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Abstract. The problem of data assimilation can be viewed
as one of synchronizing two dynamical systems, one repre-
senting “truth” and the other representing “model”, with a
unidirectional flow of information between the two. Syn-
chronization of truth and model defines a general view of
data assimilation, as machine perception, that is reminiscent
of the Jung-Pauli notion of synchronicity between matter and
mind. The dynamical systems paradigm of the synchroniza-
tion of a pair of loosely coupled chaotic systems is expected
to be useful because quasi-2D geophysical fluid models have
been shown to synchronize when only medium-scale modes
are coupled. The synchronization approach is equivalent to
standard approaches based on least-squares optimization, in-
cluding Kalman filtering, except in highly non-linear regions
of state space where observational noise links regimes with
qualitatively different dynamics. The synchronization ap-
proach is used to calculate covariance inflation factors from
parameters describing the bimodality of a one-dimensional
system. The factors agree in overall magnitude with those
used in operational practice on an ad hoc basis. The calcu-
lation is robust against the introduction of stochastic model
error arising from unresolved scales.

1 Introduction

A computational model of a physical process that provides
a stream of new data to the model as it runs must include
a scheme to combine the new data with the model’s predic-
tion of the current state of the process. The goal of any such
scheme is the optimal prediction of the future behavior of the
physical process. While the relevance of the data assimila-
tion problem is thus quite broad, techniques have been in-
vestigated most extensively for weather modeling, because
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of the high dimensionality of the fluid dynamical state space,
and the frequency of potentially useful new observational in-
put. Existing data assimilation techniques (3DVar, 4DVar,
Kalman Filtering, and Ensemble Kalman Filtering) combine
observed data with the most recent forecast of the current
state to form a best estimate of the true state of the atmo-
sphere, each approach making different assumptions about
the nature of the errors in the model and the observations.

An alternative view of the data assimilation problem is
suggested here. The objective of the process is not to “now-
cast” the current state of reality, but to make the model con-
verge to reality in the future. Recognizing also that a pre-
dictive model, especially a large one, is a semi-autonomous
dynamical system in its own right, influenced but not deter-
mined by observational input from a co-existing reality, it is
seen that the guiding principle that is needed is one of syn-
chronism. That is, we seek to introduce a one-way coupling
between reality and model, such that the two tend to be in
the same state, or in states that in some way correspond, at
each instant of time. The problem of data assimilation thus
reduces to the problem of synchronization of a pair of dy-
namical systems, unidirectionally coupled through a noisy
channel that passes a limited number of “observed” variables.

While the synchronization of loosely coupled regular os-
cillators with limit cycle attractors is ubiquitous in nature
(Strogatz, 2003), synchronization of chaotic oscillators has
only been explored recently, in a wave of research spurred
by the seminal work of Pecora and Carroll (1990). Chaos
synchronization can be surprising because it implies that two
systems, each effectively unpredictable, connected by a sig-
nal that can be virtually indistinguishable from noise, nev-
ertheless exhibit a predictable relationship. Chaos synchro-
nization has indeed been used to predict new kinds of weak
teleconnection patterns relating different sectors of the global
climate system (Duane, 1997; Duane et al., 1999; Duane and
Tribbia, 2004).
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It is now clear that chaos synchronization is surprisingly
easy to arrange, in both ODE and PDE systems (Kocarev et
al., 1997; Duane and Tribbia, 2001, 2004). A pair of spatially
extended chaotic systems such as two quasi-2D fluid models,
if coupled at only a discrete set of points and intermittently
in time, can be made to synchronize completely. The appli-
cation of chaos synchronization to the tracking of one dy-
namical system by another was proposed by So et al. (1994),
so the synchronization of the fluid models suggests a natu-
ral extension to meteorological data assimilation that has not
heretofore been recognized.

Since the problem of data assimilation arises in any situ-
ation requiring a computational model of a parallel physical
process to track that process as accurately as possible based
on limited input, it is suggested here that the broadest view
of data assimilation is that of machine perception by an arti-
ficially intelligent system. Indeed, the new field of Dynamic
Data Driven Application Systems (DDDAS) is defined as the
real-time modelling of evolving physical systems based on
select observations1. Like a data assimilation system, the
human mind forms a model of reality that functions well, de-
spite limited sensory input, and one would like to impart such
an ability to the computational model. In the artificial intelli-
gence view of data assimilation, the additional issue of model
error can be approached naturally as a problem of machine
learning, as discussed in the concluding section.

In this more general context, the role of synchronism is
reminiscent of the psychologist Carl Jung’s notion of syn-
chronicity in his view of the relationship between mind and
the material world. Jung had noted uncanny coincidences or
“synchronicities” between mental and physical phenomena.
In collaboration with Wolfgang Pauli (Jung and Pauli, 1955),
he took such relationships to reflect a new kind of order con-
necting the two realms. (The new order was taken to explain
relationships between seemingly unconnected phenomena in
the objective world as well.) It was important to Jung and
Pauli that synchronicities themselves were distinct, isolated
events, but as described in Sect. 2.1, such phenomena can
emerge naturally as a degraded form of chaos synchroniza-
tion.

A principal question that is addressed in this paper is
whether the synchronization view of data assimilation is
merely an appealing reformulation of standard treatments,
or is different in substance. The first point to be made is
that all standard data assimilation approaches, if successful,
do achieve synchronization, so that synchronization defines a
more general family of algorithms that includes the standard
ones. It remains to determine whether there are synchroniza-
tion schemes that lead to faster convergence than the stan-
dard data assimilation algorithms. It is shown here analyt-
ically that optimal synchronization is equivalent to Kalman
filtering when the dynamics change slowly in phase space,
so that the same linear approximation is valid at each point

1http://www.dddas.org

in time for the real dynamical system and its model. When
the dynamics change rapidly, as in the vicinity of a regime
transition, one must consider the full nonlinear equations and
there are better synchronization strategies than the one given
by Kalman filtering or ensemble Kalman filtering. The de-
ficiencies of the standard methods, which are well known in
such situations, are usually remedied by ad hoc corrections,
such as “covariance inflation” (Anderson, 2001). In the syn-
chronization view, such corrections can be derived from first
principles.

