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1Institute of Geophysics and Extraterrestrial Physics, Technical University of Braunschweig, Mendelssohnstr. 3, 38106
Braunschweig, Germany
2Max-Planck-Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany
3Department of Earth System Science and Technology, Kyushu University, 816-8580, Kasuga, Japan

Received: 28 March 2007 – Revised: 2 July 2007 – Accepted: 2 July 2007 – Published: 9 July 2007

Abstract. Waves in the foreshock region are studied on the
basis of a hypothesis that the linear process first excites the
waves and further wave-wave nonlinearities distribute scatter
the energy of the primary waves into a number of daughter
waves. To examine this wave evolution scenario, the disper-
sion relations, the wave number spectra of the magnetic field
energy, and the dimensionless cross helicity are determined
from the observations made by the four Cluster spacecraft.
The results confirm that the linear process is the ion/ion right-
hand resonant instability, but the wave-wave interactions are
not clearly identified. We discuss various reasons why the
test for the wave-wave nonlinearities fails, and conclude that
the higher order statistics would provide a direct evidence for
the wave coupling phenomena.

1 Introduction

1.1 Origin of foreshock waves

The physics of the collisionless shock waves is one of the
most interesting subjects in space plasma. While the shock
waves in the ordinary gas dynamics dissipate the kinetic en-
ergy of the supersonic flow into the heat on a scale within
a few mean free paths of particles, the collisionless shock
waves exhibit a variety of dissipation mechanisms in a dilute
plasma. When the flow speed is sufficiently large compared
to the Alfvén speed, the collisionless shock waves specularly
reflect a portion of the incoming charged particles (super-
critical shock). The reflected particles either gyrate about
the magnetic field just in front of the shock wave when it is
quasi-perpendicular to the shock normal direction, or stream
toward upstream along the magnetic field when the field is
quasi-parallel to the shock normal. In the latter case the
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reflected particles form a field-aligned beam against the in-
coming flow. Although both the ions and the electrons can
be reflected at the shock, the ions play more important roles
in the shock dissipation. This is because the ions carry the
most of energy and momentum in the plasma. The back-
streaming ions “warn” the upstream plasma about the exis-
tence of the shock wave, and brake the upstream flow a little
before it reaches the shock wave. The back-streaming ions
encounter the incoming ion population and they form an un-
stable beam-beam velocity distribution (the incoming and the
reflected ions). The upstream plasma is therefore subject to
waves and turbulence in order to relax the unstable velocity
distribution. The region where the back-streaming ions exist
is called the foreshock, which is often accompanied by fluc-
tuations of the magnetic field and the plasma. The foreshock
itself belongs to one of the dissipation mechanisms of the col-
lisionless shock waves and provides pre-thermalization pro-
cesses before the plasma stream reaches the shock wave.

Some hints about the wave processes in the foreshock are
already given by the dispersion relations and the wave num-
ber spectra which are experimentally determined on the basis
of the four point measurements in space. (Narita et al., 2003,
2006; Narita and Glassmeier, 2005). The results of the dis-
persion analysis imply that a certain linear, micro-instability
process is operating and reorganizing the beam-beam veloc-
ity distribution. On the other hand turbulence-like energy
spectra are identified, suggesting that some nonlinear, wave-
wave interaction processes be also present. Yet it is not clear
how these processes are related to each other, or under what
conditions the transition from the linear process to the non-
linear process takes place. We therefore put a hypothesis
about the evolution of the foreshock waves. It consists of
two stages as follows.
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1.2 Stage 1 – parent wave excitation

We assume that the primary waves are excited by the ion/ion
right-hand resonant instability for the following reasons. In
the linearized Vlasov equation model, the field-aligned ion
beam injected into a plasma is subject to three kinds of elec-
tromagnetic micro-instabilities: right-hand resonant, left-
hand resonant, and non-resonant ion/ion instabilities. Here
the term “ion/ion” means the core ions and the beam ions.
These instabilities are well documented byGary (1993).
These instabilities are linear in the sense that the fluctuation
amplitude (or the envelope of the fluctuation) grows expo-
nentially as a function of time.

