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Abstract. Landslides in tropical and sub-tropical regions
are generally associated with weathered rock profiles which
often possess chemical and mineralogical heterogeneities at
material- and mineral-scales. Such heterogeneities reach
a climax by the occurrences of oxyhydroxide- and clay-
rich zones. Weakness and low permeability of these zones
makes them ideal for the development of slip zones along
which landslides take place. This paper describes the na-
ture and distribution of chemical and mineralogical hetero-
geneities within weathered profiles developed from felsic ig-
neous rocks in Hong Kong. It sets out the use of integrated
geochemical and mineralogical studies to improve under-
standing of the development of critical heterogeneities and
hence to predict their types and presence in a given weath-
ered profile.

1 Introduction

The term “heterogeneity” within a weathered profile im-
plies sudden and substantial changes in weathering signa-
tures and thus in mechanical and hydraulic characteristics
across the profile. Therefore, understanding the nature and
distribution of heterogeneities within weathered profiles is of
a paramount importance. Weathering processes in tropical
and subtropical settings modify mineralogical, petrograph-
ical (microfabric) and geochemical characteristics of rocks
through their thermodynamic readjustments in various forms
and scales. These readjustment processes take place in a
unique way depending on the overall geological setting of
the profile largely determined by lithological, structural, ge-
omorphological and hydrological conditions. Readjustment
processes (such as leaching, decomposition of primary min-
erals and formation of secondary phases) induce new hetero-
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geneities and enhance existing ones at various scales (field,
material and mineral). The resulting weathered profiles in
tropical and subtropical settings are often associated with
landslides. Basal slip zones and detachment surfaces of these
landslides are partly or completely delineated by persistent
heterogeneities which produce localized pore water pressure
anomalies. Field scale heterogeneities and their role in slope
instability have been discussed by Aydin (2006).

This paper focuses on the nature and development of
chemical and mineralogical heterogeneities in weathered
profiles and their significance in forensic landslide inves-
tigations, as well as their use as indicators of potential
presence of heterogeneities critical to stability of weathered
slopes. Hong Kong is infamous for frequent occurrences of
large landslides (with displaced volume equal or greater than
800 m3) (Large Landslides in Hong Kong, 2005) developed
within weathered Middle Jurassic to Early Cretaceous fel-
sic igneous (mostly granitic and pyroclastic) rocks (Fig. 1).
Landslides in Hong Kong are usually triggered by heavy
rainfalls (Table 1) and developed along heterogeneous zones
(e.g., Kirk et al., 1997; Wen et al., 2004). As summarized in
Table 1, both granitic and pyroclastic weathered profiles are
equally vulnerable for landslide incidents.

2 Chemical weathering indices

Chemical weathering indices (CWI) as other weathering
indices (physical, microstructural, mechanical) were intro-
duced as a result of dissatisfaction with and the subjectivity
of the six-fold weathering classification (Moye, 1955) and
its improved versions (GSL, 1995). There are more than 30
different CWI, mostly proposed for felsic igneous weathered
materials developed under tropical and subtropical environ-
ments. These indices basically belong to few major cate-
gories and are mostly expressed as molecular ratios of ma-
jor elements. The principal assumption in formulating these
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Fig. 1. (a)Simplified geological map of Hong Kong (after Campbell and Sewell, 1998) and distribution of large landslides in Hong Kong
(after Large Landslides in Hong Kong, 2005). Incidents of Po Shan (GEO, 1983)(b) and Shek Kip Mei landslides (GEO, 2000)(c) developed
within pyroclastic and granitic weathered profiles, respectively.

indices is that behavior of chemical elements is principally
controlled by the degree of weathering. However, as sum-
marized in Table 2, depending on the behavior and distribu-

tions of the selected elements within weathered profiles, the
performances of CWI vary significantly.

Nat. Hazards Earth Syst. Sci., 6, 315–322, 2006 www.nat-hazards-earth-syst-sci.net/6/315/2006/



N. S. Duzgoren-Aydin and A. Aydin: Chemical-mineralogical heterogeneities of weathered profiles 317

Table 1. Large landslides in Hong Kong (from Large Landslides in Hong Kong, 2005).

