further, Egs. (3.16) and (4.3) give corresponding error upon the optimal solution. The higher
the relative sensitivity coefficient, the more effectual is the
(61, —Ch*Chgok)yh = (Eg, O yh- error in question.
From Egs. (5.1)—(5.3), we have

Hence,
(Rag2, i) g = (EL o). @12) 18"l < JITETUE xn + /175 T2ll163 Ny, +

From Eqgs. (4.9)—(4.12) we obtain the expression for the
Fourier coefficientgsu”); of the errorsu of the optimal so-
lution through the errorg!, &2, &2

TS T3 NER lyn = rallE] lxn + r2llER N1y, ,, + rallERllyn.
(5.4)

o 1
Gu" = —EL v xn + — (&L, Cl o)y, + The Hessiand defined by Egs. (3.11)—(3.13) has a com-
Hi Hi plete orthonormal system i¥ of eigenfunctionsy; corre-
1 0 . sponding to the eigenvalues.: Huvir=urvr, (vk, vi)x =0,
+ E(’%"pk)Y”’ (4.13) k,1=1,2,... The least eigenvalugmin of H is positive if
a>0. We also assume that it is positive te£0 (it is true,
where{gi, ¢;, v} are the fundamental control functions de- for example, in the casg,,,=Y", C"=E).
fined by Egs. (4.2)—(4.4). Consider the operatdh. SinceTi=H 'Ri=a H 1=T},
Expression (4.13) shows that the fundamental controkhe singular vectors df; are the eigenvectons of the Hes-

functions play the role of “sensitivity functions”; they are the sjan#, and the corresponding sensitivity coefficient is equal
weight-functions for the corresponding errdgs &2, €4 in = g

the representation (4.13). Note that the fundamental control

functions{gy, ¢;, vr} do not depend on the structure of the r1 = /(|7 T1|| = (5.5)
errorsgl, &% £ and may be calculated beforehand for each min
k if necessary. Note thatr1 <1 (sinceumin>w).

For self-adjoint-independent operatdf’(¢;), the fun- For the operatof? : Y,5,— X" the following statement is

damental control functions may be found in the explicit form valid (Le Dimet et al, 2002). The singular values? and the
(Shutyaey 1995. The application of fundamental control corresponding orthonormal (right) singular vectans=Y s
functions to the data assimilation problem in hydrology, andof the operatof’; are defined by

some numerical results are givenlby Dimet et al.(20021).
of =B = =l (56)
k Mlg ) o — o 5

5 Singular vectors and error analysis . .
g y wherepu, are the eigenvalues of the Hessieln andgy are

In this section, we study the sensitivity of the optimal initial- the fundamental control functions defined by Eqg. (4.2). The
value function to the input data using the singular vectors ofl€ft singular vectors of’> coincide with the eigenvectong
the specific response operators in the error Eq. (3.19). W& H:

may rewrite Eq. (3.19) as TaTS o = Ukzvk, k=12 ... (5.7)
h_ pg—1p. sh —1p. sh —1p. sh
Su” = H "Ry + H "R2§; + H "Ratz. (5-1) Thus, the sensitivity coefficienb=,/||7, T2|| is defined by
Hence, the equation:
I8 llxn < ITe&L o + 1 To85 I + 1 Tag ln.— (52) ) _ mkax‘/uk - (5.8)
whereT,=H R, Ty : X">X", Ty : Yppo—> X", T : M
Yh—xh, The equality|| T2&2|| yn =212 ly,,, holds if &=wy,, where
Each summand in Eq. (5.2) determines the impact givenuwy, is the singular vector of> corresponding to the largest
by the correspoding errdf. We have singular valuarkzozrzz. If =0, the sensitivity coefficient,
is defined by the equation
IT2&7 1 xn < ITETAIEY en,
17285 | xn < /T3 T20 187 1 ®3 . _ 1

17385 1 xn < /IT5T3l11€5 llyn, Hmin’
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where umin is the least eigenvalue of the Hessiein Note
that umin depends ork, and very often, in practicd{ is ill-
conditioned such thatmin— 0 ash— 0. In this case;— oo,
and the error may be very large.