The right-hand instability stems from a resonance between
the ion beam and the right-hand circularly polarized wave
and it is the fastest growing under typical foreshock parame-
ters. The instability excites the waves propagating along the
magnetic field. The waves follow the magnetosonic/whistler
branch in the dispersion relation, which becomes the Alfvén
waves at the small wave number limit. Here we mean the
Alfv én waves by the ones that satisfy the dispersion rela-
tion ω=k‖VA, whereω denotes the frequency,k‖ the wave
number parallel to the mean magnetic field, andVA the
Alfv én speed. The maximum growth rate is typically at the
wave number|k‖VA/�p|≈0.1, where�p denotes the ion
cyclotron frequency. We assume protons for the ions (sub-
scriptp). In observations the waves are often termed as the
Alfv én waves, as they propagate along the background mag-
netic field. The experimentally determined dispersion rela-
tions confirm the magnetosonic/whistler branch (Narita et al.,
2003; Narita and Glassmeier, 2005).

The resonance between the left-hand polarized waves and
the ion beam is also possible, but it is easier to excite the
right-hand mode under cool beam conditions because at the
low thermal velocities of the beam there are only few ions
which can resonate with the left-hand mode. While the right-
hand and the left-hand resonant modes excite waves paral-
lel to the ion beam direction, the non-resonant mode excites
waves in the opposite direction. The non-resonant mode is
basically a firehose instability, caused by the inertia of the
fast ion beam exerting a centrifugal force on the bent mag-
netic field. This mode has a larger threshold to grow, since
it has to overcome the restoring forces of perpendicular pres-
sure.

1.3 Stage 2 – daughter wave excitation

When the primary wave amplitude exceeds a certain thresh-
old, excess power spills into the daughter waves at the ex-
pense of the primary wave. If the amplitude is increased
further, the daughter waves generate further daughter waves
successively. Hence doubling the wave amplitude may not
be stable any more but result in a cascade of daughter waves.
Such a process represents the wave-wave nonlinearities and
is referred to as the parametric instabilities.

The parametric instabilities themselves exhibit different
processes between the high and the lowβ regimes, where
β=pth/pm, the ratio of the thermal to the magnetic pres-
sure. The decay of circularly polarized, parallel-propagating
Alfv én waves with respect to the mean magnetic field
through the nonlinear interaction was first suggested by
Galeev et al.(1963) andSagdeev and Galeev(1969), where
a parent Alfv́en wave collapses into plasma density fluctua-
tions and a backward-propagating daughter Alfvén wave (de-
cay instability). This process was studied in detail using dis-
persion relations for ideal magnetohydrodynamics (MHD)
(Derby, 1978; Goldstein, 1978). However, Alfv́en waves
are also subject to “modulational instability”, where all the
daughter waves propagate in the same direction as the parent
wave (Mio et al., 1976; Mjølhus, 1976; Nariyuki and Hada,
2006a). These two instability processes have been system-
atically studied in the framework of the Hall-MHD (Longtin
and Sonnerup, 1986; Terasawa et al., 1986; Wong and Gold-
stein, 1986) and it was found that the dispersion plays an
important role and the different instability processes prefer
different plasmaβ regimes. While the decay instability is
more characteristic to the lowβ conditions, the modulational
instability dominates under the high-β conditions. Forβ of
the order of unity (β'1) the beat instability plays also an
important role (Hollweg, 1994).

For simplicity we assume the following scenario for the
second stage of the foreshock wave evolution. The parent
wave excited at the first stage by the right-hand resonant in-
stability is subject to the decay instability, generating back-
ward propagating waves (with respect to the parent wave di-
rection) in the lowβ regime, while it is subject to the modu-
lational instability, generating forward propagating waves in
the highβ regime (modulational instability). Therefore the
cascade of the daughter waves results in both forward and
backward propagating waves in the lowβ regime, and only
forward in the highβ regime.

1.4 Cross helicity

Examination on the above scenario is conveniently made by
investigating the cross helicity density, defined as

hc = v ·
B

√
µ0ρ0

, (1)

wherev, B, µ0, ρ0 denote the flow velocity, the magnetic
field, the permeability of free space, and the background
mass density, respectively. The cross helicity density mea-
sures the correlation between the velocity and the magnetic
field fluctuations, and its magnitude is maximized when the
fluctuations are the Alfv́enic, v∝±B. We introduce the
Elsässer variables

z±
= v ±

B
√

µ0ρ0
, (2)
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in which case the cross helicity density is written in the form

hc = E+
− E−, (3)

whereE±
=|z±

|
2. This means that the cross helicity is essen-

tially a measure of the energy difference between the two op-
positely propagating Alfv́en waves. The cross helicity den-
sity can be normalized to unity as

σc =
E+

− E−

E+ + E−
. (4)

For example,σc=1 means the presence of the forward prop-
agating (e.g. parallel to mean magnetic field) only, and vice
versa. In the following we callσc simply the cross helicity.