Landslide Landslide case Date of Associated major Rainfall (period)
ID number* incident lithology

1 Fat Kwong Street Sep 1970 Granite >200 mm (8–10 September 1970)
2 Po Shan Road ** June 1972 Volcanic >650 mm (16–18 June 1972)
3 Tsing Yi (1) May 1982 Granite >300 mm (May to June 1982)
4 Tsing Yi (2) Aug 1982 Granite >300 mm (21 August 1982)
5 Tuen Mun Highway Sep 1983 Volcanic After Typhoon Ellen, 1983
6 Tin Wan Hill Road Sep 1985 Volcanic Moderate rain fall
7 Island Road Aug 1988 Volcanic Moderate rain fall
8 Siu Sai Wan May 1992 Volcanic Slope Cutting
9 Sham Shui Kok July 1995 Volcanic >400 mm
10 Fei Tsui Road Aug 1985 Volcanic Heavy Rain fall (26–27 August 1985)
11 Lai Ping Road July 1997 Volcanic 370 mm (12 August 1997)
12 Ville de Cascade July 1997 Granite 500 mm (2 July 1997)
13 Ching Cheung Road Aug 1997 Granite 420 mm (2 July 1997)
14 Tate’s Ridge June 1998 Volcanic 130 mm (within two hours)
15 Shek Kip Mei *** Aug 1999 Granite >350 mm (23–25 August 1999)

(*For the location of landslide, see Fig. 1a; ** Fig. 1b; *** Fig. 1c)

Comprehensive re-assessment of chemical weathering in-
dices for felsic igneous rocks (in Hong Kong) revealed that:

1. behavior of chemical elements during weathering is not
only a function of intensity of weathering;

2. the distribution, type and abundance of secondary
phases play significant role in distribution and behavior
of chemical elements; and

3. the search for universally accepted “best chemical in-
dex” is likely to be unsuccessful, mainly because CWI
deviate from the general pattern where there are hetero-
geneities (Duzgoren-Aydin et al., 2002a).

In sum, chemical weathering indices may not be as useful to
determine the weathering grades as it was thought originally,
but they can be used as practical tools to detect chemical het-
erogeneities. Nevertheless, as most CWI are limited to a few
major and minor elements, their application and implications
are also limited in assessing type and extent of chemical het-
erogeneities. In this context, parent-normalized variation di-
agrams were found most reliable (Duzgoren-Aydin and Ay-
din, 2003).

3 Parent-normalized variation diagrams

In parent-normalized variations diagrams, each element is in-
vestigated individually, and is normalized with correspond-
ing parent-rock’s value. If the ratio (element-isample/element-
iparent−rock) is less or greater than 1, the element is consid-
ered leached out or fixated within the system, respectively.
Parent-normalized variation diagrams are not limited to any
specific type of elements.

Analyses of parent-normalized variation diagrams (Fig. 2)
of the felsic igneous rocks of Hong Kong revealed that:

1. distributions of chemical elements within weathered
profiles reflect combination of complex, usually com-
peting (leaching and fixation) processes;

2. behaviors of chemical elements vary during the course
of weathering;

3. each profile has its own characteristic variation pattern;
and

4. deviations from the general trend correspond to sudden
and usually substantial changes in behavior of chemical
elements (i.e., chemical heterogeneity).

Accordingly, these observations directly or indirectly inval-
idate the basic assumptions made to use CWI determine
weathering grades, but on the other hand, they justify uti-
lization of parent-normalized diagrams as an effective tool
to assess level or extent of chemical heterogeneity within
weathered profiles. As illustrated in Fig. 2, particularly at
the advanced stages of weathering, deviations from the gen-
eral patterns become obvious. This is especially evident for
Ca and Na for granitic (Lai Chi Kok – LCK) and Fe and Mn
for pyroclastic profiles (Shum Wan – SW and Siu Sai Wan –
SSW), and can be attributed to high abundance of clay and
oxyhydroxide phases, respectively.

4 Mineralogical signatures of weathering

Advancements in high resolution microscopic tech-
niques such as scanning electron microscope (SEM) and
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Table 2. Behavior of chemical elements along the felsic weathered profiles developed under subtropical conditions, and implications for the
formulation and selection of the chemical indices involving each considered element as the major component (from Duzgoren-Aydin, 2003).

Course of weathering Potential implications to per-
formance of chemical weath-
ering indices

Early stages Late stages
Trend Remarks Trend Remarks

Si Remains relatively
stable or decreases
slightly

Quartz (SiO2) is the most re-
sistant mineral to weathering

Decreases slightly
to significantly

Dissolution of quartz occurs at
the advanced stages of weath-
ering.

