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Abstract. The problem of variational data assimilation for a
nonlinear evolution model is considered to identify the initial
condition. The equation for the error of the optimal initial-
value function through the errors of the input data is derived,
based on the Hessian of the misfit functional and the second
order adjoint techniques. The fundamental control functions
are introduced to be used for error analysis. The sensitivity of
the optimal solution to the input data (observation and model
errors, background errors) is studied using the singular vec-
tors of the specific response operators in the error equation.
The relation between “quality of the model” and “quality of
the prediction” via data assimilation is discussed.

1 Introduction

Numerical weather prediction has been operational for sev-
eral decades, numerical oceanic forecast is becoming opera-
tional, and climate prediction is a challenge for the scientific
community.

The following ingredients are necessary to carry out a fore-
cast:

– models: the geophysical fluids are governed by the laws
of conservation of mass, momentum, and energy. From
the mathematical point of view we get a set of nonlinear
partial differential equations. These equations are of the
first order with respect to time.

– observations: they are provided by in-situ measure-
ments (e.g. the international observation system) or by
remote sensing (e.g. observations from satellites). Ob-
servations are heterogeneous both in quality and den-
sity.

Prediction is obtained by an integration of the model from
an initial state at a given time. A major difficulty is to re-
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trieve the initial condition from observations. A constraint is
that the initial condition should verify the general properties
of the atmosphere or of the ocean and therefore we cannot
expect that simple interpolation will fulfil this requirement.

We can define “data assimilation” as the process mixing
models and data as sources of information. Optimal control
methods (e.g.Le Dimet and Talagrand, 1986) are now used in
several operational centers. The basic principle is to consider
the initial condition as a control variable and optimize the ini-
tial condition in order to minimize the discrepancy between
the observations and the solution of the model. A major ad-
vantage of this technique is the definition of an optimality
system (OS) which contains all the available information.

In practice the system includes errors of different nature:

– physical errors in the model due to approximations to
be used;

– numerical errors due to the discretization of the equa-
tions and to numerical algorithms for solving the prob-
lem;

– observation errors.

Prediction should take into account all these sources of errors
and it is clear that the “best” model will not lead necessarily
to the “best” prediction with the same set of observations.

The purpose of this paper is to analyze the impact of errors
on the prediction in order to provide some information on
the improvement of prediction. This is a new statement in
comparison with the former paper byLe Dimet et al.(2002b).

The paper presents the developments of the ideas ofLe
Dimet et al.(2002b) for the case when the original model
is approximated by a difference analogue. We study the ef-
fect of the errors of the input data to the error of the optimal
solution via variational data assimilation. We also study the
impact of errors on the prediction, involving the case of small
mesh sizes.

The paper is organized as follows. In Sect. 2, we give the
statement of the variational data assimilation problem for a
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nonlinear evolution model to identify the initial condition. In
Sect. 3, the equation of the error of the optimal solution is
derived through the errors of the input data using the Hessian
of the misfit functional. The fundamental control functions
are introduced in Sect. 4 to be used for error analysis. The
sensitivity of the optimal solution to the input data is studied
in Sect. 5 using the singular vectors of the specific response
operators in the error equation. The relation between quality
of the model and quality of the prediction via data assimila-
tion is discussed in Sect. 6. The Appendix presents the list of
main notations that identifies the meanings of the variables
used.

2 Statement of the problem

Consider the mathematical model of a physical process that
is described by the evolution problem{

∂ϕ̄
∂t

= F(ϕ̄), t ∈ (0, T )
ϕ̄
∣∣
t=0 = ū,

(2.1)

whereϕ̄=ϕ̄(t) is the unknown function belonging for anyt to
the Hilbert spaceX, ūınX,F is a nonlinear operator mapping
X intoX. LetY=L2(0, T ;X), ‖ · ‖Y=(·, ·)

1/2
Y . Suppose that

for a givenū ∈ X there exists a unique solution̄ϕ∈Y to the
problem (Eq. 2.1).

We will consider also the problem approximating (in some
sense) Eq. (2.1) in the form:{

∂ϕh

∂t
= F h(ϕh), t ∈ (0, T )

ϕh
∣∣
t=0 = uh,

(2.2)

where ϕh=ϕh(t)∈Xh, uh∈Xh, F h:Xh→Xh,
Y h=L2(0, T ;Xh), and Xh is some finite-dimensional
Hilbert space (for example, a difference analogue ofX).
The parameterh defines a set of models approximating
Eq. (2.1). This parameter may be related to the mesh size of
a finite-difference (or finite-element) approximation of the
original problem.

Let us introduce the functional

S(uh) =
α

2
‖uh − uh0‖

2
Xh

+
1

2
‖Chϕh − ϕobs‖

2
Yobs

,

whereα=const≥0, uh0∈Xh is a prior initial-value function
(background state),ϕobs∈Yobs is a prescribed function (ob-
servational data),Yobs is a Hilbert space (observation space),
Ch : Y h→Yobs a linear bounded operator.

We will assume the initial-condition functionuh to be un-
known. To find it we consider the following data assimilation
problem: finduh andϕh such that they satisfy Eq. (2.2), and
on the set of solutions to Eq. (2.2), the functionalS(uh) takes
the minimum value, i.e.

∂ϕh

∂t
= F h(ϕh), t ∈ (0, T )

ϕh
∣∣
t=0 = uh

S(uh) = inf
v∈Xh

S(v).