1.5 Test for the hypothesis

To test the hypothesis for the foreshock waves we assume
the Alfvénic fluctuations and determine the cross helicityσc

using the four point magnetic field data in the foreshock re-
gion ahead of the terrestrial bow shock. The cross helicity is
investigated under various conditions ofβ. We expect from
the hypothesis that the cross helicity is dependent on the val-
ues ofβ. The diminished cross helicity for lowerβ and the
enhanced cross helicity for higherβ, which results from the
wave-wave interaction model at the second stage of the wave
evolution.

In Sect. 2 we give brief introductions of the wave analysis
methods: the dispersion relations, the wave number spectra,
and the cross helicity. Those who are familiar with these
methods may skip into Sect. 3, where we present the statistics
of the cross helicity and its dependence onβ.

2 Wave analysis

2.1 Wave telescope estimator

The four point measurements enable one to determine the
spectral density matrix as function of frequencyω and wave
vectork,

E(ω, k) =

Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

 . (5)

While it is straightforward to determine the fluctuation am-
plitude atω simply by Fourier transforming the time series
data, the amplitude atk is not easily obtained by the Fourier
transform procedure because of the limited number of the
measurement points. It is, however, possible to determine the
matrix E(ω, k) when applying the so-called wave telescope
estimator,

E(ω, k) =

[
V† H† M−1 H V

]−1
. (6)

Here the matrixM is the 12×12 cross spectral density ma-
trix a function of frequency. It is determined by the measure-
ments of the magnetic field fluctuations as

M(ω) =
1

1ω
〈BB†

〉, (7)

where the symbol〈··〉 denotes the ensemble average and the
dagger † means the Hermitian conjugate.M consists of the
incorporated vectorB for each component of the magnetic
field fluctuations (the x-, y-, and z-directions) and for each
measurement point (spacecraft 1, · · · , 4),

B(ω) =


b1x

b1y

...

b4z

 . (8)

The matrixH is called the steering matrix, as it steers the
output matrixE for various wave vectorsk, and defined as

H(k) =


Ieik·r1

Ieik·r2

Ieik·r3

Ieik·r4

 , (9)

whereI denotes the 3×3 unit matrix, andr i the position vec-
tor of the measurements. The matrixV imposes a further
constraint on the spectral matrix, reflecting the fact that the
magnetic field is divergence-free. It is defined as

V(k) = I +
kk†

k2
, (10)

wherek=|k|. Its algorithm was tested on simulated data
to retrieve the input model. See, for example,Pinçon and
Lefeuvre(1991); Motschmann et al.(1996) andGlassmeier
et al.(2001). Derivation of Eq. (6) is shown in Appendix A.

We choose a coordinate system with the z axis aligned to
the mean magnetic field direction. The z axis is parallel to the
mean field when its sunward component is positive, and vice
versa, so that the z-axis is always oriented in the direction
away from the bow shock. We use the Earth-to-sun direction
projected into the plane perpendicular to the mean field as
the x-axis. Namely, our coordinate system is spanned by the
following unit vectors

ex = ey × ez (11)

ey = esun× eb (12)

ez =
Bx

|Bx |
eb, (13)

whereeb andesun denote the unit vectors in the mean mag-
netic field direction and toward the sun, respectively.Bx is
the sunward component of the magnetic field, i.e. in the GSE-
X direction.
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Table 1. The ion beta, the Alfv́en Mach number, the mean magnetic
field strength, and the plasma density.

Case βi MA B0 (nT) n0 (cm−3)

A 0.29 5.05 6.64 5.88
B 0.22 4.19 10.23 6.05
C 2.02 4.83 8.02 1.98

2.2 Dispersion relations

One of the useful applications of the wave telescope estima-
tor is to determine the dispersion relations from the observa-
tions. We compute the total wave powere(ω, k) by taking
trace of the matrixE,

e(ω, k) = tr E. (14)

We investigate the total wave powere at various frequencies
(in the spacecraft frame of reference) and wave vectors, and
identify the pairs of the frequency and the wave vector which
yield peaks in the total wave power. It is worthwhile to note
that the wave telescope estimator assumes the fluctuations as
a set of incoherent wave fields, and therefore it is subject to
interference, for example, when two waves possess exactly
the same frequency. The frequencies can be transformed
from the spacecraft frame frequencyωsc to the plasma rest
frame frequencyωre (co-moving with the plasma bulk flow)
using the Doppler relationωre=ωsc−k·V 0, whenk is deter-
mined by the wave telescope method andV 0 (the mean flow
velocity vector) is known.

