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Abstract. The objectives of the BIOSOPE (BIogeochem-
istry and Optics SOuth Pacific Experiment) project was
to study, during the austral summer, the biological, bio-
geochemical and bio-optical properties of different trophic
regimes in the South East Pacific: the eutrophic zone asso-
ciated with the upwelling regime off the Chilean coast, the
mesotrophic area associated with the plume of the Marquises
Islands in the HNLC (High Nutrient Low Chlorophyll) wa-
ters of this subequatorial area, and the extremely oligotrophic
area associated with the central part of the South Pacific Gyre
(SPG). At the end of 2004, a 55-day international cruise with
32 scientists on board took place between Tahiti and Chile,
crossing the SPG along a North-West South-East transect.
This paper describes in detail the objectives of the BIOSOPE
project, the implementation plan of the cruise, the main hy-
drological entities encountered along the∼8000 km South
East Pacific transect, and ends with a general overview of the
32 other papers published in this special issue.

1 Prior oceanographic knowledge of the South East Pa-
cific

The South East Pacific (SEP 5◦ S–40◦ S, East of 150◦ W)
makes the connection between tropical and high latitudes
of the austral ocean. It remains the most sparsely-sampled
oceanic region of the global ocean from both hydrody-
namic (Leth et al., 2004) and biogeochemical (Daneri and
Quinones, 2001) points of view.
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Large scale investigations have been initially conducted
as part of the transpacific SCORPIO sections performed
along 43◦ S and 28◦ S (Reid, 1973) and the Hawaii-to-Tahiti
shuttle experiment (Wyrtki and Kilonsky, 1984), following
the EASTROPAC cruises carried out in 1967–1968. More
recently, these observations have been supplemented with
some WOCE sections (P6 lines, e.g. Wijffels et al. 2001;
P19 line Tsuchiya and Talley, 1998) and with the rather in-
tensive deployment of drifters and profiling floats as part
of the ARGO program. The general patterns of the sur-
face circulation in the South Equatorial Pacific region can
be characterized by three main current regimes (Chaigneau
and Pizarro, 2005a; Kessler 2006). On its equator side, the
South Pacific Gyre (SPG) is delineated by the South Equato-
rial Current (SEC) flowing westwards and sometimes embed-
ding the (weaker) South Equatorial Counter Current (SECC)
(Wyrtki and Kilonsky, 1984; Eldin, 1983). On its polar side,
the (weak) South Pacific Current (SPC), corresponding to
the eastern extension of the West Wind Drift, flowing east-
ward near∼30◦ S, forms the southern closure of the sub-
tropical gyre circulation (Stramma et al., 1995). Approach-
ing South America, this current turns northwards and con-
tributes to the diffuse surface flows of the broad Peru-Chile
(Humboldt) Current (PCC); it can reach punctual velocities
of 15–20 cm s−1 (Chaigneau and Pizarro, 2005b) and some-
times presents complex motions near the coast, with impor-
tant mesoscale activity (eddies and filaments) associated with
the coastal upwelling regime (e.g. Shaffer et al., 1995). Be-
low the PCC, the Peru Chile Undercurrent (PCUC), restricted
to a narrow band near and above the shelf break, transports
towards the pole the warm and salty subsurface equatorial
waters (Silva and Neshyba, 1979).
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Claustre et al., Figure 1Fig. 1. Global context of the BIOSOPE cruise in the South East
Pacific. (a) Annual composite image of SeaWiFS derived Chl-a for
year 2000.(b) Distribution of the pycnocline depth (adapted from
Fiedler and Talley, 2006).(c) Dust deposition flux at the ocean
surface (adapted from Mahowald et al., 2005). The white line iden-
tifies the cruise track of the BIOSOPE cruise. The white circle cor-
responds to the GYR station located in the core of the SPG and
investigated over a 5-day period.