Consider now the operatdg=H ~1R3. To determine the
sensitivity coefficients=,/|75 T3], we need to deriveRs.
ForgeY", pex”, we have from Egs. (3.16)—(3.18):

(R3q, p)xn = (9f|t:07 Pxh =
= —(C""C"01, )yn = —(C"01, C"9)y,,.,

wheref, 6; are the solutions to Egs. (3.16)—(3.17), gnis
the solution to Eq. (3.11) witb=p. Further,

(Raq, p)yn = — (61, C""C"p)yn = (g, ¢*)yn

and R3 p=¢*, where¢* is the solution to the adjoint prob-
lem:

{ 0PV Gy =
¢*|I=T =0.
The operatorR3R; : X"— X" may be defined as follows:

for given peX” find ¢ as the solution of Eq. (3.11) with
v=p, find ¢* as the solution of Eq. (5.9), and fg=¢*

—ch*chg, t€(0,T) (5.9)

find 61, 67 as the solutions of Egs. (3.16)—(3.17); then put

R3R3 p=071,=o0.
Therefore, the operatdfsT;=H ~1RsR5H ! is defined

by the successive solutions of the following problems (for

givenvex"):
Hp =, (5.10)
R /L
9 FM(@)p =0, 1 € (0.7), (5.11)
®li=0 = p,
2 (Y (@ §)9" = —C"Clp. 1€ O.1) (51
¢ |1:T 0.
201 n (- _
3f F" (pp)01=9¢%, t€ (0, T) (5.13)
01lr=0 =0,
LI BV Gy e = —CP*Char, 1 e (0,T)
at oL = 1 1) (5.14)
91 ‘z:T = 0’
Hw = 6f],_, (5.15)
then
T3T5v = w, (5.16)
and we have for the sensitivity coefficient
||T3T§‘||. (5.17)

the sensitivity coefficients numerically.
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6 Specific case

To compare the sensitivity coefficients, rp, r3 we con-
sider a specific case. Suppo¥g,,=Y", C'=E (the
identity operator), andF"’(g,)=(F" (gn))*=—A is a t-
independent self-adjoint operator such tlagenerates an
orthonormal basis inX consisting of eigenfunctions:
Avi=Arvg, (vk, vj)x=4;, wherei; are the corresponding
eigenvalues ofi. Then the eigenfunctions of the Hessiéin
coincide with the eigenfunctionsg, and the eigenvalugs;
are defined byshutyaey(1995:

1— e 2uTl

=+ —

My = R
(Note that ifA; = 0, we putuy = o + T, by continuity.) In
this case

1— e—ZAmaxT

KUmin = @ +
2\ max

)

whereimax is the largest eigenvalue of. From Egs. (5.5)
and (5.8), we get

1_6*2)»maxT -1
NNt T o )
1 — e—2uT 1 2T\
2hp ot 2hg ’
To find r3 consider the operatof37; defined by the
Egs. (5.10)—(5.17). Far=v; we get

rp = max (6.1)

T
D= ivk, ¢ = ief)"‘tvk, " = —ie)"‘t / e~ S yids,
Ik Ik Ik
1 t T
01 = ——ef)‘kt/ezxks/efzxksvkdsdé,
Ik
0 &

T

6
Gik — i/e—kk(é—t)e—)qﬁ/
Mk
t 0
1 T 0
= —2/6 9\/62)\;(%'
0 0

Then, from Eg. (5.16),

T
& | o2y dsdEdo,

w = —ef e 2%y dsdeds.

\"r‘r\,\]

T3T3*vk=Ukzvk, k=12, ...,

where

T T
1
The algorithm (Egs. 5.10-5.17) can be used to computefk2 =— / e~ / o2ME / e S dsdEdo =
k
0 £
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T T 2
_ iZ/eZAkg </ €_2Aksds> dé —
M
0 3
4T
__1 1= ™ oreur) o g,
(2uihi)? 20

Thus, v, are the left singular values @k corresponding to
the singular valueskz. The right singular vectors df; sat-
isfy the equation

T3 3wy :akzwk, k=12, ...

and are defined by

1 *
wp = —T3'v.