We apply the dispersion analysis to the measurements pro-
vided by the four Cluster spacecraft (Escoubet et al., 2001).
The magnetic field measurements of the FGM instrument
(Balogh et al., 2001) are used to determine the pairs of the
frequency and the wave vector, and the ion measurements
of the CIS-HIA instrument (Rème et al., 2001) are used to
determine the mean flow velocity. Various kinds of curves
of the dispersion relations are identified in the foreshock re-
gion by this analysis. Figure 1 displays three distinct cases
of the dispersion curves for the field-aligned wave numbers,
ωre(kz). Hereafterωre is normalized to the proton cyclotron
frequency�p, andkz is normalized to the ion inertial wave
number�p/VA. The Alfvén speed is determined by the
magnetic field and the ion measurements for each time in-
terval. Table 1 summarizes the plasma and magnetic field
parameters for the three cases: the ion betaβi (assuming pro-
tons); the Alfv́en Mach numberMA; the mean magnetic field
strengthB0; and the plasma densityn0.

In the case A (16 February 2002, 07:00–07:30 UT) almost
all of the waves are identified in the direction away from the
shock. Only few waves propagate in the opposite direction at
very low frequencies (ωre'0). The dispersion branch starts
at (ωre, kz)=(0, 0) and extends solely in the anti-parallel di-

rection, keeping the phase speed almost at the Alfvén speed
vA at low frequencies,ωre/kz'vA. At ωre∼0.5 the disper-
sion branch starts to be bent and deviates from the linear
branch toward higher frequencies. This is characteristic to
the low frequency part of the magnetosonic/whistler waves.

The case B (27 April 2002, 02:00–02:30 UT) exhibits
waves that are counter-propagating at low frequencies. Most
of the identified waves propagate in the+z direction at var-
ious frequencies (ωre≤3), but some waves propagate in the
opposite direction at low frequencies (ωre≤0.4). The disper-
sion branch in the+z direction, can be approximated by a
straight line (linear dispersion relation), but the phase speed
does not agree with the Alfvén speed (ωre≥kzvA). In the−z

direction it is not clear if the waves follow any dispersion
relation, since only few waves are identified.

The case C (6 March 2002, 00:30–01:00 UT) exhibits
an example of the enhanced counter-propagating waves.
Compared to the case B, the identified waves look rather
scattered in the dispersion diagram. One branch starts
at (ωre, kz)'(0, 0) and extends in the+z direction to
(ωre, kz)=(3, −1.5), while the branch in the−z direc-
tion stops atωre'1.5. The scatter in the dispersion di-
agram makes it difficult to identify the dispersion rela-
tion, but roughly speaking, the waves follow the magne-
tosonic/whistler branch.

2.3 Wave number spectra

The second application of the wave telescope estimator is
the wave number spectra (energy spectra in the wave num-
ber domain). We determine two kinds of wave number spec-
tra: E+(kz) andE−(kz). They represent the energy for the
Alfv énic fluctuations propagating along the magnetic field
away from the shock (E+), and toward the shock (E−), re-
spectively, and are determined as follows.

E+(kz)=
α

1k

∫
dωre

[
Exx(ωre, kz) + Eyy(ωre, kz)

]
(15)

E−(kz)=
α

1k

∫
dωre

[
Exx(ωre, −kz)+Eyy(ωre, −kz)

]
, (16)

where the integration is made over the frequency in the
plasma rest frame.

In the wave telescope procedure each elements of the ma-
trix Eij (ω, k) is given in unit of nT2/Hz, which originates in
the cross spectral density matrixM in the frequency domain.
The integration in the above equations provides the spectra
in units of the squared amplitude (nT2), and then it is divided
by 1k to transform the unit from the squared amplitude to
nT2 km. We use an equidistant grid in the logarithmic scale
of the wave number, which results in a scaling law1k∝k.
The factorα scales the wave number spectrum such that it
yields the variance (which is the mean squared amplitude)
of the magnetic field fluctuations when integrated over the
wave number domain. We use the magnetic field variance
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Fig. 1. Wave frequencies in the plasma rest frame and wave num-
bers aligned to the mean magnetic field. The+z direction is away
from the shock toward upstream.

in the time domain for the normalization, assuming that the
fluctuations are homogeneous.