Even fewer investigations have been dedicated to asses the
biological and biogeochemical status of the SEP. Yet, this
area, as a result of the hydrodynamical forcing described
above presents a remarkable diversity of trophic conditions
and even some singularities that do not have any counter-
part in others areas of the world ocean. Basically three main
biogeochemical regimes can be identified in this large water
mass.

The SPG is the largest subtropical anticyclonic gyre and
the least described region of the ocean (Longhurst, 1998;
Claustre and Maritorena, 2003). Indeed, to our knowledge,
the few biological observation reported to date concerns phy-
toplankton production (Forgsbergh and Joseph 1963), some
(very low) chlorophyll concentration along 105◦ W (Chavez
et al., 1995), near surface phytoplankton determination along
110◦ W (Hardy et al., 1996) and a recent analysis on pi-
cophytoplankton distribution in the upper layer along 32◦ S

(Bouman et al., 2006; Grob et al., 2006). Thanks to satellite
remote sensing of ocean color, some general surface prop-
erties of the SPG have emerged. The SPG is the most olig-
otrophic of all the sub-tropical gyres. In the vicinity of Easter
Island (Rapa Nui), the surface chlorophyll-a concentration
(Chl-a) is the lowest of the global open ocean with annual
means as low as 0.019 mg Chl-a m−3 (Fig. 1a). These ex-
ceptionally low surface Chl-a correspond to very clear wa-
ters with deep penetration not only of visible but also of UV
radiations (Vasilkov et al., 2001). Interestingly, these hyper-
oligotrophic characteristics are also closely correlated with
exceptional physical features (Fig. 1b). Actually, the pyc-
nocline depth, derived from hydrological database, presents
the largest values (>200 m) of the global ocean (Fig. 1b),
precisely in the zone where the Chl-a concentration is the
lowest (Fiedler and Talley, 2006). This apparently tight cou-
pling between the physical and biological fields reveals an
extremely deep nutrient source and a weak upward diffusion
of nutrient fuelling the phototrophic production in the sur-
face layer. Furthermore, due to the weak source of iron-rich
desert dust in the southern hemisphere, atmospheric iron de-
position is low, particularly in the SPG. Modelling results
suggest that the deposition rate could be at least one order
of magnitude lower than in the northern hemisphere (Ma-
howald et al., 2005) (Fig. 1c). Therefore, the upper waters
of the SPG are expected to receive, in comparison to other
oceanic regions, the lowest nutrients fluxes from deeper lay-
ers as well as the lowest iron flux from the atmosphere.

In contrast to the SPG, the equatorial and subequatorial
Pacific waters have received considerable attention, partic-
ularly during the nineties in the context of the JGOFS pro-
gram (Murray et al., 1995; Murray et al., 1997; Dandonneau,
1999). The impact of physical (e.g. upwelling strength),
chemical (e.g. iron supply) and biological (e.g. grazing pres-
sure) factors on the carbon cycle have been investigated
and quantified in detail (Murray et al., 1994). Further-
more, the analysis of time series permitted to begin docu-
menting the effect of ENSO on the inter-annual variability
of some specific biogeochemical processes (Yoder and Ken-
nelly, 2003). At the regional scale, these subequatorial wa-
ters are referred to as High Nutrient Low Chlorophyll waters
because they present some moderate oligotrophic character-
istics associated with significant amounts of nitrate. How-
ever, at a more local scale and in the vicinity of steep islands,
these oligotrophic conditions might be temporarily or perma-
nently relieved. The enhancement of water productivity has
been reported in particular for waters west of the Galapagos
Archipelago (Martin et al., 1994), Kiribati Islands (Messié
et al., 2006) and Marquesas Archipelago (Signorini et al.,
1999; Martinez and Maamaatuaiahutapu, 2004). The reasons
behind this enhancement of productivity are still debated and
are investigated mostly through modelling or remote sensing.
In particular, no in situ investigation has been carried out to
date for the remote Marquesas Islands.
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The permanent upwelling associated with the PCC repre-
sents one of the most productive area of the global ocean
(Carr, 2002) fuelling some of the largest fisheries. Despite
this important biological and trophic impact, the PCC re-
mains the least well known eastern boundary current sys-
tem, both from their activity and phylogeny (Daneri and
Quinones, 2001; Leth et al., 2004). As shown by Yuras et
al. (2005), phytoplankton biomass covaries in phase with the
upwelling-favorable winds along the Chilean coast while off-
shore phytoplankton biomass varies out of phase. This off-
shore biomass sometimes presents extreme westwards fila-
mentous extension (200–300 km). These extensions are more
important than what would be expected from the sole local
dynamics of “wind driven” upwelling. The importance of
mesoscale dynamics (meanders and gyres) and their interac-
tion with the complex large scale circulation has therefore
been proposed (Thomas et al., 1994; Leth and Shaffer, 2001)
as regional specificities of SEP that might account for large
offshore biomasses associated with these filaments.

