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Abstract: The paper deals with identifiability and observability of anaerobic digestion (AD) 
processes. In such kind of processes, generally carried out in continuously stirred tank 
bioreactors, the organic matter is depolluted by microorganisms into biogas and compost in 
the absence of oxygen. The biogas is an additional energy source, which can replace fossil 
fuel sources. The differential algebraic approach of general observation problems has been 
applied to investigate the identification and observation of a simple AD model. The major 
discovery is that the biomass specific growth rate can be stably estimated from easily 
measured quantities: the dilution rate and the biogas flow rate. Next if the yield coefficients 
are assumed known then, of course, the biomass concentration is observable. Unfortunately, 
even under the latter strongest assumption the substrate concentration is not observable. 
This concentration becomes observable if an additional model, say the Monod model, is 
assumed for the specific growth rate. Illustrative simulations are presented. 
 
Keywords: Anaerobic digestion, Non-linear model, Observation, Differential algebraic 
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Introduction 
Anaerobic digestion (AD) is a biotechnological process widely used in life processes and a 
promising method for solving some energy and ecological problems in agriculture and agro-
industry. In such kind of processes, generally carried out in continuously stirred tank 
bioreactors, the organic matter is depolluted by microorganisms into biogas (methane and 
carbon dioxide) and compost in the absence of oxygen [1]. The biogas is an additional energy 
source which can replace fossil fuel sources. It therefore has a direct positive effect on 
greenhouse gas reduction. Unfortunately this process is very complex, may sometimes 
become very unstable and thus needs more investigations. 
 
Many mathematical models of this process are known [2-4]. Generally they are very complex 
nonlinear sets of ordinary differential equations with a great number of unknown coefficients. 
The estimation of these coefficients is a very difficult task [2, 4]. Quite often one obtains only 
local solutions and it is impossible to validate the model in a large domain of experimental 
conditions. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/25941024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 BIOAUTOMATION, 2009, 13 (3), 47-56 
 

 48

In the present work we have recourse to the differential algebraic approach of general 
observation problems to investigate the identification and observation of anaerobic digestion 
processes. 
 
The differential algebraic approach 
The differential algebraic approach of observation problems dates back to late eighties and 
early nineties with works of [5-9]. See [10] for a recent survey. The main point of this 
approach, as first clarified in [8], is that a quantity, say z, of a system is observable with 
respect to some other one, say w (which is supposed to be available in some time interval), if 
each component of z is a solution of a (non differential) algebraic equation with coefficients 
eventually depending on w and finitely many of its time derivatives. The theory applies to 
models of systems in terms of differential algebraic equations only but which may be implicit 
in the variables to be observed. 
 
It is a matter of fact that biotechnological process models are often described in terms of 
differential algebraic equations. The only non polynomial expressions that enter these models 
are often rational expressions. But, as argued in [10], the basic differential algebraic approach 
may handle such rational expressions. In summary, the differential algebraic approach to 
nonlinear observability can tackle the identifiability and observability questions which arise in 
biotechnological processes. The main limitations that may be encountered when following 
this approach are the availability of computation resources which are enough to carry over all 
the suggested calculations.  
 
The differential algebraic approach is among the rare ones which provide explicit tests of 
observability. There are many such differential algebraic decision methods. The most 
attractive one uses notions of characteristic set. The reader is referred to [10] for details and 
references concerning characteristic sets. Here, it is enough to mention the fact that every 
differential algebraic model has a characteristic set which, in principle, may be computed in 
finitely many operations consisting of addition, multiplication and derivation of formal 
differential polynomials. Characteristic sets of systems of differential algebraic equations are 
defined relatively to rankings. And a ranking is merely a total ordering on the variables and 
their derivatives. In summary, the identifiability of a coefficient θ (or, more generally, the 
observability of a variable z) with respect to a supposedly measured variable w is verified by 
running characteristic set algorithms through the system equations relatively a ranking which 
orders w and all its derivatives before θ (or z) and all its derivatives, and any derivative of 
these two variables before any potentially remaining variable of the system. 
 