At the early stages, the index
is insensitive to weathering

Al Remains relatively
stable or increases
slightly

Decomposition of Al-bearing
primary minerals and initi-
ation of formation of Al-
bearing secondary minerals
(clay minerals)
The relative abundance ratio
of clay to non-clay minerals is
low

Increases moder-
ately to signifi-
cantly

Al-bearing secondary minerals
(clay minerals) dominates the
overall mineralogy
The relative abundance ratio
of clay to non-clay minerals is
high

At the early stages, the index
is insensitive to weathering

Loss on
Ignition

Increases rather
gradually

Formation of hydrous minerals
Can be modified by the type
and abundance of clay miner-
als

Same as at early stages Good index: however, caution
must be taken due to the type
and abundance of clay miner-
als, particularly those of the
kaolin group

K Decreases slightly
But fluctuates
strongly

Slight decomposition of K-
feldspar
Presence of K-bearing clay
minerals (illite) due to pre-
weathering alteration history
(hydrothermal or late-stage
magmatic)

Decreases mod-
erately to signifi-
cantly
But fluctuates
strongly

Moderate to significant de-
composition of K-feldspar
Type and abundance of clay
minerals can affect the pattern

The index exhibits abnormal
patterns over the course of
weathering

Ca & Na Decrease rather
gradually and
significantly

Decomposition of feldspars,
particularly plagioclases

Remain constant at
low level

Most plagioclases are already
decomposed

At the late stages, the index be-
comes insensitive to weather-
ing

Fe & Mn Remain stable or
increase slightly

Initiation of formation of oxy-
hydroxides and dissolution of
mafic minerals including bi-
otite

Increases moder-
ately to signifi-
cantly
Can fluctuate
strongly

Directly influenced by pres-
ence of oxyhydroxides and/or
oxyhydroxide-rich zones
Closely related to overall
leaching conditions of the
profile and of the microenvi-
ronments

If the profile is relatively well-
drained, the index works well
If the profile has
oxyhydroxide-rich zones,
the index perform poorly (and
a great caution must be taken)

transmission electron microscope (TEM) and application
of X-ray diffraction (XRD) method have improved our
understanding about common products of weathering,
especially their type, morphology (Fig. 3), in-situ chemical
composition and distribution within weathered profiles.

In essence, two major competing processes, namely leach-
ing and fixation, determine the chemical and mineralogi-
cal characteristics of weathered profiles. From mineralogi-
cal point of view, “leaching” refers to decomposition of pri-
mary minerals, while “fixation” to formation of secondary
phases and to relative enrichment of certain primary miner-
als due to their higher resistance to decomposition. Among
common rock-forming minerals, quartz is the most resis-
tant mineral to weathering, while plagioclase and biotite are
easily replaced by secondary phases. Thus, while absolute

abundance of quartz remains almost constant, its relative
abundance continuously increases as other primary minerals
(feldspar and biotite) are gradually decomposed during the
course of weathering. On the contrary, absolute abundances
of clay minerals and oxyhydroxides increase with the degree
of weathering (Duzgoren-Aydin, 2003).

Individual response of each mineral to weathering is
similar in igneous rocks despite a wide range of mode
of occurrences of these rocks. However, formation of
new (secondary) phases and their distribution within weath-
ered profiles depends not only on the nature of weather-
ing, but also on parent-rocks’ inherited features including
previous alteration history and micro-fabric characteristics
(Duzgoren-Aydin et al., 2002b).
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Petrographic examinations of weathered rocks under po-
larized light microscope provide most reliable information
about the nature and of their parent-rock. However, applica-
tion of petrographic microscope is sufficient for mineralog-
ical characterization of only slightly to moderately decom-
posed samples (representing early to intermediate stages of
weathering). Clay minerals and oxyhydroxide phases dom-
inate the mineralogy in highly to completely decomposed
samples (i.e. late stages of weathering). Therefore, SEM
and XRD techniques are necessary to support petrographic
observations for complete mineralogical description of these
samples.

4.1 Clay mineralogy

Recent studies on clay minerals within weathered igneous
profiles (e.g., Merriman and Kempt, 1995; Merriman et
al., 1996; Kirk et al., 1997; Duzgoren-Aydin et al., 2002b;
Duzgoren-Aydin, 2003; Wen et al., 2004) in Hong Kong re-
vealed that understanding the type and abundance of clay
minerals and their distribution within weathered profiles are
necessary to:

1. characterize weathering profiles and assess degree of
weathering;

2. explain nature and extent of mineral-scales hetero-
geneities; and

3. assess potential presence of heterogeneous zones along
which landslides may occur.

Kaolinite, halloysite, illite and trace amount of inter-layered
illite-smectite are ubiquitous clay minerals within weathered
igneous profiles. However, their distributions and relative
abundances within and between weathered profiles vary con-
siderably (Table 3 and Fig. 3).