(2.3)

Problems in the form (Eq. 2.3) were studied byPontryagin
et al. (1962); Lions (1968, 1988) (see alsoAgoshkov and
Marchuk, 1993; Blayo et al., 1998; Glowinski and Lions,
1994; Kurzhanskii and Khapalov, 1991; Le Dimet and Ta-
lagrand, 1986; Marchuk and Penenko, 1978; Marchuk et al.,
1996; Navon, 1995; Sasaki, 1970, and others).

The necessary optimality condition reduces the problem
(Eq.2.3) to the following system (Lions, 1968):{

∂ϕh

∂t
= F h(ϕh), t ∈ (0, T )

ϕh
∣∣
t=0 = uh,

(2.4)

{
−
∂ϕ∗h

∂t
− (F h

′
(ϕh))∗ϕ∗h

= −Ch
∗
(Chϕh − ϕobs),

ϕ∗h
∣∣
t=T

= 0,
(2.5)

α(uh − uh0)− ϕ∗h
∣∣
t=0= 0 (2.6)

with the unknownsϕh, ϕ∗h, anduh, where(F h
′
(ϕh))∗ is the

adjoint to the Frechet derivative ofF h, andCh
∗

is the ad-
joint toCh defined by(Chϕh, ψ)Yobs=(ϕ

h, Ch
∗
ψ)Y h , ϕ

h
∈

Y h, ψ∈Yobs . We assume that the system (Eqs. 2.4–2.6) has a
unique solution.

Having solved the system (Eqs. 2.4–2.6) fort∈(0, T ), with
the initial-condition functionuh we can make a prediction,
for example, on the interval(0,2T ), i.e. solve the prob-
lem (Eq. 2.2) fort∈(0,2T ) and findϕh

∣∣
t=2T . The question

arises: how to estimate the difference between the prognos-
tic valueϕh

∣∣
t=2T and the exact (true) valuēϕ

∣∣
t=2T ? Very

often, the value of this difference may show a quality of the
prediction: the less is the norm of the difference the better
is the quality of the prediction. Another important question
is what is the behaviour of the prediction error if we change
one model of the form Eq. (2.2) to another (that is, with re-
spect toh). By changingh, we could change a “quality of
the model” ( for example, in finite-dimensional approxima-
tions, by deminishingh we have usually a model of a better
accuracy, i.e. of a better “quality”).

Here, assuming that the solution of the problem (Eqs. 2.4–
2.6) exists, we study the mentioned questions using the prop-
erties of the Hessian of the misfit functional and singular vec-
tors of the specific response operators.

3 Error equation and Hessian

The system (Eqs.2.4–2.6) with the three unknowns
ϕh, ϕ∗h, uh may be treated as an operator equation of the
form

F(Uh, Ud) = 0, (3.1)

whereUh=(ϕh, ϕ∗h, uh), Ud=(u
h
0, ϕobs).

Let us project the problem Eq. (2.1) onto the difference
spaceXh:{

∂ϕ̄h
∂t

= (F (ϕ̄))h, t ∈ (0, T )
ϕ̄h
∣∣
t=0 = ūh,

(3.2)
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where the lower subscripth means the projection, for exam-
ple, ϕ̄h=(ϕ̄)h is the projection of the exact solution̄ϕ onto
Xh. This means that we consider the problem (Eq. 2.1) at
mesh points.

Let us introduce the functions

ξh1 =uh0−ūh, ξ
h
2 =ϕobs−C

hϕ̄h.

The functionsξh1 andξh2 play the roles of a background error
and an observation error, respectively. The problem (Eq. 3.2)
may be written in the form:{

∂ϕ̄h
∂t

= F h(ϕ̄h)− ξh3 , t ∈ (0, T )
ϕ̄h
∣∣
t=0 = ūh,

(3.3)

whereξh3 =F h(ϕ̄h)−(F (ϕ̄))h is the approximation error of
the operatorF on the exact solution̄ϕ. The functionξh3 plays
the role of a model error. Together with Eq. (3.3), the follow-
ing system is satisfied:{

−
∂ϕ∗

∂t
− (F h

′
(ϕ̄h))

∗ϕ∗
= −Ch

∗
(Chϕ̄h − Chϕ̄h),

ϕ∗
∣∣
t=T

= 0,
(3.4)

α(ūh − ūh)− ϕ∗
|t=0 = 0 (3.5)

with ϕ∗
=0. Note that Eq. (3.4) is just like Eq. (2.5) except

thatϕobs=Chϕ̄h, which implies that that the solution in finite
dimensional Hilbert space is exactly mapped to the obser-
vations. The same is true concerning Eqs. (3.5) and (2.6):
Eq. (3.5) is just like Eq. (2.6) except thatuh0=ūh, which im-
plies that the background state coincides with the exact solu-
tion in finite dimensional Hilbert space. We introduce these
“trivial” Eqs. (3.4) and (3.5) artificially, in order to subtract
then Eqs. (3.3)–(3.5) from Eqs. (2.4)–(2.6) and to obtain the
system for the errors.

We haveuh0=ūh+ξ
h
1 , ϕobs=C

hϕ̄h+ξ
h
2 , ξ

h
1 ∈Xh, ξh2 ∈Yobs .