The wave number spectra for the three cases A, B, and
C are displayed in Fig. 2. The wave numbers are scaled

Fig. 2. Energy spectra of the Alfv́enic fluctuations in the wave num-
ber domain for the wave number away from the shock (solid curve)
and for the wave number toward the shock (dotted curve).

to the ion inertial wave number and the energy spectra are
scaled toE0=B2

0VA/�p (the squared mean magnetic field
strength divided by the ion inertial wave number). Qualita-
tively the three wave number spectra exhibit common fea-
tures, while they are quantitatively different from one an-
other. There are two characteristics that are common. One
is that E+ (solid line) is always greater thanE− (dotted

www.nonlin-processes-geophys.net/14/361/2007/ Nonlin. Processes Geophys., 14, 361–371, 2007
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Fig. 3. Energy spectra of the magnetic field fluctuations perpendic-
ular to the mean field in the frequency domain.

line), that is the foreshock fluctuations contain more energy
in the waves propagating away from the shock than that for
the waves toward the shock. Another point is that the spectra
exhibit humps which are an indication of the energy injec-
tion. The humps can be seen only inE+, while E− shows
only monotonously decaying curves toward the larger wave
numbers. The injection scale is, however, slightly different
from case to case. It becomes shifted gradually toward the

larger wave numbers from the case A to the case C. A closer
inspection yields the values of the normalized wave num-
bers for the injection scales:kz≈0.05−0.1 (case A); 0.1−0.2
(case B); and 0.3 (case C). The difference betweenE+ and
E− becomes also smaller from the case A to the case C.

Frequency spectra

For comparison, frequency spectra for the three events are
displayed in Fig. 3, where the wave power for the mag-
netic field fluctuation perpendicular to the mean fieldP⊥ is
scaled usingP0=2πB2

0VA/V0�p and the spacecraft frame
frequency is scaled to the proton cyclotron frequency. It is
important to note that one cannot distinguish betweenE+

andE− from the magnetic field measurements only in the
frequency spectra. Of course, the frequency spectra can be
determined using the Elsässer variables, but still one cannot
reach smaller scales due to the limited sampling rate for the
particle measurements, which is typically the time scale of
the spacecraft spin, a few seconds. The frequency spectra
exhibit more or less resemblance to the wave number spec-
tra. But this is not surprising, as the solar wind streams at the
supersonic and super-Alfvénic speed and the spatial struc-
tures are recorded as the temporal variations by the space-
craft. However, the frequency spectra exhibit spikes on vari-
ous scales. Some are small scale, sharp spikes and some are
large scale, blunt spectral hump. Generally speaking, it is
difficult to identify the energy injection scale and the power-
law decay of the spectra unambiguously.

2.4 Dimensionless cross helicity

The third application of the wave telescope estimator is the
dimensionless cross helicityσc. We apply the two energy
spectraE+ andE− as determined in Eqs. (15) and (16) to
the Eq. (4). In our coordinate systemE+ denotes the waves
propagating away from the shock, henceσc=1 means that all
the Alfvénic fluctuation energy represents waves propagating
in this direction.

The cross helicity for the three cases are displayed in
Fig. 4, which reinterprets the difference between the two
spectraE+ and E− in Fig. 3. The cross helicity is posi-
tive at various wave numbers in all three cases. The case A
exhibits an increase of the cross helicity from 0.2 to 0.9 to-
ward the wave numberkz≈0.1. The largest values is kept
at σc≈0.9 for the wave numbers 0.1<kz<1, and falls into
σc≈0.3 on the smaller scales (kz>1). The case B exhibits
a moderate peak in the cross helicity atσc≈0.5 at the wave
numberkz≈0.1, and the case C exhibits an even more mod-
erate peak atσc≈0.4 at the wave numberkz≈0.3. It is in-
teresting to note that the information in the dispersion curves
displayed in Fig. 1 is also stored in the cross helicity. The
more counter-propagating waves are present in the−z direc-
tion in the dispersion diagram, the smaller the cross helicity
becomes. The wave numbers yielding the peaks in the cross
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helicity also agrees with the energy injection scale obtained
in the previous section.