2 Objectives of the BIOSOPE program

In 2001, after a whole decade of rather intensive field obser-
vations in various oceanic provinces as part of the JGOFS
program, Daneri and Quinones wrote a contribution in the
US JGOFS newsletter with a title clearly summarizing their
concerns “Under sampled ocean systems: a plea for an in-
ternational study of biogeochemical cycles in the Southern
Pacific Gyre and its boundaries”. The BIOSOPE (BIogeo-
chemistry and Optics South Pacific Experiment) program,
jointly endorsed by the IMBER and SOLAS programs, was
completely in line with this plea. Its overall goal was to ex-
plore and describe the biological, biogeochemical and optical
characteristics of the South East Pacific. Using core mea-
surements (in line with the former JGOFS core parameters)
as well as new ones (e.g. based on the use of molecular bi-
ology and isotopic techniques, novel optical devices), two
major goals were set.

1. Perform detailed studies in a certain number of oceanic
provinces of the SEP in order to quantify the variables
and processes that are essential to the understanding of
trophic relationships, biogeochemical cycles of carbon
and related elements as well as water optical signatures.
The primary motivation of BIOSOPE was to study the
South Pacific Gyre, expected to be the end member of
oligotrophic conditions in the global ocean. But other
SEP oceanic provinces were also of interest. The wa-
ter masses west of Marquesas (local biomass enhance-
ment visible from satellite) deserved to be investigated
in the more general context of the HLNC conditions as-
sociated with the subequatorial area. Similarly, the up-
welling zone extending offshore the Chilean coast was
of great interest because of its particular filamentous
patterns.

2. Understand in details the relationships linking optical
properties of SEP waters to their biological and to bio-
geochemical characteristics. Besides surface Chl-a,
an increasing number of biogeochemical or biological
properties begin to be accessible from remote sensing
(Ciotti and Bricaud, 2006; Uitz et al., 2006; Loisel et
al., 2006; Siegel et al., 2002). The bio-optical mod-
els allowing the extraction of such “new products” still
require validation and eventually refinement. A strong
component of BIOSOPE was thus dedicated to optical
and bio-optical studies. It was planned to elaborate a
self consistent data base covering the complete range of
trophic, biogeochemical and optical conditions that can
be observable in open-ocean waters. Such a database
would be invaluable to test and refine bio-optical models
and eventually will allow identifying any peculiarity of
the SEP with regard to other open ocean environments.

3 Implementation of the cruise

The BIOSOPE cruise took place during austral summer
of 2004 (26 October–11 December), during a moderate
phase of the El Nino Southern Oscillation ENSO1. The
∼8000 km transect, investigated with the French Research
Vessel l’Atalante, started west of the Marquesas archipelago
and ended off coastal waters of Chile (Fig. 2). Along this
transect, two main types of stations (Table 1) were occupied,
the so-called “short” and “long” stations.