This paper takes a broad view of data assimilation by a
model system, defined as a set of differential equations, that
is coupled to noisy data obtained from a “true system”, de-
fined by the same set of differential equations, with the pos-
sible addition of a stochastic term to represent model error.
We begin by reviewing the phenomenology of chaos syn-
chronization generally in Sect. 2.1, and an application to geo-
physical fluid systems in Sect. 2.2. A brief review of standard
data assimilation is provided in Sect. 2.3. In Sect. 3 the syn-
chronization approach is compared to standard approaches.
The optimal synchronization problem for a coupled pair of
stochastic differential equations is framed as a problem of
finding the coupling that gives the tightest synchronization
in a linear approximation with observational noise. The opti-
mal coupling thus derived can be compared to forms used in
standard data assimilation. The difference becomes large in
regions of state-space where nonlinearities are important. In
Sect. 4, a comparison of the two approaches for the full non-
linear case is used to estimate covariance inflation factors that
would be needed to adjust the Kalman filter scheme to give
optimal synchronization, for both perfect models and models
including stochastic error from unresolved scales. Section 5
concludes by expanding on the view of data assimilation as
machine perception and discussing automatic model adapta-
tion in the synchronization framework.

2 Background: synchronized chaos and data assimila-
tion

2.1 Chaos synchronization

The phenomenon of chaos synchronization was first brought
to light by Fujisaka and Yamada (1983) and independently
by Afraimovich et al. (1986). Extensive research on the syn-
chronization of chaotic systems in the ’90s was spurred by
the work of Pecora and Carroll (1991), who found that two
Lorenz (1963) systems would synchronize when theX or Y
variable of one was slaved to the respectiveX or Y variable
of the other, despite sensitive dependence on initial values of
the other variables. (Synchronization does not occur if theZ

variables are analogously coupled.)
In this paper we consider a weakerdiffusiveform of cou-

pling, as illustrated by the following pair of bidirectionally
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coupled Lorenz systems:

Ẋ = σ(Y − Z)+ α(X1 −X)

Ẏ = ρX − Y −XZ

Ż = −βZ +XY

(1)

Ẋ1 = σ(Y1 − Z1)+ α(X −X1)

Ẏ1 = ρX1 − Y1 −X1Z1

Ż1 = −βZ1 +X1Y1

where α parameterizes the coupling strength. The two
Lorenz systems synchronize rapidly for appropriate values
of α, and also do so for unidirectional coupling, defined by
removing the term inα from the first equation.

For a pair of coupled systems that are not identical, as with
an imperfect model of a physical system, synchronization
may still occur, but the correspondence between the states
of the two systems, that defines thesynchronization manifold
in state space is different from the identity. In this situation,
known asgeneralized synchronization, we have two different
dynamical systems ẋ=F(x) and ẏ=G(y), with x, y∈Rn,
modified in some manner so as to define two coupled sys-
temsẋ=F̂ (x, y) and ẏ=Ĝ(y, x). The systems are said to
be generally synchronized iff there is some locally invertible
function8 : Rn→Rn such that||8(x)−y||→0 as t→∞

(Rulkov et al., 1995). Generalized synchronization can be
shown to occur even for very different systems, as with a
Rossler system coupled to a Lorenz system, but with a corre-
spondence function8 that is nowhere smooth (Pecora et al.,
1997).

It is commonly not the existence, but the stability of the
synchronization manifoldin state space that distinguishes
coupled systems exhibiting synchronization from those that
do not (such as Eq.1 for different values ofα). As the
coupling is weakened, bursts of desynchronization (a special
case of on-off intermittency) interrupt the synchronized be-
havior. On-off synchronization, that can also arise from noise
in the communication channel between the two systems, is
a second way that identical synchronization is found to de-
grade (Ashwin et al., 1994). In the data assimilation appli-
cation, it corresponds to “catastrophes” of large model drift
that can arise from observational noise (Baek et al., 2004).

2.2 Synchronization between geophysical fluid systems

Pairs of 1D PDE systems of various types, coupled diffu-
sively at discrete points in space and time, were shown to
synchronize by Kocarev et al. (1997). Synchronization in
geophysical fluid models was demonstrated by Duane and
Tribbia (2001), originally with a view toward predicting and
explaining new families of long-range teleconnections (Du-
ane and Tribbia, 2004).

The uncoupled single-system model, derived from one
described by Vautard et al. (1988), is given by the quasi-

channel A channel B
forcing
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n=2000

e) f)

FIGURE 1.

Fig. 1. Streamfunction (in units of 1.48×109 m2 s−1) describing
the forcingψ∗ (a, b), and the evolving flowψ (c–f), in a parallel
channel model with bidirectional coupling of medium scale modes
for which |kx |>kx0=3 or |ky |>ky0=2, and|k|≤15, for the indi-
cated numbersn of time steps in a numerical integration. Parame-
ters are as in Duane and Tribbia (2004). An average streamfunction
for the two vertical layersi=1,2 is shown. Synchronization occurs
by the last time shown(e, f), despite differing initial conditions.

geostrophic equation for potential vorticityq in a two-layer
reentrant channel on aβ-plane:

Dqi

Dt
≡
∂qi

∂t
+ J (ψi, qi) = Fi +Di (2)

where the layeri=1, 2, ψ is streamfunction, and the Jaco-
bianJ (ψ, ·)= ∂ψ

∂x
∂·
∂y

−
∂ψ
∂y

∂·
∂x

gives the advective contribution
to the Lagrangian derivativeD/Dt . Equation (2) states that
potential vorticity is conserved on a moving parcel, except
for forcing Fi and dissipationDi . The discretized potential
vorticity is

qi = f0 + βy + ∇
2ψi + R−2

i (ψ1 − ψ2)(−1)i (3)

wheref (x, y) is the vorticity due to the Earth’s rotation at
each point(x, y), f0 is the averagef in the channel,β is the
constantdf/dy andRi is the Rossby radius of deformation
in each layer. The forcingF is a relaxation term designed
to induce a jet-like flow near the beginning of the channel:
Fi=µ0(q

∗

i −qi) for q∗

i corresponding to the choice ofψ∗

shown in Fig.1a. The dissipation termsD, boundary con-
ditions, and other parameter values are given in Duane and
Tribbia (2004).