Applying these theory and differential algebraic decision methods to the simple model (1) of 
AD process, a differential equation, which seems fundamental, was found. It provides a 
dynamic relation between the dilution rate, the biogas flow rate and the biomass specific 
growth rate. The fundamental character of this dynamic relation is thought as lying over the 
fact that this relation does not depend on any model assumption for the biomass specific 
growth rate. Rewriting this dynamic relation it was discovered that a simple rational function 
of the biomass specific growth rate is governed by a quite simple linear differential equation 
with coefficients depending only on measured quantities (dilution rate and biogas flow rate). 
This new dynamics appears to be stable. It is the latter property which allows a stable 
estimation procedure of the biomass specific growth rate. 
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Process model 
We consider the following mathematical model of the continuous AD process [2]: 
 

XDX
dt
dX

−= µ  

)(1 SSDXK
dt
dS

in −+−= µ  (1) 

XKQ µ2=  
 
In this mass-balance model, the first equation describes the growth and changes of the 
biomass X (g⋅l-1) consuming the appropriate substrate S (g⋅l-1). The first term in the right hand 
side reflects the growth of the bacteria and the second one reflects the effluent flow rate of 
liquid. The quantity µ (day-1) is known as the specific growth rate of bacteria. The mass 
balance for the substrate is described by the second equation, where the first term reflects 
consumption by the bacteria, the second term reflects the influent flow rate of liquid with 
concentration of the inlet diluted organics Sin (g⋅l-1). The last equation in (1) describes the 
formation of biogas with flow rate Q [l gas⋅(l liquid-1⋅day-1)]. In automatic control terms the 
dilution rate D (day-1) is the control input, the output is the methane flow rate Q, and Sin is a 
disturbance.  
 
A lot of well known nonlinear models of the specific growth rate of bacteria µ exist. The most 
frequently invoked ones are the following: 
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respectively known as Monod, Contois and Haldane models [2, 4]. In these models µmax, ks, 
km, ki and b are kinetics coefficients. The choice of such a model however usually is empirical 
and based upon an expert’s knowledge [2]. 
 
That is why µ is preferably reconstructed from available measurements. State observers [4] 
already have been invoked.  
 
This paper is an attempt to analyze the observability of µ with respect to potentially available 
measurements. This has not yet be done in the literature. Moreover, an interesting relation is 
found, and which leads to an alternative way for the estimation of µ. 
 
Recall that the biological interpretation of X, S, Q, Sin, D, K1 and K2 implies the following 
consistency restrictions: 
 
X > 0, Q > 0, 
K1 > 0, K2 > 0, 
0 < D < Dsup, 0 < S < Sin 
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Signification as well as units and typical values of variables are summarized in Table 1. 
 

Table 1 
Symbol Signification Unit Typical value 

X Concentration of 
bacteria g⋅l-1 0.025 − 0.500 

S Concentration of soluble 
organics g⋅l-1 0.025 − 0.125 

µ Specific growth rates of 
bacteria in the reactor day-1 0.020 − 0.140 

D Dilution rate day-1 0.025 − 0.125 

Sin 
Influent concentration of 

organic matter g⋅l-1 0.300 − 3.000 

Q Biogas flow rate l gas⋅(l liquid-1⋅day-1) 0.020 − 0.700 
K1 Yield coefficient - 6.70 
K2 Yield coefficient l gas⋅g-1 16.78 

 
Observability and identifiability of the process variables 
As announced the identifiability and observability of the process variables is approached here 
by means of the differential algebraic theory of nonlinear observability. 
 
On the differential algebraic approach 
The reader is referred to [10] for details and references on this approach. Here are the main 
lines of the application of this theory to our biotechnological processes. First note that the 
theory applies to systems which are described by differential polynomials with coefficients 
which are meromorphic functions of the time. The theory may be extended to include 
descriptions involving differential rational fractions. Then one needs to consider differential 
equations and inequations (the sign ≠). In summary, in order to check the observability of a 
latent variable z with respect to, say u and y, of a system 
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one computes the characteristic set of the previous set of differential polynomials with respect 
to a ranking {{u, y}, {z}, {ξ}}. 
 
This notation of rankings is very intuitive. It says that all derivatives of u and y are lower than 
z, and all derivatives of z are lower than ξ. The characteristic set is merely a set A of 
differential polynomials each one being led by one (and only one) of the variables (at some 
derivative order). The testing device then reads as: z is observable with respect to u and y if, 
and only if, each component of z leads (i.e., is the highest variable derivative according to the 
ranking which appears in A) one differential polynomial in A. 
 
The characteristic set computations mentioned in this communication all have been carried 
out by means of a REDUCE package called astb written more than ten years ago and which is 
based upon Kolchin’s revisit of Ritt’s characteristic set algorithm. The reader who is familiar 
with differential algebraic decision methods knows that a practical and complete effective 
algorithm is still lacking. The package astb will fail to yield a characteristic set of systems in 
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many circumstances due to factorization issues for instance. But when astb exhibits a 
differential polynomial then of course the latter is a consequence of the system’s equations. 
 