3 Statistical study

3.1 Event selection

The dimensionless cross helicityσc is investigated for vari-
ous time intervals of the observations in the foreshock region.
Following criteria are imposed to select the time intervals
for the foreshock wave observations: (1) mission phase with
the smallest inter-spacecraft distance, 100 km, to resolve as
smallest wavelengths as possible (February to May 2002),
(2) existence of supra-thermal ion populations, namely back-
streaming ions in addition to the solar wind ion population,
(3) enhanced level of magnetic field fluctuations. We select
the time intervals with the fluctuating energy more than 30%
of the mean field energy,〈

|δBx |
2
+ |δBy |

2
+ |δBz|

2

B 2
0

〉1/2

≥ 0.3, (17)

whereδBx , δBy , andδBz denote the three components of the
fluctuating magnetic field, andB0 denotes the mean magnetic
field strength. The mean field is defined by averaging the
field strengthB0=〈B〉 so thatB0 can be treated as a uniform
constant vector for each 30 min interval. The ion measure-
ments of the CIS-HIA instrument are used in step (2). As a
result we obtain 32 intervals for the statistical study.

3.2 Distribution of cross helicity

Figure 5 displays the superposed cross helicity for all the
events. As the three case studies show in the previous section,
the cross helicity is positive at various wave numbers. Statis-
tically the foreshock is indeed dominated by the waves prop-
agating away from the shock. On the largest scale (kz∼0.01,
wherekz is normalized to the ion inertial scale) the cross he-
licity approaches to zero. At the wave numberskz∼0.1 the
cross helicity reaches its maximum, but the distribution of
the maximum cross helicity ranges from almost zero to al-
most unity. On the smaller scales (kz>1) the cross helicity
is diminished. We estimate the injection scale of the cross
helicity for the wave numbers yielding the maximum cross
helicity. Figure 6 displays the histogram of the peak wave
numbers on the logarithmic scale, and the distribution peaks
at about log10(kz)=−1, namelykz=0.1. This value agrees
well with the typical wave numbers for the maximum growth
rate of the right-hand resonant instability (Gary, 1993) and
also justifies the first part of our hypothesis. The reason for
the decrease of the cross helicity on the smaller scales is not
clear. It may mean the dissipation of the forward propagating
waves or it may come from the wave-wave interactions.

Fig. 4. Dimensionless cross helicity in the wave number domain.
Positive cross helicity means dominance of Alfvén waves propagat-
ing away from the shock.

3.3 Relation toβ

Finally we are ready to study the relation between the cross
helicity and the plasma parameterβ. We use the density and
the temperature data obtained by the ion instrument (CIS-
HIA) to determine the ion beta,βi . We investigate three
kinds of the cross helicity under various conditions of the

www.nonlin-processes-geophys.net/14/361/2007/ Nonlin. Processes Geophys., 14, 361–371, 2007
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Fig. 5. Superposed plot of dimensionless cross helicity in the wave
number domain.

Fig. 6. Histogram of wave numbers corresponding to maximum
cross helicity.

βi : the maximum cross helicity, the large scale mean, and
the small scale mean. Concluding the result first of all,
none of them exhibit a clear relation toβi . The maximum
cross helicity varies from 0.1 to 0.9, whileβi varies from 0.3
to 6. The maximum cross helicity is distributed relatively
uniformly overβi (Fig. 7). When averaged over the larger
scales (0.01<kz<0.1), the cross helicity exhibits the values
between 0 and 0.5, and it is distributed again relatively uni-
formly overβi (Fig. 8a). The cross helicity averaged over the
smaller scales (kz>1) also displays a relatively flat distribu-
tion overβi , though the cross helicity is more concentrated
aroundσc≈0.2 (Fig. 8b).

For comparison, Fig. 9 displays schematically the regimes
of the three instabilities (the right-hand resonant instability,
the decay and the modulational instabilities) expected in our
hypothesis. The ion/ion right-hand resonant instability is a
driver of the primary waves and we expect its presence at

Fig. 7. Maximum cross helicity plotted versusβi . The horizontal
bars in gray represent the error ofβi (standard deviation).

various values ofβ. On the other hand, the decay and the
modulational instabilities are dependent onβ. The decay in-
stability prefers the lowβ condition, and produces counter-
propagating waves (backward to the parent wave direction),
which reduces the cross helicity. The modulational instabil-
ity produces prefers the highβ condition and produces waves
propagating only in the forward direction. The sketch shows
the regime of the right-hand resonant instability at the en-
hanced cross helicity (σc∼1) regardless of the magnitude of
β. The sketch also exhibit the decay instability at the reduced
cross helicity (σc∼0) and lowβ (smaller than unity), and the
modulational instability at enhanced cross elicits and highβ