Two models of the form (2), DqA/Dt=FA+DA and
DqB/Dt=FB+DB were coupled diffusively in one direc-
tion by modifying one of the forcing terms:

FBk = µck[q
A
k − qBk ] + µext

k [q∗

k − qBk ] (4)

where the flow has been decomposed spectrally and the sub-
scriptk on each quantity indicates the wave numberk spec-
tral component. (The layer indexi has been suppressed.)
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FIGURE 3.

Fig. 2. Flow results as in Fig.1, but with the inter-channel cou-
pling restricted to the 10-local-bred-vector subspace as in Eq. (5).
Synchronization is apparent by the time step shown.

The two sets of coefficientsµc
k

andµext
k

were chosen to cou-
ple the two channels in some medium range of wavenumbers
and to force each channel only with the low wavenumber
components of the background flow.

It was found that the two channels rapidly synchronize if
only the medium scale modes are coupled (Fig.1), starting
from initial flow patterns that are arbitarily set equal to the
forcing in one channel, and to a rather different pattern in the
other channel. (Results are shown for bidirectional coupling
defined by adding an equation forFA

k
analogous to Eq.4.

The synchronization behavior for coupling in just one di-
rection is very similar.) With unidirectional coupling, the
synchronization effects data assimilation from theA channel
into theB channel.

One question about data assimilation that may be ad-
dressed in the synchronization context concerns the defi-
nition and minimum number of variables that must be as-
similated to give adequate predictive skill. It has been ar-
gued, for instance, that atmospheric dynamics is locally low-
dimensional, and that a small number of locally selected bred
vectors spans the effective state space in each local region
(Patil et al., 2001). Bred vectors are commonly used to spec-
ify likely directions of forecast error (Toth and Kalnay, 1993,
1997).

If Patil et al. (2001)’s argument about low “BV-dimension”
is correct, then it should only be necessary to couple two
channels in the subspace defined by the properly chosen bred
vectors, in each local region, to synchronize the two chan-
nels. That is, it should be possible to replace Eq. (4) by

FB(x, y) = µBV
∑
i

[(qA − qB) · bi]kbi(x, y)+ FBext(x, y) (5)

for (x, y)∈rk, where thebi for i=1...10 are an orthonormal
set of vectors formed from ten bred vectorsBi by Gram-
Schmidt orthogonalization in each local region separately.
That is, the bred vectorsBi are first computed globally for
the channel as a whole, as in Toth and Kalnay (1997). Then,
the channel is divided rectangularly into a 20×16 patch-
work of local regionsrk k=1...320. The set of vectorsbi is
formed fromBi by Gram-Schmidt orthogonalization of the
setBi(x, y):(x, y)∈rk for eachrk and concatenating the re-

sulting vectors over all regions. The dot product in brackets
in Eq. (5) is computed separately for each local region:

[v · w]k ≡

∑
(x,y)∈rk

v(x, y)w(x, y) (6)

so that 320×10=3200 independent coefficients[(qA −

qB)·bi]k are computed at each instant of time. Thus
[bi ·bj ]k=δij for all k. The overall coupling strength is given
by µBV , and the external forcing by the jet is defined by
FBext

k ≡µext
k [q∗

k−qBk ] as before.
It is found that two channels coupled in a truncated bred

vector basis according to Eq. (5) do synchronize, as illus-
trated in Fig.2, and do not synchronize with fewer indepen-
dent regions or if fewer bred vectors are used to define the
coupling subspace. The total number of independent coef-
ficients, however, is comparable to or larger than the total
number of Fourier components in the mid-range of scales
that was seen to be effective for synchronization in the cou-
pling scheme (4).

The lesson is that the synchronization phenomenon does
not appear to be very sensitive to the detailed choice of cou-
pling subspace. A similar conclusion was reached by Yang et
al. (2004) for synchronizing Lorenz systems. Those authors
obtained only small improvement by using bred vectors or
singular vectors instead of single-variable coupling. In the
present case of spatially extended models, it seems that any
basis that captures the essential physical phenomena in each
local region, phenomena that can be described in terms of a
middle range of scales, is adequate for synchronization and
hence for data assimilation.

2.3 Data assimilation

Standard data assimilation, unlike synchronization, estimates
the current statexT ∈Rn of one system, “truth”, from the
state of a model systemxB∈Rn, combined with noisy obser-
vations of truth. The best estimate of truth is the “analysis”
xA, which is the state that minimizes error as compared to
all possible linear combinations of observations and model.
That is

xA ≡ xB + 3(xobs− xB) (7)

minimizes the analysis error<(xA−xT )
2> for a stochastic

distribution given byxobs=xT+ξ whereξ is observational
noise, for properly chosenn×n gain matrix3. The standard
methods to be considered in this paper correspond to specific
forms for the generally time-dependent matrix3.

The simple method known as 3dVar uses a time-
independent3 that is based on the time-averaged statistical
properties of the observational noise and the resulting fore-
cast error. Let the matrix

R ≡< ξξT >=< (xobs− xT )(xobs− xT )
T > (8)

be the observation error covariance, and the matrix

B ≡< (xB − xT )(xB − xT )
T > (9)
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be the “background” error covariance, describing the devia-
tion of the model state from the true state. If both covariance
matrices are assumed to be constant in time, then the optimal
linear combination of background and observations is:

xA = R(R + B)−1xB + B(R + B)−1xobs (10)

The formula (10), which simply states that observations are
weighted more heavily when background error is greater and
conversely, defines the 3dVar method in practical data as-
similation, based on empirical estimates ofR and B. The
4dVar method, which will not be considered here, general-
izes Eq. (10) to estimate a short history of true states from a
corresponding short history of observations.

The Kalman filtering method, that is popular for a vari-
ety of tracking problems, uses the dynamics of the model to
update the background error covarianceB sequentially. The
analysis at each assimilation cyclei is:

xiA = R(R + Bi)−1xiB + Bi(R + Bi)−1xiobs (11)

where the backgroundxiB is formed from the previous anal-
ysisxi−1

A simply by running the modelM:Rn→Rn

xiB = Mi−1→i(x
i−1
A ) (12)

as is done in 3dVar. But now the background error is updated
according to

Bi = M i−1→iAi−1MT
i−1→i + Q (13)

where A is the analysis error covariance
A≡<(xA−xT )(xA−xT )

T>, given conveniently by
A−1

=B−1
+R−1. The matrixM is thetangent linear model

given by

Mab ≡
∂Mb

∂xa

∣∣∣∣
x=xA

(14)

The update formula (13) gives the minimum analysis error
<(xA−xT )

2>=T rA at each cycle. The termQ is the covari-
ance of the error in the model itself, as discussed in Sect. 4.