Let δϕh be an error of the model solution defined at mesh
points: δϕh=ϕh−ϕ̄h, and δuh be the initial-value error:
δuh=uh − ūh. Then, subtracting Eqs. (3.3)–(3.5) from
Eqs. (2.4)–(2.6) and eliminating the second-order terms, we
get forδϕh, δuh the system:{
∂δϕh

∂t
− F h

′
(ϕ̄h)δϕ

h
= ξh3 , t ∈ (0, T ),

δϕh|t=0 = δuh,
(3.6)


−
∂ϕ∗h

∂t
− (F h

′
(ϕ̄h))

∗ϕ∗h
= (F h

′′
(ϕ̄h)δϕ

h)∗ϕ∗
−

−Ch
∗
(Chδϕh − ξh2 ),

ϕ∗h
∣∣
t=T

= 0,

(3.7)

α(δuh − ξh1 )− ϕ∗h
|t=0 = 0. (3.8)

The problem (Eqs. 3.6–3.8) is a linear data assimilation
problem; forϕ∗

=0 it is equivalent to the following minimiza-
tion problem: findu andϕ such that
∂ϕ
∂t

− F h
′
(ϕ̄h)ϕ = ξh3 , t ∈ (0, T )
ϕ
∣∣
t=0 = u

S1(u) = inf
v
S1(v),

(3.9)

where

S1(u) =
α

2
‖u− ξh1 ‖

2
Xh

+
1

2
‖Chϕ − ξh2 ‖

2
Yobs

. (3.10)

Consider the HessianH of the functional (Eq.3.10); it is
defined by the successive solutions of the following problems
(e.g.Le Dimet et al., 2002a):{
∂ψ
∂t

− F h
′
(ϕ̄h)ψ = 0, t ∈ (0, T ),
ψ |t=0 = v,

(3.11)

{
−
∂ψ∗

∂t
− (F h

′
(ϕ̄h))

∗ψ∗
= −Ch

∗
Chψ, t ∈ (0, T )

ψ∗
∣∣
t=T

= 0,
(3.12)

Hv = αv − ψ∗
|t=0. (3.13)

Below we introduce three auxiliary operatorsR1, R2, R3.
Let R1=αE, whereE is the identity operator inXh. Let us
introduce the operatorR2 : Yobs→Xh acting on the functions
g∈Yobs according to the equation

R2g = θ∗
|t=0, (3.14)

whereθ∗ is the solution to the adjoint problem{
−
∂θ∗

∂t
− (F h

′
(ϕ̄h))

∗θ∗
= Ch

∗
g, t ∈ (0, T )

θ∗
∣∣
t=T

= 0.
(3.15)

We introduce also the operatorR3 : Y h→Xh defined suc-
cessively by the equations:{
∂θ1
∂t

− F h
′
(ϕ̄h)θ1 = q, q ∈ Y,

θ1|t=0 = 0,
(3.16)

{
−
∂θ∗

1
∂t

− (F h
′
(ϕ̄h))

∗θ∗

1 = −Ch
∗
Chθ1, t ∈ (0, T )

θ∗

1

∣∣
t=T

= 0,
(3.17)

R3q = θ∗

1 |t=0. (3.18)

From Eqs. (3.11)–(3.18) we conclude that the system
(Eqs. 3.6–3.8) is equivalent to the single equation forδuh:

Hδuh = R1ξ
h
1 + R2ξ

h
2 + R3ξ

h
3 . (3.19)

The HessianH acts inXh with domain of definition
D(H)=Xh, it is self-adjoint and non-negative. Ifα>0, the
operatorH is positive definite (in the caseYobs=Y h, Ch=E,
the operatorH is positive definite even ifα=0). The follow-
ing estimate is valid:

(Hv, v)Xh ≥ µmin(v, v)Xh , ∀v ∈ Xh, (3.20)

whereµmin is the least eigenvalue of the operatorH , and
µmin≥α.

The spectrum of the operatorH is defined by the spec-
trum of the operatorCh

∗
Ch through the Rayleigh relation

(Hv, v)/(v, v) (e.g.Dunford and Schwartz, 1963). From the
equality

(Hv, v)Xh = α(v, v)Xh + (Chψ,Chψ)Yobs , (3.21)
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it is easily seen that the spectrum bounds of the HessianH

are defined by

µmin = α + inf
v∈Xh

(Ch
∗
Chψ,ψ)Yobs

(v, v)Xh
,

µmax = α + sup
v∈Xh

(Ch
∗
Chψ,ψ)Yobs

(v, v)Xh
,

whereψ is the solution to Eq. (3.11).
Thus, the operatorCh

∗
Ch plays an important role for

the spectrum of the operatorH . If the operatorCh
∗
Ch

is ill-conditioned, then the operatorH may also be ill-
conditioned, and this should be taken into account when solv-
ing Eq. (3.19).

In the case whenF h
′
(ϕ̄h)=A is a t-independent operator,

the Eqs. (3.11)–(3.13) imply

ψ = eAt , ψ∗
= −

T∫
t

e−A
∗(t−s)Ch

∗
Chψds,

Hv = αv +

T∫
0

eA
∗sCh

∗
CheAsvds, v ∈ Xh.