At the early stages of weathering, the type of parent
rock, its inherited mineralogical heterogeneities and pre-
weathering alteration history may play an important role in
defining the type and abundance of clay minerals during the
course of weathering. Type and nature (such as crystallinity)
of clay minerals are closely associated with source of clay
minerals. For example, chlorite is relatively stable in high
temperature conditions, but not stable at atmospheric (sur-
face or near surface) conditions (e.g., Velde, 1995). There-
fore, high abundances of chlorite and well-crystallized illite
in fresh to moderately decomposed pyroclastic samples were
attributed to pre-weathering high temperature alteration pro-
cesses such as hydrothermal or late stage magmatic (deu-
teric) alterations (Duzgoren-Aydin et al., 2002b).

Relative abundances of clay minerals within weathered
profiles are of a great significance for evaluating micro-
environmental conditions (such as extent of leaching). Kaoli-
nite to halloysite and kaolin to illite ratios were found to be
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Fig. 2. Parent normalized variation diagrams.

particularly useful. This is mainly because of the fact that al-
though halloysite and kaolinite belong to kaolin group (poly-
morphic) clay minerals, halloysite has an additional water
layer in its crystal-structure compared to kaolinite. Therefore
hydrous micro-environmental conditions, for instance, favor
occurrence of halloysite over kaolinite (Keller and Hanson,
1975; Keller, 1976). Similarly, relatively impeded hydro-
logical conditions favor occurrence of illite over kaolinite
(e.g., Velde, 1995). In Hong Kong, halloysite to kaolinite
ratios of samples from granitic profiles are larger than those
of the samples from pyroclastic ones at the same degree of
weathering. This has been attributed to better leaching con-
ditions in granitic profiles than those of the pyroclastic pro-
files (Duzgoren-Aydin, 2003). Thus probability and mode
of occurrence of critical heterogeneities in granitic and pyro-
clastic profiles are likely to be different as confirmed by the
landslide investigations.

Intense leaching in granitic profiles may be responsible for
occurrences of clay rich zones in which transported colloidal
particles deposited along especially sheeting joints. Weak-
ness and low permeability of these zones makes them ideal
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Fig. 3. SEM images from weathered granitic(a–b) and pyroclastic profiles(c–d). Samples are from Grade I (a and c) and Grade IV (b and
d).

for the development of slip zones. The type and abundance of
clay minerals within slip zones is different from those within
their surrounding host-materials (e.g., Wen et al., 2004). For
example, slip zones of Shek Kip Mei (SKM) landslide (see
Fig. 1c) developed within weathered granitic rocks have con-
siderably higher abundance of kaolinite and clay-size par-
ticles compared to their host materials, suggesting that the
slip zone had relatively impeded leaching conditions com-
pared to its host-materials. Because, in granitic weathered
profiles, halloysite is the dominant clay mineral even at the
advanced stages of weathering, occurrence of kaolinite-rich
zones within halloysite dominated host-materials is a crucial
indicator of high risk potential for the development of slip
zones in such profiles.

In pyroclastic profiles the relative abundance of kaolinite
to halloysite increases with the degree of weathering, and at
the advance stages of weathering, kaolinite become the dom-
inant clay mineral (Table 3 and Fig. 3). Consequently, im-
peded leaching conditions in pyroclastic profiles are often
encountered at the advance stages of weathering and often
accompanied by oxyhydroxide-rich zones. Persistent occur-
rence of such zones may induce localized pore water pres-
sure anomalies and thus lead to development of slip zones as
confirmed by post-landslide investigations (e.g., Kirk et al.,
1997).

4.2 Oxyhydroxides

As clay minerals, oxyhydroxides are common products of
dominantly chemical weathering and are ubiquitous along
the weathered igneous profiles developed under tropical and

subtropical conditions. It is easy to locate them in hand spec-
imen or on thin sections due to their dark colored opaque
nature. In general, high abundances of oxyhydroxides are
marked by substantial increase in relative abundance of Fe
and Mn. Their occurrences and relative abundance ratios
(i.e., Fe/Mn) within a weathered profile have been exten-
sively studied (Hem, 1972; Weaver, 1977; McKenzie, 1989;
Schwertmann and Taylor, 1989). On the other hand, little
attention was given to the type and abundance of oxyhydrox-
ides in landslide investigations (e.g., Zheng et al., 2002; Wen
et al., 2004). It has been documented that oxyhydroxide-rich
zones are more frequent in pyroclastic profiles compared to
granitic profiles. This becomes particularly evident at the ad-
vance stages of the weathering (Duzgoren-Aydin, 2003).