3 Comparison of synchronization with standard meth-
ods of data assimilation

3.1 Optimal coupling for synchronization of stochastic dif-
ferential equations

To compare synchronization to standard data assimilation,
we inquire as to the coupling that is optimal for synchroniza-
tion, so that this coupling can be compared to the gain matrix
used in the standard 3dVar and Kalman filtering schemes.
The general form of coupling of truth to model that we con-
sider in this section is given by a system of stochastic differ-
ential equations:

ẋT = f (xT )

ẋB = f (xB)+ C(xT − xB + ξ) (15)

where true statexT ∈Rn and the model statexB∈Rn evolve
according to the same dynamics, given byf , and where the
noise ξ in the coupling (observation) channel is the only
source of stochasticity. The form (15) is meant to include
dynamicsf described by partial differential equations, as in
the last section. The system is assumed to reach an equi-
librium probability distribution, centered on the synchro-
nization manifoldxB=xT . The goal is to choose a time-
dependent matrixC so as to minimize the spread of the dis-
tribution.

Note that if C is a projection matrix, or a multiple of
the identity, then Eq. (15) effects a form of nudging. But
for arbitraryC, the scheme is much more general. Indeed,
continuous-time generalizations of 3DVar and Kalman filter-
ing can be put in the form (15).

Let us assume that the dynamics vary slowly in state space,
so that the JacobianF≡Df , at a given instant, is the same for
the two systems

Df (xB) = Df (xT ) (16)

where terms ofO(xB−xT ) are ignored. Then the difference
between the two Eqs. (15), in a linearized approximation, is

ė = Fe − Ce + Cξ (17)

wheree≡xB−xT is the synchronization error.
The stochastic differential equation (17) implies a de-

terministic partial differential equation, the Fokker-Planck
equation, for the probability distributionρ(e):

∂ρ

∂t
+ ∇e · [ρ(F − C)e] =

1

2
δ∇e · (CRCT∇eρ) (18)

whereR=<ξξT> is the observation error covariance matrix,
and δ is a time-scale characteristic of the noise, analogous
to the discrete time between molecular kicks in a Brownian
motion process that is represented as a continuous process in
Einstein’s well known treatment. Equation (18) states that
the local change inρ is given by the divergence of a proba-
bility currentρ(F−C)e except for random “kicks” due to the
stochastic term.

The PDF can be taken to have the Gaussian form
ρ=N exp(−eTKe), where the matrixK is the inverse spread,
andN is a normalization factor, chosen so that

∫
ρdne=1.

For background error covarianceB, K=(2B)−1. In the one-
dimensional case,n=1, whereC andK are scalars, substitu-
tion of the Gaussian form in Eq. (18), for the stationary case
where∂ρ/∂t=0 yields:

2B(C − F) = δRC2 (19)

SolvingdB/dC=0, it is readily seen thatB is minimized (K
is maximized) whenC=2F=(1/δ)B/R.

In the multidimensional case,n>1, the relation (19) gen-
eralizes to thefluctuation-dissipation relation

B(C − F)T + (C − F)B = δCRCT (20)

www.nonlin-processes-geophys.net/13/601/2006/ Nonlin. Processes Geophys., 13, 601–612, 2006
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Fig. 3. An analysis cycle, with trajectories shown for the true state
“T”, the model evolving from the initial analysis “A” to the next
forecast, or background “B”, and an alternative model run (dot-
ted line) starting from an inferior “analysis” that is further from
the initial truth. In the case(a) whereDf (xT )=Df (xA), then a
worse analyis will always produce a worse forecast, but in the gen-
eral case(b) whereDf (xT ) 6=Df (xA), nonlinearities may allow a
worse analysis to evolve to a better forecast (the trajectories do not
actually cross).

that can be obtained directly from the stochastic differential
equation (17) by a standard proof that is reproduced in Ap-
pendix A.B can then be minimized element-wise. Differen-
tiating the matrix equation (20) with respect to the elements
of C, we find

dB(C − F)T + B(dC)T + (dC)B + (C − F)dB

= δ[(dC)RCT + CR(dC)T ] (21)

where the matrixdC represents a set of arbitrary increments
in the elements ofC, and the matrixdB represents the re-
sulting increments in the elements ofB. SettingdB=0, we
have

[B − δCR](dC)T + (dC)[B − δRCT ] = 0 (22)

Since the matricesB and R are each symmetric, the two
terms in Eq. (22) are transposes of one another. It is eas-
ily shown that the vanishing of their sum, for arbitrarydC,
implies the vanishing of the factors in brackets in Eq. (22).
ThereforeC=(1/δ)BR−1, as in the 1D case.

3.2 Optimal synchronization vs. least-squares data assimi-
lation

Turning now to the standard methods, so that a comparison
can be made, it is recalled that the analysisxA after each
cycle is given by:

xA = R(R + B)−1xB + B(R + B)−1xobs

= xB + B(R + B)−1(xobs− xB) (23)

In 3dVar, the background error covariance matrixB is fixed;
in Kalman filtering it is updated after each cycle using the
linearized dynamics. The background for the next cycle is
computed from the previous analysis by integrating the dy-
namical equations:

xn+1
B = xnA + τf (xnA) (24)

where τ is the time interval between successive analyses.
Thus the forecasts satisfy a difference equation:

xn+1
B = xnB + B(R + B)−1(xnobs− xnB)+ τf (xnA) (25)

We model the discrete process as a continuous process in
which analysis and forecast are the same:

ẋB = f (xB) + 1/τB(B + R)−1(xT − xB + ξ)

+ O[(B(B + R)−1)2] (26)

using the white noiseξ to represent the difference between
observationxobs and truthxT . The continuous approxima-
tion is valid so long asf varies slowly on the time-scaleτ .