Hence,

H = αE +

T∫
0

eA
∗sCh

∗
CheAsds. (3.22)

Therefore, in this case, the operatorCh
∗
Ch defines the Hes-

sianH explicitly.
As follows from Eq. (3.19), the errorδuh of the optimal

solution depends on the errorsξh1 , ξ
h
2 , ξ

h
3 linearly and contin-

uously. The influence of the errorsξh1 , ξ
h
2 , ξ

h
3 on the value of

δuh is determined by the operatorsH−1R1, H
−1R2, H

−1R3,
respectively. The values of the norms of these operators may
be considered as an influence criteria: the less is the norm
of the operatorH−1Ri , the less impact onδuh is given by
the corresponding errorξhi . This criteria may be used also to
choose the regularization parameterα (Tikhonov et al., 1995;
Morozov, 1987).

4 Fundamental control functions for error analysis

Since the model (Eq. 2.2) is finite-dimensional, the Hessian
H has a complete orthonormal system inXh of eigenfunc-
tionsvk corresponding to the eigenvaluesµk:

Hvk = µkvk, (4.1)

where (vk, vl)X=δkl, k, l=1, 2, . . ., and δkl is the Kro-
necker delta. The singular value decomposition ofH coin-
cides with the eigenvalue decomposition:H=UDU∗, where
D=diag(µ1, µ2, . . .) is a diagonal martix, andU is the ma-
trix of eigenvectors ofH .

It is easily seen that the eigenvalue problem (Eq. 4.1) is
equivalent to the system:{
∂ϕk
∂t

− F h
′
(ϕ̄h)ϕk = 0, t ∈ (0, T ),
ϕk|t=0 = vk,

(4.2)

{
−
∂ϕ∗

k
∂t

− (F h
′
(ϕ̄h))

∗ϕ∗

k = −Ch
∗
Chϕk, t ∈ (0, T )

ϕ∗

k

∣∣
t=T

= 0,
(4.3)

αvk − ϕ∗

k |t=0 = µkvk. (4.4)

By the analogy with the Poincaré-Steklov operator theory
(Lebedev and Agoshkov, 1983), we say that the system of
functions {ϕk, ϕ

∗

k , vk} satisfying (Eqs. 4.2–4.4) is the sys-
tem of “fundamental control functions”. For data assimila-
tion problems, these functions were introduced byShutyaev
(1995).

Using the fundamental control functions, we can obtain
the solution of the error Eq. (3.19) in the explicit form. Equa-
tion (3.19) is equivalent to the system (Eqs. 3.6–3.8) and may
be written as the following system:{
∂ψ
∂t

− F h
′
(ϕ̄h)ψ = 0, t ∈ (0, T ),
ψ |t=0 = δuh,

(4.5)

{
−
∂ψ∗

∂t
− (F h

′
(ϕ̄h))

∗ψ∗
= −Ch

∗
Chψ, t ∈ (0, T )

ψ∗
∣∣
t=T

= 0,
(4.6)

αδuh − ψ∗
|t=0 = P, (4.7)

where P=R1ξ
h
1 +R2ξ

h
2 +R3ξ

h
3 is the right-hand side of

Eq. (3.19).
The solutionψ,ψ∗, δuh of the system (Eqs. 4.5–4.7) may

be represented in the form:

ψ =

∑
k

akϕk, ψ
∗

=

∑
k

akϕ
∗

k , δu
h

=

∑
k

akvk, (4.8)

whereϕk, ϕ∗

k , vk are the fundamental control functions de-
fined by Eqs. (4.2)–(4.4),ak=(P, vk)Xh/µk.

From Eq. (4.8), we have the representation for the Fourier
coefficients(δuh)k of the errorδuh:

(δuh)k = ak =
1

µk
(R1ξ

h
1 + R2ξ

h
2 + R3ξ

h
3 , vk)Xh . (4.9)

Note that

(R1ξ
h
1 , vk)Xh = α(ξh1 , vk)Xh . (4.10)

By definition ofR2, R3,

(R2ξ
h
2 , vk)Xh = (θ∗

∣∣
t=0, vk)Xh ,

(R3ξ
h
3 , vk)Xh = (θ∗

1

∣∣
t=0, vk)Xh ,

whereθ∗ is the solution of Eq. (3.15) forg=ξh2 , andθ1, θ
∗

1
are the solutions of Eqs. (3.16)–(3.17) forq=ξh3 . From
Eqs. (3.15) and (4.2) we get

(θ∗
∣∣
t=0, vk)Xh = (Ch

∗
ξh2 , ϕk)Y h .
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Hence,

(R2ξ
h
2 , vk)Xh = (ξh2 , C

hϕk)Yobs . (4.11)

Analogously, from Eqs. (3.17) and (4.2),

(θ∗

1

∣∣
t=0, vk)Xh = (−θ1, C

h∗
Chϕk)Y h .

Further, Eqs. (3.16) and (4.3) give

(θ1,−C
h∗
Chϕk)Y h = (ξh3 , ϕ

∗

k )Y h .

Hence,

(R3ξ
h
3 , vk)Xh = (ξh3 , ϕ

∗

k )Y h . (4.12)

From Eqs. (4.9)–(4.12) we obtain the expression for the
Fourier coefficients(δuh)k of the errorδu of the optimal so-
lution through the errorsξh1 , ξ

h
2 , ξ

h
3 :

(δuh)k =
α

µk
(ξh1 , vk)Xh +

1

µk
(ξh2 , C

hϕk)Yobs+

+
1

µk
(ξh3 , ϕ

∗

k )Y h , (4.13)

where{ϕk, ϕ
∗

k , vk} are the fundamental control functions de-
fined by Eqs. (4.2)–(4.4).