Post-landslide investigations in the granitic and pyroclastic
profiles (Merriman and Kempt, 1995; Wen et al., 2004) also
revealed that the slip zones not only have distinct type and
abundance of clay minerals compared to their host-materials,
but also higher abundance of oxyhydroxide phases which are
typically enriched in Mn, Ba and Ce contents. This can
be attributed to cyclic occurrence of poorly drained condi-
tions (e.g., Koppi et al., 1996). It has been well-established
that the type and abundance of oxyhydroxides and asso-
ciated trace elements are primarily controlled by micro-
environmental leaching and redox (oxidation and reduction)
conditions (McKenzie, 1989; Koppi et al., 1996). For ex-
ample, at the early stages of weathering, the pyroclastic SW
profile contains Mn-free, Fe-rich oxyhydroxides, suggesting
relatively well-drained conditions allowing disassociation of
Mn from Fe. On the other hand, at the advance stages of
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Table 3. Type and relative abundance of clay minerals within weathered profiles (after Duzgoren-Aydin et al., 2002b; Duzgoren-Aydin,
2003).

Weathering Grade Halloysite Kaolinite Illite I/S* Chlorite

Granitic Profile (Lai Chi Kok)
I–II 92 3 5 Trace NP
II 84 5 11 Trace NP
III 80 15 5 Trace NP
III–IV 92 4 4 Trace NP
V 82 12 6 Trace NP
V–VI 62 32 6 Trace NP

Volcanic Profile (Shum Wan)
I NP NP 35 Trace 65
III 48 4 48 Trace NP
III–IV 74 20 6 Trace NP
IV-V 41 48 11 Trace NP
V 38 56 6 Trace NP

VsqM** 18 74 8 Trace NP
VsqH*** 12 71 17 Trace NP

Volcanic Profile (Siu Sai Wan)
II 31 9 50 NP 10
III 34 8 47 NP 11
III–IV 76 4 20 Trace NP
V 61 11 28 Trace NP
V–VI 41 49 10 Trace NP

(I/S*: Interstratified illite-smectite; VsqM**: Moderately enriched in oxyhydroxides; VsqH***: Highly enriched in oxyhydroxides)

weathering, the profile contain Mn-rich oxyhydroxides with
variable amount of Fe content, suggesting relatively impeded
leaching conditions compared to early stages of weathering.
Therefore, similar to clay minerals, the type and abundance
of oxyhydroxide phases, and their distribution within weath-
ered profiles are valuable information to help assess preva-
lent leaching conditions. Consequently, persistent occur-
rence of kaolinite- and Mn-oxyhydroxide-rich zones makes
an ideal environment to develop potential slip zones along
which landslides may occur.

5 Summary and conclusions

Weathering processes progressively modify the chemical and
mineralogical composition of rocks and are governed by a
large array of factors such as geological setting of the pro-
file, inherited fabric features, pre-weathering alteration his-
tory, etc. The relative role of each factor can vary noticeably
within the same profile. Therefore, behavior of chemical ele-
ments within weathering profiles cannot be solely explained
by means of weathering degree, as there is no unique path-
way during the course of weathering. Therefore, it is im-
portant to realize that chemical weathering indices should be

used to assess level of chemical heterogeneity, rather than
determining the weathering stage.

Chemical and mineralogical heterogeneities in saprolitic
profiles are most evident by the occurrence of clay- and
oxyhydroxides-rich zones. Post-landslide investigations con-
firm that such heterogeneous zones are potential features
along which slip zones usually develop.

This paper presented the fundamental micro-
environmental conditions and accompanied chemical and
mineralogical changes during weathering of igneous profiles
by which inherited or newly induced discontinuities become
transformed into slip planes and how the potential presence
of these features can be recognized through integrated
chemical and mineralogical studies. It has been concluded
that chemical and mineralogical heterogeneities are closely
associated with localized impeded leaching conditions. In
general, impeded leaching conditions within weathered
igneous profiles developed under humid, subtropical/tropical
conditions, likely favor occurrence of kaolinite and Mn-rich
oxyhydroxides over halloysite and Fe-rich oxyhydroxides,
respectively, compared to their host materials. Therefore,
integrated chemical and mineralogical studies, particularly
focusing on the type, distribution and abundance of clay
minerals and oxyhydroxides within weathered profiles are

www.nat-hazards-earth-syst-sci.net/6/315/2006/ Nat. Hazards Earth Syst. Sci., 6, 315–322, 2006
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crucial to advance our understanding of the nature and
distribution of slip zones and their micro-environmental
conditions, which is of great importance for assessing
landslide potential of weathered profiles.
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