Ok
Dueto Eqgs. (4.2)—(4.3),

1 1 1
Wi = —R;H_lvk = _R*vk = —(,0;:

Ok Ok Ik O [k
and

% * 1
(Wi, w)y = ——— (¢, ¢ )yp = ————X
Ok Lk O] 4] Ok MkO] 4]

1
X (R3ve, R5v)yn = @(H—leRgH—luk, v xh =

1 *
— (T3T5 v, v) xn =

Ok
— (vk, v xh = O
o%0; o)

Therefore, the singular value§? of the operatofTs are de-
fined by the equation:

(

wherep=a+(1—e=2#T)/(21;). The left singular vectors
of T3 coincide with the eigenvectoig, and the correspond-
ing orthonormal right singular vectots, €Y are defined as

1— 874)»1( T
2hk

02 = 1
T Qui)?

- 2Te2W>, (6.2)

k= ——¢5,
Ok Ik

1
w (p;(k(t) — iekkt(e—Z)ukT _ e—ZAkt)vk’
where ¢/ are the fundamental control functions satisfy-
ing Egs. (4.2)—(4.4). Thus, the sensitivity coefficient
r3=,/||T5 T3]l is defined by the equation:

I

From Egs. (6.1), (6.3), one can derive the typical be-
haviour of the sensitivity coefficients, r», r3, depending on
the parametex and the mesh sizk. Let us compare the
coefficients1, rp, andrs. It is easily seen that

1— e—4)ukT

— 2T e~ 2T,
2\k ¢

1
r3 = max (6.3)
ko 2| Akl

1
n<1l rn<-——.
1= Z_Zﬁ
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Fig. 1. Sensitivity coefficients;, i=1, 2, 3, for h=10"1.

Moreover,r1—0 asa—0, whereas, may be very large,
because><(/min) T and fore=0 we have

rp = 1 _ Z)Lmax
N

and if \max— 00 ash— 0, thenr,— o0.
For r3, from Eq. (6.3) we can conclude thaf is always
bounded even ifk— 0. Fora=0 we have

-1 |1 — e%T
r3 = ma>41 - e*ZAkT‘ \/ 2T e—2uT.
k 2\
Since the function
_ BT

f) = (1 - e_ZAT>2<—1 > _

2Te—2)\.T)

is bounded fon.e(—o0, +00), the sensitivity coefficients
will be bounded when—0.

So, with the regularization parameter-0, all the co-
efficients r1, rp, r3 are bounded even ik—0. The sit-
uation differs whena—0. If =0, thenr1=0, r3 is
bounded, butr, may be very large (a$i—0). This
is demonstrated by Figs. 1-2 which present the sensi-
tivity coefficients versus the parameter with 7=10"1
and h=10"2 for the case wherf=1 and A; are an ap-
proximation of the eigenvalues of the 1D Laplace opera-
tor given by the equationLébedev and Agoshkowi983:
h=75SiP Mk k=1,2,..,n—1, h=1/n. The figures
show that for smallx the optimal solution is most sensitive
to the observation error.

Such a typical behaviour of the sensitivity coefficients
r1, r2, r3 was also noticed in more general cases. Some nu-
merical computations of sensitivity coefficients for the data
assimilation problem in hydrology are given bg Dimet et
al. (20021.

Thus, the sensitivity of the optimal solution to the input er-
rors is determined by the value of the sensitivity coefficients
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~ h h h h
P10 — : : : : < c1(rallég lixn + r2lléz vy, +r3liE3llyn + 1153 15n) <

10° | < a(rllEM xn + 206y, + 3+ DIESIG1),  (7.2)

10" ¢ whereri, rp, r3 are the sensitivity coefficients defined by

Sl Egs. (5.5), (5.8), (5.17), respectively.

o IR Due to Eq. (7.2), the sensitivity coefficients rp, r3 show
St - the effect of the errorg,, &, & on the prediction errosy”.
BT One can use Eg. (7.2) to study the behaviour of the error
w07l @"|,_or—n|,_oy With respect to the quality of the model

(i.e. with respect ta).