Expression (4.13) shows that the fundamental control
functions play the role of “sensitivity functions”; they are the
weight-functions for the corresponding errorsξh1 , ξ

h
2 , ξ

h
3 in

the representation (4.13). Note that the fundamental control
functions{ϕk, ϕ

∗

k , vk} do not depend on the structure of the
errorsξh1 , ξ

h
2 , ξ

h
3 and may be calculated beforehand for each

k if necessary.
For self-adjointt-independent operatorF h

′
(ϕ̄h), the fun-

damental control functions may be found in the explicit form
(Shutyaev, 1995). The application of fundamental control
functions to the data assimilation problem in hydrology, and
some numerical results are given byLe Dimet et al.(2002b).

5 Singular vectors and error analysis

In this section, we study the sensitivity of the optimal initial-
value function to the input data using the singular vectors of
the specific response operators in the error Eq. (3.19). We
may rewrite Eq. (3.19) as

δuh = H−1R1ξ
h
1 +H−1R2ξ

h
2 +H−1R3ξ

h
3 . (5.1)

Hence,

‖δuh‖Xh ≤ ‖T1ξ
h
1 ‖Xh + ‖T2ξ

h
2 ‖Xh + ‖T3ξ

h
3 ‖Xh , (5.2)

whereTi=H−1Ri, T1 : Xh→Xh, T2 : Yobs→Xh, T3 :

Y h→Xh.
Each summand in Eq. (5.2) determines the impact given

by the correspoding errorξi . We have
‖T1ξ

h
1 ‖Xh ≤

√
‖T ∗

1 T1‖‖ξ
h
1 ‖Xh ,

‖T2ξ
h
2 ‖Xh ≤

√
‖T ∗

2 T2‖‖ξ
h
2 ‖Yobs ,

‖T3ξ
h
3 ‖Xh ≤

√
‖T ∗

3 T3‖‖ξ
h
3 ‖Y h ,

(5.3)

whereT ∗

1 : Xh→Xh, T ∗

2 : Xh→Yobs, T
∗

3 : Xh→Y h are
the adjoints toTi, i=1,2,3, and thei-th inequality becomes
an equality whenξhi is the singular vector ofTi correspond-
ing to the largest singular valueσ 2

max=‖T ∗

i Ti‖. The values
ri=

√
‖T ∗

i Ti‖ may be considered as “sensitivity coefficients”
which clearly demonstrate the measure of influence of the
corresponding error upon the optimal solution. The higher
the relative sensitivity coefficient, the more effectual is the
error in question.

From Eqs. (5.1)–(5.3), we have

‖δuh‖Xh ≤

√
‖T ∗

1 T1‖‖ξ
h
1 ‖Xh +

√
‖T ∗

2 T2‖‖ξ
h
2 ‖Yobs+

+

√
‖T ∗

3 T3‖‖ξ
h
3 ‖Y h = r1‖ξ

h
1 ‖Xh + r2‖ξ

h
2 ‖Yobs + r3‖ξ

h
3 ‖Y h .

(5.4)

The HessianH defined by Eqs. (3.11)–(3.13) has a com-
plete orthonormal system inX of eigenfunctionsvk corre-
sponding to the eigenvaluesµk: Hvk=µkvk, (vk, vl)X=δkl ,
k, l=1, 2, . . . The least eigenvalueµmin of H is positive if
α>0. We also assume that it is positive forα=0 (it is true,
for example, in the caseYobs=Y h, Ch=E).

Consider the operatorT1. SinceT1=H
−1R1=αH

−1
=T ∗

1 ,
the singular vectors ofT1 are the eigenvectorsvi of the Hes-
sianH , and the corresponding sensitivity coefficient is equal
to

r1 =

√
‖T ∗

1 T1‖ =
α

µmin
. (5.5)

Note thatr1≤1 (sinceµmin≥α).
For the operatorT2 : Yobs→Xh the following statement is

valid (Le Dimet et al., 2002b). The singular valuesσ 2
k and the

corresponding orthonormal (right) singular vectorswk∈Yobs
of the operatorT2 are defined by

σ 2
k =

µk − α

µ2
k

, wk =
1

√
µk − α

Chϕk, (5.6)

whereµk are the eigenvalues of the HessianH , andϕk are
the fundamental control functions defined by Eq. (4.2). The
left singular vectors ofT2 coincide with the eigenvectorsvk
of H :

T2T
∗

2 vk = σ 2
k vk, k = 1, 2, . . . (5.7)

Thus, the sensitivity coefficientr2=
√

‖T ∗

2 T2‖ is defined by
the equation:

r2 = max
k

√
µk − α

µk
. (5.8)

The equality‖T2ξ2‖Xh=r2‖ξ
h
2 ‖Yobs holds if ξ2=wk0, where

wk0 is the singular vector ofT2 corresponding to the largest
singular valueσ 2

k0
=r2

2 . If α=0, the sensitivity coefficientr2
is defined by the equation

r2 =
1

√
µmin

,
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whereµmin is the least eigenvalue of the HessianH . Note
thatµmin depends onh, and very often, in practice,H is ill-
conditioned such thatµmin→0 ash→0. In this case,r2→∞,
and the error may be very large.