(larger than unity).
It is true that some events shown in Figs. 7, 8a, and 8b

agree with the expectations, for example, the distribution of
the maximum cross helicity (Fig. 7) qualitatively overlaps
with the regime for the right-hand resonant instability, but
some of the events deviate from the expectation for the decay
and the modulational instabilities. The hypothesis with the
decay and the modulational instabilities seems to fail in our
study.

4 Discussion

4.1 Right-hand resonant instability

The result that the maximum cross helicity is always on the
positive side suggests that the primary waves propagate in
the direction away from the shock. This excludes the ion/ion
non-resonant mode for the most likely source of the fore-
shock waves, since this mode excites the waves in the oppo-
site direction to the ion beam (i.e. toward the shock). Further-
more, the dispersion relations in Fig. 1 prefers the right-hand
mode, as the dispersion branch is connected beyond the ion
cyclotron frequency and the curves of the dispersion relation
are reminiscent of the magnetosonic/whistler mode. This
justifies the first stage of our hypothesis that the right-hand
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Fig. 8. Cross helicity averaged over the large scales
(kzVA/�p<0.1, top panel) and over the small scales
(kzVA/�p>1, bottom panel).

resonant instability is the most likely source for the primary
waves.

4.2 Parametric instabilities

It is interesting that the cross helicity is almost arbitrary be-
tween 0 and 1 at various values ofβi . This cannot be ex-
plained by a simple picture of the parametric instabilities as
proposed in the hypothesis.Spangler et al.(1997) argue on
the basis of the frequency spectra that the evidence for the de-
cay instability was only rarely present, but be present when
the theoretical growth rate is high. Therefore it is not decided
yet if the parametric instability really occurs in the foreshock,
but here we summarize possible explanations about the rea-
son why the parametric instability model fails.

(1) Theβ-dependence is altered if kinetic effects are in-
cluded (Mjølhus and Wyller, 1988; Spangler, 1989; Vasquez,
1995; Araneda, 1998; Bugnon et al., 2004; Nariyuki and
Hada, 2006b). For example,Vasquez(1995) argues that the
right-hand polarized wave is also subject to the decay insta-
bility even in the high-β regime. (2) The existence of broad-
band waves or inhomogeneity of the background medium

Fig. 9. Regimes of three instabilities expected in the hypothesis.

may be important as well. A different kind of instability pro-
cess may exist when the parent wave is not monochromatic
but a mixture of side-band waves (Nariyuki and Hada, 2007).
(3) While the models of the parametric instabilities are usu-
ally discussed in the one-dimensional context (e.g. variations
only in the x-direction), the waves may be unstable in the
y-, or z-directions like wave refraction (Mjølhus and Hada,
1990; Vinaz and Goldstein, 1991; Laveder et al., 2002). (4)
In the present paper we used only the ion measurements for
estimatingβ. The ratio of the electron to the proton tem-
perature is, however, typically between 1 and 4 in the solar
wind (Newbury et al., 1998), thus inclusion of the electron
temperature effect could increases the estimated values ofβ.
(5) Steepened waves or even discontinuities such as shock-
lets may have been decomposed into forward and backward
waves. In this picture the number of the steepened wave
is more important than the the parametric instabilities. (6)
Furthermore, the waves that already exist in the solar wind
should be taken into account. For example, the Alfvén waves
coming from the sun may have been counted in our study,
which results in a smaller value of the cross helicity. From
this point of view, the foreshock observations should be fur-
ther classified into the fast and the slow solar wind intervals.

Our study is based on the second order moments such as
the energy and the cross helicity. It is worthwhile to note
that the direct evidence of the parametric instabilities can be
achieved only by determining higher order moments, e.g. 3
wave field correlation at different frequencies and wave num-
bers is able to examine the three wave interaction process
(Dudok de Wit et al., 1999). This kind of analysis method
is currently developed to apply to the multi-point measure-
ments.