It is seen that when background error is small compared to
observation error, the higher order termsO[(B(B+R)−1)2]

can be neglected and the optimal couplingC=1/δBR−1 is
just the form that appears in the continuous data assimila-
tion equation (26), for δ=τ . Thus under the linear assump-
tion thatDf (xB)=Df (xT ), the synchronization approach is
equivalent to 3dVar in the case of constant background error,
and to Kalman filtering if background error is dynamically
updated over time. The equivalence can also be shown for an
exact description of the discrete analysis cycle, by comparing
it to a coupled pair of synchronized maps. See Appendix B.

The equivalence between synchronization and standard
methods in the linear case actually follows easily from a
comparison of the optimization principles that define the two
approaches. In the standard approaches, the form (23) min-
imizes the expected value of(xA−xT )

2, as compared to all
other linear combinations ofxobs andxB . But if double lin-
earization (16) holds then the minimization of<(xA−xT )

2>

implies the minimization of<(xB−xT )
2> at any future

time.
To see this, first consider the background error after a pe-

riod of time τ , just before the next analysis, as in Fig.3a.
If double linearization (16) holds, then this projected back-
ground error is related to the initial analysis error by

e(t) = T

[
exp

∫ t

to

F(t ′)dt ′
]

e(to) ≡ Me(to) (27)

where the notationT before the expression in brackets de-
notes time-ordering. The expectations are related by

B=<e(t)eT (t)>=M<e(to)e
T (to)>MT

=MAM T (28)

If we consider a more general “analysis”x3
A formed from a

general linear combination of forecast and observations

x3
A ≡ xB + 3(xobs− xB) (29)
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and compute a general “analysis error covariance”
A3

≡<(x3
A−xT )(x

3
A−xT )

T> accordingly, we seek to
minimize the traceT rA3

=<(x3
A−xT )

2>. But it is readily
shown that a solution3 of d3T rA3

= 0 is also a solution
of d3T rM(t)A3MT (t)=0 for 0<t≤τ . (The operator “d3”
produces amatrix with elements that are the derivatives of
the argument with respect to the corresponding elements of
3.) Thus the best analysis gives the best forecast just prior to
the next analysis. It is then readily seen that such a forecast
will also give the best subsequent analysis and so on.

In the fully nonlinear caseDf (xB) 6=Df (xT ), the best
analysis may not give the best forecast, as illustrated
schematically in Fig.3b. In this more general situation,
the optimal coupling scheme for synchronization may dif-
fer from that used in standard data assimilation methods.
As a thought experiment, imagine a dynamical system that
suddenly switches between two different dynamical regimes,
given by different sets of equations, e.g. a 3-variable system
that switches between Lorenz and Rossler dynamics, at reg-
ular intervals. If the period between switches is long enough,
a Kalman filter will take a little time to adjust the coupling to
the new dynamics after each switch. This is a sub-optimal ar-
rangement. The optimal arrangement would switch the cou-
pling scheme completely each time the dynamics switches.

A version of this thought experiment, realized numeri-
cally, is depicted in Fig.4, using a non-autonomous three-
variable system that switches, at periodic intervals1, be-
tween Lorenz dynamics and the same dynamics with the
roles ofX andZ reversed:

Ẋ = σ(Y −X)

Ẏ = ρX − Y −XZ

Ż = −βZ +XY


if n1 ≤ t < (n+ 1/2)1 (n ∈ Z+)

(30)

Ẋ = −βX + ZY

Ẏ = ρZ − Y − ZX

Ż = σ(Y − Z)


if (n+ 1/2)1 ≤ t < (n+ 1)1

Synchronization of a master-slave pair of such systems was
effected using coupling in theX andY variables, and alter-
nately in theZ andY variables, combinations known to be
effective for the Lorenz system and the “reversed Lorenz”
system, respectively:

Ẋ1 = σ(Y1 −X1)+ k(X −X1)

Ẏ1 = ρX1 − Y1 −X1Z1 + k(Y − Y1)

Ż1 = −βZ1 +X1Y1


if n1 ≤ t < (n+ 1/2)1

(31)

Ẋ1 = −βX1 + Z1Y1

Ẏ1 = ρZ1 − Y1 − Z1X1 + k(Y − Y1)

Ż1 = σ(Y1 − Z1)+ k(Z − Z1)



a)
0 200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

5

6

7

8

9

10

time

er
ro

r

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

b)
0 200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

5

6

7

8

9

10

time

er
ro

r

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

lorenz 
reversed 
  lorenz 

FIGURE 4.

Fig. 4. Synchronization error between two copies of the alternat-
ing Lorenz system (30), with standard Lorenz parameters and pe-
riod1 = 400, coupled in two ways:(a) by simply alternating xy-
coupling and zy-coupling (31), with coupling strengthk=140 and
(b) by Kalman filtering with algorithm and parameters as in (Yang
et al., 2004), except with low values of the covariance inflation fac-
tor 1+δ=1.05 and of the standard deviationµ=0.025 of the random
perturbations added to the analysis error covariance. The average
error for 100 realizations of the stochastic process, all with the same
initial conditions, is plotted in each panel. Runge-Kutta numerical
integration was performed with stepsize1t=0.01. Time is shown
in units equal to.08 in the nondimensional units of Eq. (31). Obser-
vations were assimilated every eight time steps in the Kalman filter
algorithm; the coupling term in Eq. (31) was analogously turned
on only every eight time steps. The Kalman filtering algorithm
gives lower error on the average, but there are some desynchroniza-
tion bursts at times of regime transitions (dotted lines) between the
Lorenz and “reversed Lorenz” phases.

if (n+ 1/2)1 ≤ t < (n+ 1)1

The alternate coupling method (31) is compared with the
Kalman filter algorithm that directs the slave system, defined
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by X1, Y1, Z1, based on “observations” of theX, Y,Z sys-
tem. It is seen that the Kalman filter approach (Fig.4b)
gives bursts of desynchronization just after the transitions,
as expected, unlike the coupling (31) (Fig. 4a), although the
Kalman filter performance is better on the average. (The
plots in Fig.4 are averages over a large number of realiza-
tions of the stochastic process. Each realization is based
on exactly the same master system trajectory. The desyn-
chronization phenomenon occurs when the Lorenz/reversed
Lorenz transition takes place at certain points on the master
system attractor, but not when it takes place at other points.)