Sincegé‘:F"(@h)—(F(@)h is the approximation error of
the operato# on the exact solutio@, the following estimate
may be supposed to be valid:

0 0.2 0.4 0.6 0.8 1

hy . k _
Fig. 2. Sensitivity coefficients;, i=1, 2, 3, for h=10"2. I3 llgn < c2h™, k>0, cz = const > 0. (7.3)

To illustrate the estimate (Eq. 7.2), consider the spe-

. - cific cases from Sect. 6. From the results of Sect. 6, we
which are the norms of the specific response operators relat: : o
. . . ... can conclude that with the regularization parameteO,
ing the error of the input to the error of the optimal initial-

. . . all the coefficientsry, ro, r3 are bounded (even ik—0).
value function. The maximum error growth for the output is .. h -
) . . Since (r3 + D|&7]l3»—0 as h—0, the prediction error
given by the singular vectors of the corresponding response , _ 3'r . A h
operator. The singular vectors are the fundamental controf |t:2T_‘p"|t:2T will be determined by, -and & I
functions; they form complete orthonormal systems in spe-1 & —0 @sh—0, theng"|, ., —@x,_,, will also go to
cific functional spaces and may be used for error analysis. 2€ro withi—0. So, the prediction error is stable with re-
Remark. We have considered a constant weight on theSPECt t0 the errorg;, &, &3 if «>0. o
initial condition penalty in the objective functiof. This The situation changes when-0. Without regularization,
implies white noise. It is not a limitation of the method, it Whena=0, we have1=0, r3is boundeq, but, may be very
is a simplification for ease of presentation. In practice, in'arge (as:—0). Forh—0, we have agaitrs+1)[163 1l 74 —0,
variational assimilation, “regularization” is achieved through SO the prediction error is stable with respectfo However,
a whole covariance matrix, not only a numerical coefficient this error may be unstable with respegt if ||,§§' ly,,,—0as
a. In this case, the Hessian will involve the covariance ma-i — 0, it does not mean tha§||g§'||yohx—>0, because, may
trix instead ofx, and equations for the sensitivity coefficients go tooco. This is one more reason to introduce a regulariza-
r1, r2, r3 Will be more complicated, defined through the Hes- tion when solving the original data assimilation problem.
sian and this covariance matrix. The above analysis shows that the prediction error is most
sensitive to the observation errors. Therefore, the effect of
o the observation errors in data assimilation is of great im-
7 Prediction error portance and should be taken into account when solving the

) ] problem.
Having solved the system (Eqgs. 2.4-2.6) fa 0, T'), with

the initial-condition functioru” we can make a prediction

on the interval(0, 27), i.e. solve the problem (Eq. 2.2) for 8 Conclusions

t€(0, 2T) and finde"| _,,.. To estimate the difference be-

tween the prognostic valug |t:2T and the exact (true) value The impact of the input errors on the prediction via data as-

we can use the results of Sect. 5 concerning the erropimilation is due to the error of the optimal initial-value func-

h tion. The sensitivity of the optimal solution to the input errors

may be determined by the value of the sensitivity coefficients

which are the norms of the specific response operators relat-

ing the error of the input to the error of the optimal initial-

value function. The maximum error growth for the output is

given by the singular vectors of the corresponding response

||3(ph||?h + ||‘S‘Ph|;:27||xh < E1(|18u” | n + II%‘II;;,), (7.1)  operator. The singular vectors are the fundamentalicontrol
functions which form complete orthonormal systems in spe-

where & =const>0, Y"=L,(0,2T; X"). Taking into ac- cific functional spaces and may be used for error analysis.

count Eq. (5.4), we get The prediction error is most sensitive to the observation er-
rors, which effect is of great importance and should be taken

" |, oy —n|,—op I x1 < into account when solving the problem.

‘p|t:2T
Sul=u"—iy,.

Having solved Eq. (3.19), we firth"=u" —ii;,. To predict
the errorsg" =" —¢;, atr=2T, we should solve the problem
(Eg. 3.6) forre(0, 2T). Since the model (Eg. 2.3) is finite-
dimensional, the following apriori estimate is valid:
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