Observability of the specific growth rate of bacteria 
The observability of the biomass specific growth rate is tested by calculating the characteristic 
set of the following set of differential polynomials 
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with respect to the ranking 
 
{{D, Q, Sin, K1, K2}, {µ}, {X, S}} 
 
The result is the following 
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It indicates that 
 
Lemma 1: µ is not observable with respect to D, Q, Sin, K1 and K2 since the differential 
polynomial which introduces µ (the third line of (3)) is of order 1 (and not 0) in µ. Moreover, 
neither K1 nor K2 is identifiable with respect to D, Q, Sin and µ due to the presence of the first 
two differential polynomials in (3). 
 
Next, the differential polynomial introducing µ is examined 
 

2 0d dQQ Q DQ
dt dt
µ µ µ µ+ − − = . 

 
Rewriting this equation as follows 
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2dQ dQ DQ Q
dt dt

µµ µ µ− = − +  

then in time intervals where µ is not identically zero, the two members of the previous 
equation may be divided by µ2 to yield 
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Given the constant sign of D and Q the quantity 
 
z = Q/µ 
thus can be estimated thanks to the exponential stability of the previous dynamic equation. Of 
course, the previous linear dynamics is exponentially stable only in time intervals where none 
of D and Q is identically zero. Since these singular cases are easily handled in practice, it 
follows that  
 
Lemma 2: µ may generically be estimated. Moreover, the estimation of µ does not involve 
neither yield coefficients nor the inlet diluted organics concentration Sin. 
 
When Eq. (4) is directly used to estimate µ the user should bear in mind the following matters 
of fact: 
 
Remark 3: In time intervals where D and Q do not identically vanish the estimate µ̂  of µ 
taken from Eq. (4) will converge no matter how µ̂  is initialized (provided that obvious 
consistency conditions are satisfied). In addition, the higher D is the faster µ̂  converges to µ. 
 
The specific growth rate µ being estimated through equation (4), µ is then considered as an 
additional measurement. 
 
Lemma 1 does not answer the following question: are the variables X and S observable with 
respect to D, Q, Sin and µ? The answer to this question is provided by the characteristic set of 
equations (2) with respect to a ranking such as 
 
{{D, Q, Sin, µ}, {X, S}, {K1, K2}} 
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in other words 
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Lemma 4: None of X and S is observable with respect to D, Q, Sin and µ since the differential 
polynomials introducing X and S are of orders 1 and 2 in X and S, respectively (and not of order 0). 
 
The negative answers to the above two questions implies that for X and S to be observable 
with respect to (D, Q, Sin, µ) additional information is required. This is usually introduced in 
the literature in the form of Monod, Contois or Haldane models for µ. 
 
Simulation results 
The dynamic evolution of the process (1) is simulated with a Monod model for the bacteria 
specific growth rate. The parameters K1 and K2 were given values as in Table 1, µmax = 0.35 
day-1 and ks = 2.3 g⋅l-1. The dilution rate time history is as in Fig. 1. The initial conditions are 
given by X(t0) = 0.1, S(t0) = 34.0. 

 

 
 

Fig. 1 Time history of D: t is in days and D is in day-1 
 
The biomass specific growth rate is estimated by means of the exponential stable dynamics 
(4): 
 

z
Q

Q Dz -  
dt
dz

=

+=

µ̂
 (5) 

which is better initialized with z(t0) = z0 = Q(t0)/D(t0). 
 
The estimated specific growth rate µ̂  with data from Fig. 2 using Eq. (5) is shown on Fig. 3. 
The estimated biomass concentration X̂  with data from Fig. 2 using the expression 

2/ˆ KzX =  is shown on Fig. 4. 
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Fig. 2 Simulated data for Q with 5% relative measurement noise for step changes of D 
presented in Fig. 1. t is in days and Q is in l gas⋅(l liquid⋅day)-1 

 

 
 

Fig. 3 The estimated specific growth rate 
 

 
 

Fig. 4 The estimated biomass concentration 
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Concluding remarks 
In this work some new insights have been obtained concerning the identifiability and 
observability of methane fermentation processes. A major discovery was that the biomass 
specific growth rate can be stably estimated from easily measured quantities, the dilution rate 
D and the biogas flow rate Q. If that estimate of biomass specific growth rate is next 
considered as an additional measurement then, of course, the biomass concentration becomes 
observable if the yield coefficient K2 is known, and the biomass concentration is not 
observable if K2 is not known. The experimental validation which is under investigation will 
allow us to extend these conclusions to more complex and more realistic models. 
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