There are several lessons to be learned from this extreme
and somewhat artificial example. First, the optimal synchro-
nization scheme, with time-varying coupling, would reduce
both the average error and the bursting phenomenon. That
would be the ideal way to do data assimilation. But sec-
ond, the Kalman filtering approach is almost always better
than any of the coupling algorithms described in the synchro-
nization literature. Specifically, the bursts (corresponding to
“catastrophes” in the data assimilation literature) are short-
lived even in this extreme example, lasting for only one or
two time steps.

In the geophysical realm, effective non-autonomy is com-
mon, as with phenomena influenced by the diurnal or annual
cycles for example. More generally, the highly nonlinear re-
gions of phase space where the assumption (16) fails, and
the optimality of the Kalman filter is expected to break down
correspond to regime transitions. It is in such regions, that
typically occupy small volumes of phase space, where the
synchronization approach is expected to improve on standard
methods to a small degree.

4 Synchronization vs. data assimilation for strongly
nonlinear dynamics

In a region of state space where nonlinearities are strong and
Eq. (16) fails, the prognostic equation for error (17) must be
extended to incorporate nonlinearities. Additionally, model
error due to processes on small scales that escape the digi-
tal representation should be considered. While errors in the
parameters or the equations for the explicit degrees of free-
dom require deterministic corrections, the unresolved scales,
assumed dynamically independent, can only be represented
stochastically. The physical system is governed by:

ẋT = f (xT )− ξM (32)

in place of Eq. (15a), whereξM is model error, with covari-
anceQ≡<ξMξTM>. The error equation (17) becomes

ė = (F − C)e +Ge2
+He3

+ Cξ + ξM (33)

where we have included terms up to cubic order ine, with
H<0 to prevent divergent error growth for large||e||. In the
multi-dimensional case, Eq. (33) is shorthand for a tensor
equation in whichG andH are tensors of rank three and

rank four (and the restrictions onH are more complex). In
the one-dimensional case, which we shall analyze here,G

andH are scalars.
The Fokker-Planck equation is now:

∂ρ

∂t
+ ∇e · {ρ[(F − C)e +Ge2

+He3
]}

=
1

2
δ∇e · [(CRCT +Q)∇eρ] (34)

Using the ansatz for the PDFρ:

ρ(e) = N exp(−Ke2
− Le3

−Me4) (35)

with a normalization factorN = [
∫

∞

−∞
de exp(−Ke2

−

Le3
−Me4)]−1, we obtain from Eq. (34) the following rela-

tions between the dynamical parameters and the PDF param-
eters:

F − C =
1

2
τ(C2R +Q)(−2K)

G =
1

2
τ(C2R +Q)(−3L) (36)

H =
1

2
τ(C2R +Q)(−4M)

The goal is to minimize the background error:

B(K,L,M) =

∫
∞

−∞
de e2 exp(−Ke2

− Le3
−Me4)∫

∞

−∞
de exp(−Ke2 − Le3 −Me4)

. (37)

Using Eq. (36) to express the arguments ofB
in terms of the dynamical parameters, we find
B(K,L,M)=B(K(C), L(C),M(C))≡B(C), and can
seek the value ofC that minimizesB, for fixed dynamical
parametersF,G,H .

For grounding in choosing appropriate parameter values,
one might consider the nonlinearities of typical systems
in geophysical fluid dynamics. The parametersG andH
can be taken from a Taylor expansion of the model sys-
tem dynamics about the true state. That is, the expansion
f (y)=f (x)+ef ′(x)+1

2e
2f ′′(x)+1

6e
3f ′′′(x), for x = xT ,

y = xB , impliesG=
1
2f

′′(x) andH=
1
6f

′′′(x), from which
(33) follows, noting (15). But then the prognostic equation
for the true system can be similarly expanded aboutx=xo:

ẋ = f (xo)+ (x − xo)F + (x − xo)
2G+ (x − xo)

3H (38)

Suppose the true system (38) describes motion in a double-
well potential with the central fixed point atx=xo, so that
f (xo)=0. It is at such points, e.g. the central fixed point in
the Lorenz system, that nonlinearities are usually greatest.
The Lorenz (1984) system, intended to represent large-scale
atmospheric circulation using just a few variables has sim-
ilar structure: there are two regimes with central unstable
fixed points which are about equidistant from the unstable
fixed point at the center of the whole attractor that marks the
boundary between the two regimes.
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FIGURE 5.

Fig. 5. For a true systeṁx=f (x), with f defined by (38) describ-
ing a two-well potential aboutx=xo = 0, (a), background error
B is plotted against coupling strengthC for bimodality parameters
d1=1.06, d2=1.26, observation errorR=1 and inter-observation
time τ=0.1 (b). Although the distribution of true states is bimodal,
the error distributionρ(e) is unimodal(c). B vs. C for a shorter
inter-observation timeτ=0.01 (d) gives a covariance inflation fac-
tor near unity (see text).

Matching the gross structure of the two-well potential to
the gross structure of the Lorenz ’63 or Lorenz ’84 systems,
one can find values ofG andH , that will give the correct
distances between the central fixed point and the two out-
lying fixed points, respectively. For the Lorenz ’84 system,
these distances ared1=1.06 andd2=1.26 respectively. The
prognostic equation for error (33) has fixed points in the de-
sired positions iffG=.15 andH=−.75, in a re-scaled time
coordinate for whichF=1.

For the perfect model case,Q=0, the functionB(C) is
then found numerically to have the form plotted in Fig.5b,
with a distinct optimum at B=0.15, C=1.5, where the inter-
observation timeτ=0.1 (6 h in dimensional units) is chosen
to be an order of magnitude smaller than the dynamical time
scaleF−1 and we assume a large observation errorR=1, of
the same order as the typical displacement ofx about the as-
sumed unstable fixed point. Note that although the true state
of the system is distributed bimodally, the distribution (35)
of synchronization errorρ(e) shown in Fig.5c is unimodal,
because of smearing by observational noise.