Also, one needs to identify on what scales the dissipa-
tion effect is operating, as both the backward propagating
waves and the dissipation of the forward propagating waves
tend to reduce the cross helicity, For this purpose, careful
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investigations of the energy spectra both in the frequency
and in the wave number domain would be of some help.
Thanks to the recent instrumentation providing high time res-
olution in the field measurements, the dissipation of the en-
ergy should be visible in the frequency spectra, but one can-
not obtain the exact spatial scales. But combining the fre-
quency and the wave number spectra would enable one to
determine the dissipation scales.

5 Conclusions

We have used data analysis from 32 Cluster crossings of the
foreshock to show that there are a variety of wave popula-
tions in the foreshock. Some propagate in the direction of the
ion beam away from the shock, and some propagate in the
opposite direction. Also some waves follow the dispersion
branch for the magnetosonic/whistler mode, and some devi-
ate from the dispersion branch. The first stage of the fore-
shock wave evolution is realized by the ion/ion right-hand
resonant instability. The ion beams originating in the spec-
ular particle reflection are indeed the ultimate source for the
foreshock wave. However, it is not clear what really happens
at the second stage. The origin of of the backward propa-
gating waves is still an unsolved problem. Nevertheless, The
higher order statistics will be a powerful tool to identify the
wave-wave interactions, where the frequency and the wave
number resonance conditions can be directly investigated.

Appendix A

Derivation of Eq. (6)

We consider a constrained optimization problem minimizing
the cost matrix

C = W†MW + λ
(
W†H − I

)
. (A1)

The first term on the right-hand side denotes the cross spec-
tral density matrixE in the frequency and the wave number
domain, and the second term denotes a constraint.M is the
cross spectral density matrix for all the measured variables at
frequencyω

M(ω) =
1

1ω


〈b1xb

∗

1x〉 〈b1xb
∗

1y〉 · · · 〈b1xb
∗

4z〉

〈b1yb
∗

1x〉 〈b1yb
∗

1y〉

...
. . .

〈b4zb
∗

1x〉 〈b4zb
∗

4z〉

 (A2)

W is the weight matrix subject to

W†H = I (A3)

See Eq. (9) for the definition ofH (the steering matrix). This
constraint imposes a unit gain of the wave amplitude for ev-
ery pair of the frequency and the wave number, while the

weights are chosen to minimize the output from all other por-
tions of the spectrum.λ is the Lagrangian multiplierλ.

This optimization problem can be solved analytically,
yielding the weight matrix

W(ω, k) =
M−1H

H†M−1H
. (A4)

ThereforeE is given as

E(ω, k) = W†MW

=

[
H†M−1H

]−1
(A5)

In addition, we put the second constraint for the divergence-
free magnetic field, which results in the replacement

H → HV , (A6)

whereV is defined in Eq. (10). This gives the estimator for
the cross spectral density matrix as presented in Eq. (6).
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K., Dandouras, I., Fornaçon, K.-H., Georgescu, E., and Rème,
H.: Dispersion analysis of ULF waves in the foreshock using
cluster data and the wave telescope technique, Geophys. Res.
Lett., 30, SSC 43-1, doi:10.1029/2003GL017432, 2003.

Narita, Y. and Glassmeier, K.-H.: Dispersion analysis of low-
frequency waves through the terrestrial bow shock, J. Geophys.
Res., 110, A12215, doi:10.1029/2005JA011256, 2005.

Narita, Y., Glassmeier, K.-H., and Treumann, R. A.:
Wave-number spectra and intermittency in the terres-
trial foreshock region, Phys. Rev. Lett.,97(19), 191 101,
doi:10.1103/PhysRevLett.97.191101, 2006.

Nariyuki, Y. and Hada, T.: Remarks on nonlinear relation among
phases and frequencies in modulational instabilities of paral-
lel propagating Alfv́en waves, Nonlin. Processes Geophys., 13,
425–441, 2006a.

Nariyuki, Y. and Hada, T.: Kinetically modified parametric insta-
bilities of parallel propagating Alfv́en waves: ion kinetic effects,
Phys. Plasmas, 13, 124 501, doi:10.1063/1.2399468, 2006b.

Nariyuki, Y. and Hada, T.: Magnetohydrodynamic parametric in-
stabilities of parallel propagating incoherent Alfvén waves, Earth
Planets Space, 59, e13–e17, 2007.

Newbury, J. A., Russell, C. T., Phillips, J. L., and Gary, S. P.: Elec-
tron temperatures in the ambient solar wind: Typical properties
and a lower bound at 1 AU, J. Geophys. Res., 103, 9553–9566,
1998.
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