Consider now the operatorT3=H
−1R3. To determine the

sensitivity coefficientr3=
√

‖T ∗

3 T3‖, we need to deriveR∗

3.
Forq∈Y h, p∈Xh, we have from Eqs. (3.16)–(3.18):

(R3q, p)Xh = (θ∗

1 |t=0, p)Xh =

= −(Ch
∗
Chθ1, φ)Y h = −(Chθ1, C

hφ)Yobs ,

whereθ1, θ
∗

1 are the solutions to Eqs. (3.16)–(3.17), andφ is
the solution to Eq. (3.11) withv=p. Further,

(R3q, p)Xh = −(θ1, C
h∗
Chφ)Y h = (q, φ∗)Y h

andR∗

3p=φ∗, whereφ∗ is the solution to the adjoint prob-
lem:{

−
∂φ∗

∂t
− (F h

′
(ϕ̄h))

∗φ∗
= −Ch

∗
Chφ, t ∈ (0, T )

φ∗
∣∣
t=T

= 0.
(5.9)

The operatorR3R
∗

3 : Xh→Xh may be defined as follows:
for given p∈Xh find φ as the solution of Eq. (3.11) with
v=p, find φ∗ as the solution of Eq. (5.9), and forq=φ∗

find θ1, θ
∗

1 as the solutions of Eqs. (3.16)–(3.17); then put
R3R

∗

3p=θ∗

1 |t=0.
Therefore, the operatorT3T

∗

3 =H−1R3R
∗

3H
−1 is defined

by the successive solutions of the following problems (for
givenv∈Xh):

Hp = v, (5.10){
∂φ
∂t

− F h
′
(ϕ̄h)φ = 0, t ∈ (0, T ),
φ|t=0 = p,

(5.11)

{
−
∂φ∗

∂t
− (F h

′
(ϕ̄h))

∗φ∗
= −Ch

∗
Chφ, t ∈ (0, T )

φ∗
∣∣
t=T

= 0.
(5.12)

{
∂θ1
∂t

− F h
′
(ϕ̄h)θ1 = φ∗, t ∈ (0, T )
θ1|t=0 = 0,

(5.13)

{
−
∂θ∗

1
∂t

− (F h
′
(ϕ̄h))

∗θ∗

1 = −Ch
∗
Chθ1, t ∈ (0, T )

θ∗

1

∣∣
t=T

= 0,
(5.14)

Hw = θ∗

1

∣∣
t=0, (5.15)

then

T3T
∗

3 v = w, (5.16)

and we have for the sensitivity coefficientr3:

r3 =

√
‖T3T

∗

3 ‖. (5.17)

The algorithm (Eqs. 5.10–5.17) can be used to compute
the sensitivity coefficientr3 numerically.

6 Specific case

To compare the sensitivity coefficientsr1, r2, r3 we con-
sider a specific case. SupposeYobs=Y h, Ch=E (the
identity operator), andF h

′
(ϕ̄h)=(F

h′
(ϕ̄h))

∗
=−A is a t-

independent self-adjoint operator such thatA generates an
orthonormal basis inXh consisting of eigenfunctionsvk:
Avk=λkvk, (vk, vj )X=δkj , whereλk are the corresponding
eigenvalues ofA. Then the eigenfunctions of the HessianH
coincide with the eigenfunctionsvk, and the eigenvaluesµk
are defined byShutyaev(1995):

µk = α +
1 − e−2λkT

2λk
.

(Note that ifλk = 0, we putµk = α + T , by continuity.) In
this case

µmin = α +
1 − e−2λmaxT

2λmax
,

whereλmax is the largest eigenvalue ofA. From Eqs. (5.5)
and (5.8), we get

r1 = α

(
α +

1 − e−2λmaxT

2λmax

)−1

,

r2 = max
k

√
1 − e−2λkT

2λk

(
α +

1 − e−2λkT

2λk

)−1

. (6.1)

To find r3 consider the operatorT3T
∗

3 defined by the
Eqs. (5.10)–(5.17). Forv=vk we get

p =
1

µk
vk, φ =

1

µk
e−λk tvk, φ

∗
= −

1

µk
eλk t

T∫
t

e−2λksvkds,

θ1 = −
1

µk
e−λk t

t∫
0

e2λkξ

T∫
ξ

e−2λksvkdsdξ,

θ∗

1 =
1

µk

T∫
t

e−λk(θ−t)e−λkθ

θ∫
0

e2λkξ

T∫
ξ

e−2λksvkdsdξdθ,

w =
1

µk
θ∗

1

∣∣∣
t=0

=
1

µ2
k

T∫
0

e−2λkθ

θ∫
0

e2λkξ

T∫
ξ

e−2λksvkdsdξdθ.

Then, from Eq. (5.16),

T3T
∗

3 vk = σ 2
k vk, k = 1, 2, . . . ,

where

σ 2
k =

1

µ2
k

T∫
0

e−2λkθ

θ∫
0

e2λkξ

T∫
ξ

e−2λksdsdξdθ =
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=
1

µ2
k

T∫
0

e2λkξ

( T∫
ξ

e−2λksds

)2

dξ =

=
1

(2µkλk)2

(
1 − e−4λkT

2λk
− 2T e−2λkT

)
> 0.

Thus,vk are the left singular values ofT3 corresponding to
the singular valuesσ 2

k . The right singular vectors ofT3 sat-
isfy the equation

T ∗

3 T3wk = σ 2
kwk, k = 1,2, . . .

and are defined by

wk =
1

σk
T ∗

3 vk.