The coupling that gives optimal synchronization can again
be compared with the coupling used in standard data assim-
ilation, as for the linear case. In particular, one can ask
whether the “covariance inflation” scheme that is used as an
ad hoc adjustment in Kalman filtering (Anderson 2001) can
reproduce theC values found to be optimal for synchroniza-
tion. The formC=τ−1B(B+R)−1 is replaced by the ad-
justed form

C =
1

τ

FB
FB + R

(39)

Table 1. Covariance inflation factor vs. bimodality parameters
d1, d2, for 50% model error in the resolved tendency.

d1
.75 1. 1.25 1.5 1.75 2.

.75 1.26 1.26 1.28 1.30 1.32 1.34
1. 1.26 1.23 1.23 1.25 1.27 1.29

d2 1.25 1.28 1.23 1.22 1.23 1.24 1.25
1.5 1.30 1.25 1.23 1.22 1.23 1.24

1.75 1.32 1.27 1.24 1.23 1.23 1.23
2. 1.34 1.29 1.25 1.24 1.23 1.23

whereF is the covariance inflation factor. For the example
depicted in Fig.5b, the optimal valueC=1.5 would be gen-
erated by an inflation factorF=1.2.

The optimization problem was solved numerically with re-
sults as plotted in Table1 for a range of values of the bi-
modality parametersd1 andd2, giving dynamical parameters
G=1/d2−1/d1 andH=−1/(d1d2). Results are displayed
for the case where the amplitude of model error in Eq. (32)
is about 50% of the resolved tendencyẋT , with the resulting
model error covarianceQ=0.04 approximately one-fourth of
the background error covarianceB. The covariance inflation
factors are remarkably constant over a wide range of param-
eters and agree with typical values used in operational prac-
tice.

For the range of bimodality parameters considered, the
large stochastic model error makes little difference in the
estimated covariance inflation factors, typically changing
F only by about ±0.001. Indeed, for the linear case
(d1=d2=∞), the optimal coupling is still 1/δBR−1, as for a
perfect model. The stochastic model error results in an extra
constant termδQ on the RHS of the Fluctuation-Dissipation
Relation (20) that does not affect the derivatives in the sub-
sequent optimization procedure. (However,Q does enter the
prognostic equation (13) for B in the linear case, just as in
Kalman filtering.)

As the inter-observation timeτ becomes smaller,B de-
creases at the minimum point, and the form (39) implies a
decreasing covariance inflation factor. For the caseτ=0.01
shown in Fig.5d, the required factor is near unity. (Precisely,
F=1.02.) That is, the coupling required for continuous-time
Kalman filtering approaches the optimal coupling for syn-
chronization. That the advantage conferred by the synchro-
nization approach obtains only for sizable inter-observation
times suggests some commonality with non-linear general-
izations of Kalman filtering (e.g. Miller and Ghil, 1994).
The difference between optimal synchronization and nonlin-
ear Kalman filtering, while likely to be small, merits further
investigation, since the two approaches are defined by dif-
ferent goals. Similarly, the use of ensembles to represent
non-Gaussian PDF’s in an empirical way (Anderson, 2003)
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would seem to address some of the same issues treated in this
section, and a comparison is warranted.

In the synchronization view, the values typically used for
the covariance inflation factor in the presence of model non-
linearity and stochastic model error are readily explained.
Sampling error, as it affects estimates of background covari-
anceB, is not treated here, but might be expected to enter in
a similar way and not to substantially alter the conclusions of
the optimal coupling analysis.

5 Concluding remarks: data assimilation as machine
perception

That ad hoc covariance inflation factors used in operational
practice can be explained naturally in the synchronization
view of data assimilation suggests a deep relevance for that
viewpoint. Nothing in the foregoing discussion of synchro-
nization and data assimilation is limited to meteorological
processes. In any situation in which a computational predic-
tive model of a physical process receives a stream of new data
as it is running, the synchronization of the physical process
and the model is the true goal of any assimilation scheme.
As suggested in the introduction, the philosophical basis for
the proposed use of synchronization appears to be the idea of
synchronicity as espoused by Jung and Pauli, originally in a
psychological context.

While a weather-prediction model is not usually viewed
as artificially intelligent software, it forms an internal rep-
resentation of the external world as complex as that of any
robot, albeit without the motor component. One could envi-
sion augmenting the statistical data assimilation algorithms
with rules to discriminate between good and bad observa-
tions, and with rules to transform the observed data in com-
plex ways based on the current model state. Neurobiological
paradigms may guide the design of such artificially intelli-
gent predictive systems. It is known that interneuronal syn-
chronization across wide distances in the brain plays a role
in the grouping of percepts that is a prerequisite to higher
processing, and may even underlie consciousness (Strogatz,
2003; Von Der Malsburg and Schneider, 1986). These find-
ings lend credibility to the suggestion that a synchronization
principle is also fundamental to the relationship between the
brain and the external world, and that synchronization should
be a cornerstone in the design of a neuromorphic, artificially
intelligent predictive model.

Machine learning might also be realized in the synchro-
nization context, so as to correct for deterministic model
error in the resolved degrees of freedom. By allowing
model parameters to vary slowly, generalized synchroniza-
tion would be transformed to more nearly identical synchro-
nization. Indeed, parameter adaptation laws can be added to
a synchronously coupled pair of systems so as to synchronize
the parameters as well as the states. Parlitz (1996) showed for
example that two unidirectionally coupled Lorenz systems

with different parameters:

Ẋ = σ(Y −X)

Ẏ = ρX − Y −XZ

Ż = −βZ +XY

(40)

Ẋ1 = σ(Y −X1)

Ẏ1 = ρ1X1 − νY1 −X1Z1 + µ

Ż1 = −βZ1 +X1Y1

could be augmented with parameter adaptation rules:

ρ̇1 = (Y − Y1)X1

ν̇ = (Y1 − Y )Y1 (41)

µ̇ = Y − Y1

so that the Lorenz systems would synchronize, and addition-
ally ρ1→ρ, ν→1, andµ→0. Note that parameters cease
to adapt when the systems are perfectly synchronized with
Y−Y1=0. Generalizations to PDEs would allow model pa-
rameters to automatically adapt. In complex cases, a stochas-
tic component (in the parameters) might be necessary to al-
low parameters to jump among multiple basins of attraction,
most of which are sub-optimal. The stochastic approach
could perhaps be extended to a genetic algorithm that would
make random qualitative changes in the model as well, until
synchronization is achieved.

The main competing approach to the tracking of reality
by a predictive model is Kalman filtering, or generaliza-
tions thereof that use Bayesian reasoning to estimate the cur-
rent state. Further development of the optimal synchroniza-
tion approaches to provide more refined modifications of the
Kalman filter in select regions of state space will be of inter-
est in any situation where a Kalman filter is used to track a
highly nonlinear process.

Conversely, unidirectional synchronization can always be
viewed as a data assimilation problem, by regarding the slave
system as a “model” of the master. The synchronization
properties of a bidirectionally coupled system can often be
inferred from the study of a corresponding unidirectional
configuration. The optimally modified Kalman filter that is
needed for data assimilation will therefore also be useful for
optimizing the synchronization of dynamical systems gener-
ally.

Appendix A

Derivation of the fluctuation-dissipation relation for
synchronously coupled differential equations with noise
in the coupling channel

Consider the stochastic differential equation for synchroniza-
tion error (17), rewritten as:

de

dt
= (F − C)e + Cξ (A1)
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wheree is the synchronization error vector,F is a matrix rep-
resenting the linearized dynamics,C is the coupling matrix,
andξ is a time-dependent vector of white noise process sat-
isfying<ξ(t)>=0 and

< ξ(t)ξT (t ′) >= δRδ(t − t ′) (A2)

whereR is the observation error covariance matrix andδ is
the time over which the physical noise decorrelates. The so-
lution to Eq. (A1) is:

e(t) = e(F−C)te(0)+

∫ t

0
dt ′e(F−C)(t−t ′)Cξ(t ′) (A3)

Thus the mean synchronization error is

< e(t) >= e(F−C)te(0) (A4)

and the synchronization error variance is

< [e(t)− e(F−C)te(0)][e(t)− e(F−C)te(0)]T >=∫ t

0
dt ′

∫ t

0
dt ′′e(F−C)(t−t ′)C<ξ(t ′)ξT (t ′′>CT e(F−C)T (t−t ′′)

(A5)

or

< e(t)eT (t) > = e(F−C)te(0)eT (0)e(F−C)T t

+

∫ t

0
dt ′e(F−C)(t−t ′)δCRCT e(F−C)T (t−t ′)

(A6)

If C is chosen so that the system synchronizes, in the absence
of noise, ast→∞, then the first term on the right hand sided
of Eq. (A6) vanishes in this limit. The system with noise
approaches a stationary state with<e>=0 and

< eeT >≡ B =

∫
∞

0
dte(F−C)tδCRCT e(F−C)T t (A7)

Differentiating the integrand in Eq. (A7) with respect tot and
and using Eq. (A7) to simplify the resulting expression, we
find

(F − C)B + B(F − C)T

=

∫
∞

0
dt
d

dt
[e(F−C)tδCRCT e(F−C)T t

]

= [e(F−C)tδCRCT e(F−C)T t
]

∣∣∣∞
0

(A8)

The last expression in brackets vanishes at the upper limit for
the case of stable synchronization, so we have

(F − C)B + B(F − C)T = −δCRCT (A9)

which is the fluctuation-dissipation relation (20).

Appendix B

Optimal coupling for synchronization of discrete-
time maps

In Sects. 3.1 and 3.2, standard data assimilation was com-
pared to optimal synchronization of differential equations by
considering the continuous-time limit of the discrete analy-
sis cycle. Instead, one can leave the analysis cycle intact and
compare it to a discrete-time version of optimal synchroniza-
tion, i.e. to optimally synchronized maps.

We begin by deriving a fluctuation-dissipation relation
(FDR) for stochastic difference equations. Consider the
stochastic difference equation with additive noise,

x(n+1) = F x(n)+ ξ(n) < ξ(n)ξ(m)T >= R δn,m, (B1)

wherex, ξ∈Rn, F, R aren×n matrices,F is assumed to be
stable, andξ is Gaussian white noise. One can prove by in-
duction that the solution to this equation, with initial condi-
tion x(p), is

x(n+ 1) = Fn+1−px(p)+

n∑
m=p

Fm−p ξ(n+ p −m) (B2)

We first wish to find the equilibrium covariance matrix
0=<xxT>. If the initial condition is in the infinite past then
the equilibrium covariance is the covariance at any finite it-
eration and it is convenient to choose iteration one. SinceF
is stable the initial condition is forgotten and we obtain:

x(1) =

∞∑
m=0

Fmξ(−m), (B3)

and then

0 =

∞∑
m=0

FmRFm
T

. (B4)

One can then show that0 satisfies the matrix FDR

F 0 FT − 0 + R = 0. (B5)

Now consider a model that takes the analysis at stepn to
a new background at stepn+ 1, given by a linear matrixM .
That is,xB(n + 1)=MxA(n). Also, xT (n + 1)=MxT (n).
SincexA(n)=xB(n)+B(B+R)−1(xobs(n)−xB(n)), where
xobs=xT+ξ , we derive a difference equation fore≡xB−xT :

e(n+ 1)=M(I−B(B+R)−1)e(n)+MB(B+R)−1ξ . (B6)

For synchronously coupled maps, on the other hand, we
have

e(n+ 1) = (M − C)e(n+ 1)+ Cξ , (B7)

and with the FDR as derived above:

(M − C)B(M − C)T − B + CRCT = 0 (B8)
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Differentiating the matrix equation (B8) with respect to the
elements ofC, as in the continuous-time analysis, we find

0 = (M − C)dB(M − C)T + (−dC)B(M − C)T

+ (M − C)B(−dC)T − dB + dCRCT + CRdCT . (B9)

We seek a matrixC for which dB=0 for arbitrarydC, and
thus

(−dC)[B(M − C)T − RCT ]

+[(M − C)B − CR](−dC)T = 0 (B10)

for arbitrarydC. The two terms are transposes of one an-
other, and it is easily shown, as in the continuous-time case,
that the quantities in brackets must vanish. This gives the
optimal matrix

C = MB(B + R)−1 (B11)

which upon substitution in Eq. (B7) reproduces the standard
data assimilation form (B6), confirming the equivalence.
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