Due to Eqs. (4.2)–(4.3),

wk =
1

σk
R∗

3H
−1vk =

1

σkµk
R∗

3vk =
1

σkµk
ϕ∗

k

and

(wk, wl)Y =
1

σkµkσlµl
(ϕ∗

k , ϕ
∗

l )Y h =
1

σkµkσlµl
×

×(R∗

3vk, R
∗

3vl)Y h =
1

σkσl
(H−1R3R

∗

3H
−1vk, vl)Xh =

=
1

σkσl
(T3T

∗

3 vk, vl)Xh =
σk

σl
(vk, vl)Xh = δkl .

Therefore, the singular valuesσ 2
k of the operatorT3 are de-

fined by the equation:

σ 2
k =

1

(2µkλk)2

(
1 − e−4λkT

2λk
− 2T e−2λkT

)
, (6.2)

whereµk=α+(1−e−2λkT )/(2λk). The left singular vectors
of T3 coincide with the eigenvectorsvk, and the correspond-
ing orthonormal right singular vectorswk∈Y are defined as

wk =
1

σkµk
ϕ∗

k , ϕ∗

k (t) =
1

2λk
eλk t (e−2λkT − e−2λk t )vk,

where ϕ∗

k are the fundamental control functions satisfy-
ing Eqs. (4.2)–(4.4). Thus, the sensitivity coefficient
r3=

√
‖T ∗

3 T3‖ is defined by the equation:

r3 = max
k

1

2µk|λk|

√
1 − e−4λkT

2λk
− 2T e−2λkT . (6.3)

From Eqs. (6.1), (6.3), one can derive the typical be-
haviour of the sensitivity coefficientsr1, r2, r3, depending on
the parameterα and the mesh sizeh. Let us compare the
coefficientsr1, r2, andr3. It is easily seen that

r1 ≤ 1, r2 ≤
1

2
√
α
.
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Fig. 1. Sensitivity coefficientsri , i=1,2,3, for h=10−1.

Moreover, r1→0 asα→0, whereasr2 may be very large,
becauser2≤(

√
µmin)

−1 and forα=0 we have

r2 =
1

√
µmin

=

√
2λmax

1 − e−2λmaxT
,

and ifλmax→∞ ash→0, thenr2→∞.
For r3, from Eq. (6.3) we can conclude thatr3 is always

bounded even ifα→0. Forα=0 we have

r3 = max
k

∣∣∣1 − e−2λkT
∣∣∣−1
√

1 − e−4λkT

2λk
− 2T e−2λkT .

Since the function

f (λ) =

(
1 − e−2λT

)−2
(

1 − e−4λT

2λ
− 2T e−2λT

)

is bounded forλ∈(−∞,+∞), the sensitivity coefficientr3
will be bounded whenh→0.

So, with the regularization parameterα>0, all the co-
efficients r1, r2, r3 are bounded even ifh→0. The sit-
uation differs whenα→0. If α=0, then r1=0, r3 is
bounded, butr2 may be very large (ash→0). This
is demonstrated by Figs. 1–2 which present the sensi-
tivity coefficients versus the parameterα with h=10−1

and h=10−2 for the case whenT=1 and λk are an ap-
proximation of the eigenvalues of the 1D Laplace opera-
tor given by the equation (Lebedev and Agoshkov, 1983):
λk=

4
h2 sin2 πkh

2 , k=1, 2, ..., n−1, h=1/n. The figures
show that for smallα the optimal solution is most sensitive
to the observation error.

Such a typical behaviour of the sensitivity coefficients
r1, r2, r3 was also noticed in more general cases. Some nu-
merical computations of sensitivity coefficients for the data
assimilation problem in hydrology are given byLe Dimet et
al. (2002b).

Thus, the sensitivity of the optimal solution to the input er-
rors is determined by the value of the sensitivity coefficients
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Fig. 2. Sensitivity coefficientsri , i=1, 2,3, for h=10−2.

which are the norms of the specific response operators relat-
ing the error of the input to the error of the optimal initial-
value function. The maximum error growth for the output is
given by the singular vectors of the corresponding response
operator. The singular vectors are the fundamental control
functions; they form complete orthonormal systems in spe-
cific functional spaces and may be used for error analysis.

Remark. We have considered a constant weight on the
initial condition penalty in the objective functionS. This
implies white noise. It is not a limitation of the method, it
is a simplification for ease of presentation. In practice, in
variational assimilation, “regularization” is achieved through
a whole covariance matrix, not only a numerical coefficient
α. In this case, the Hessian will involve the covariance ma-
trix instead ofα, and equations for the sensitivity coefficients
r1, r2, r3 will be more complicated, defined through the Hes-
sian and this covariance matrix.

7 Prediction error

Having solved the system (Eqs. 2.4–2.6) fort∈(0, T ), with
the initial-condition functionuh we can make a prediction
on the interval(0,2T ), i.e. solve the problem (Eq. 2.2) for
t∈(0, 2T ) and findϕh

∣∣
t=2T . To estimate the difference be-

tween the prognostic valueϕh
∣∣
t=2T and the exact (true) value

ϕ̄
∣∣
t=2T we can use the results of Sect. 5 concerning the error

δuh=uh−ūh.
Having solved Eq. (3.19), we findδuh=uh−ūh. To predict

the errorδϕh=ϕh−ϕ̄h at t=2T , we should solve the problem
(Eq. 3.6) fort∈(0, 2T ). Since the model (Eq. 2.3) is finite-
dimensional, the following apriori estimate is valid:

‖δϕh‖
Ỹ h

+ ‖δϕh
∣∣
t=2T ‖Xh ≤ c̃1(‖δu

h
‖Xh + ‖ξh3 ‖

Ỹ h
), (7.1)

where c̃1=const>0, Ỹ h=L2(0, 2T ;Xh). Taking into ac-
count Eq. (5.4), we get

‖ϕh
∣∣
t=2T−ϕ̄h

∣∣
t=2T ‖Xh ≤

≤ c̃1(r1‖ξ
h
1 ‖Xh + r2‖ξ

h
2 ‖Yobs + r3‖ξ

h
3 ‖Y h + ‖ξh3 ‖

Ỹ h
) ≤

≤ c̃1(r1‖ξ
h
1 ‖Xh + r2‖ξ

h
2 ‖Yobs + (r3 + 1)‖ξh3 ‖

Ỹ h
), (7.2)

where r1, r2, r3 are the sensitivity coefficients defined by
Eqs. (5.5), (5.8), (5.17), respectively.

Due to Eq. (7.2), the sensitivity coefficientsr1, r2, r3 show
the effect of the errorsξ1, ξ2, ξ3 on the prediction errorδϕh.
One can use Eq. (7.2) to study the behaviour of the error
ϕh
∣∣
t=2T−ϕ̄h

∣∣
t=2T with respect to the quality of the model

(i.e. with respect toh).
Sinceξh3 =F h(ϕ̄h)−(F (ϕ̄))h is the approximation error of

the operatorF on the exact solution̄ϕ, the following estimate
may be supposed to be valid:

‖ξh3 ‖
Ỹ h

≤ c2h
k, k > 0, c2 = const > 0. (7.3)

To illustrate the estimate (Eq. 7.2), consider the spe-
cific cases from Sect. 6. From the results of Sect. 6, we
can conclude that with the regularization parameterα>0,
all the coefficientsr1, r2, r3 are bounded (even ifh→0).
Since (r3 + 1)‖ξh3 ‖

Ỹ h
→0 as h→0, the prediction error

ϕh
∣∣
t=2T−ϕ̄h

∣∣
t=2T will be determined byξh1 and ξh2 . If

ξh1 , ξ
h
2 →0 ash→0, thenϕh

∣∣
t=2T−ϕ̄h

∣∣
t=2T will also go to

zero withh→0. So, the prediction error is stable with re-
spect to the errorsξ1, ξ2, ξ3 if α>0.

The situation changes whenα→0. Without regularization,
whenα=0, we haver1=0, r3 is bounded, butr2 may be very
large (ash→0). Forh→0, we have again(r3+1)‖ξh3 ‖

Ỹ h
→0,

so the prediction error is stable with respect toξh3 . However,
this error may be unstable with respectξh2 : if ‖ξh2 ‖Yobs→0 as
h → 0, it does not mean thatr2‖ξh2 ‖Yobs→0, becauser2 may
go to∞. This is one more reason to introduce a regulariza-
tion when solving the original data assimilation problem.

The above analysis shows that the prediction error is most
sensitive to the observation errors. Therefore, the effect of
the observation errors in data assimilation is of great im-
portance and should be taken into account when solving the
problem.

8 Conclusions

The impact of the input errors on the prediction via data as-
similation is due to the error of the optimal initial-value func-
tion. The sensitivity of the optimal solution to the input errors
may be determined by the value of the sensitivity coefficients
which are the norms of the specific response operators relat-
ing the error of the input to the error of the optimal initial-
value function. The maximum error growth for the output is
given by the singular vectors of the corresponding response
operator. The singular vectors are the fundamental control
functions which form complete orthonormal systems in spe-
cific functional spaces and may be used for error analysis.
The prediction error is most sensitive to the observation er-
rors, which effect is of great importance and should be taken
into account when solving the problem.
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Appendix: List of main notations

ϕ̄ is the exact solution of the original model
ū is the exact initial-value function
F is a nonlinear operator of the model
t is time variable
T is the length of the time interval
ϕh is an approxomation of the model solution
uh is an approximation of the initial-value function
F h is an approximation of the nonlinear operatorF

X is a Hilbert space with the scalar product(·, ·)X
Xh is a difference analogue ofX
Y=L2(0, T ;X) is the space of abstract functionsf (t) with
values inX; the scalar product and the norm are given by

(f, g)Y=

T∫
0

(f (t), g(t))Xdt, ‖f ‖Y=(f, f )
1/2
Y

ϕobs is the observational-data function (observation vector)
uh0 is the background state
Yobs is an observation space
Ch is an observation operator
S is the objective (cost) function
Ch

∗
is the operator adjoint toCh

α is a regularization parameter
ϕ̄h is the projection of the exact solution ontoXh

ūh is the projection of the exact initial function ontoXh

ξh1 is a background error
ξh2 is an observation error
ξh3 is a model error
δϕh is the error of the model solution:δϕh=ϕh−ϕ̄h
δuh is the initial-value error:δuh=uh−ūh
H is the Hessian of the linear data assimilation problem
µk are the eigenvalues of the HessianH
vk are the eigenfunctions of the HessianH
ϕk, ϕ

∗

k , vk are the system of fundamental control functions
ri are sensitivity coefficients defined byri=

√
‖T ∗

i Ti‖

Ti are response operators,i=1, 2, 3.
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