The occupation of short stations, on a daily basis, had to
cope with two main constraints. Sampling for biogeochem-
ical flux measurements performed under simulated in situ
conditions (e.g. production of the various biological stocks,
nutrient assimilation) had to be performed two hours be-
fore sunrise while optical measurements had to be performed
around noon in phase with satellite overpasses so that they
could be used for ocean colour satellite validation. Conse-
quently, the short stations generally consisted of two sub-
stations, station StA (before sunrise) and StB (around noon),
generally spaced by∼40 miles (∼4 sailing hours apart). Cer-
tain measurements (CTD, other sensors, and some chemi-
cal measurements, e.g. nutrient and pigment concentrations)
were systematically performed at both stations StA and StB.
Their analyses confirm that, over the whole transect, the vari-
ability of StA vs StB remains extremely small (except for sta-
tions StA20 and StB20 in the vicinity of the Chilean coast)
in comparison to the inter-station variability.

Six long stations were investigated for period longer than
two days (Table 1), allowing the deployment of drifting
moorings for sediment traps and production lines, and high
frequency (3 h) repetitive sampling with the CTD-rosette.
The position of four long stations was determined using real-
time ocean colour data (SeaWiFS, MODIS, MERIS) looking

1see: http://www.ncdc.noaa.gov/oa/climate/research/2004/ann/
enso-monitoring.html
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Claustre et al., Figure 2

Fig. 2. Transect of the BIOSOPE cruisesuperimposed on a SeaWiFS composite image of Chl-a concentration in the upper layer for
November–December 2004. The two main types of station, long and short, are indicated. The six long stations investigated for a period
longer than 2 days are identified by a 3 letter code (see text). The 21 short stations are generally split into sub-stations A (early morning) and
B (around noon). Four stations (referred as A9, A10, A16 and A21) did not follow this scheme. Note that the actual denomination for the
short stations begins with St (Table 1), but the code has been simplified on this map to facilitate reading.

for the highest (MAR, west of Marquesas Island; UPW, UPX
for the upwelling conditions off the Chile), and the lowest
(GYR in the center of the South Pacific Gyre) surface Chl-
a concentrations. It should be noted that the GYR station
(114◦ W, 26◦ S) is extremely close to the location (115◦ W,
26◦ S) of the most oligotrophic area of the global ocean iden-
tified from an historical analysis of SeaWiFS ocean colour
data2. The reference station for High Nutrient Low Chl-a

waters (HNL) in the subequatorial zone was set at the lati-
tude of the Marquesas Archipelago, but east of it. Finally,
the EGY station, located at the eastern border of the Gyre,
was assumed to be representative of the transition zone be-
tween the South Pacific Gyre and the meridian branch of the
anticyclonic circulation.

4 Water masses in the South East Pacific

4.1 The sub equatorial area: Marquesas to St2 (142◦ W–
132◦ W)

North of 14◦ S, waters are under the influence of the equato-
rial regime. The eastward flowing South Equatorial Counter
Current (SECC,∼141◦ W; 8◦ S) is embedded in the west-

2see: http://earthobservatory.nasa.gov/Newsroom/NewImages/
images.php3?imgid=16409

wards flowing South Equatorial Current (SEC,∼138◦ W;
9◦ S) (Fig. 3). At 143◦ W, 11◦S a vein of the SEC is also
recorded in the subsurface water (data not shown). The
post-cruise trajectories of 3 profiling floats deployed west of
132◦ W confirm that the area is clearly under the influence
of the SEC (Table 2). Surface waters are warm (up to 27◦C)
and relatively fresh (∼35.6) (Fig. 4). In the Marquesas area,
a rather homothermous layer of 70–100 m develops, delin-
eated by a steep thermocline, and associated with weak water
column stability (Brunt-Vaisala frequency, Fig. 3). Nutrient
concentrations [see also Raimbault et al. (2008) for further
details on nutrient distribution along the transect] are signifi-
cant (nitrates=1.88µM) in surface around the Marquesas Is-
lands (Fig. 5) and, in spite of a strong decreasing gradient,
remain detectable until 132◦ W (nitrates>0.3µM). The dis-
tribution of in vivo fluorescence, a proxy of Chl-a, and of
particle attenuation coefficient (cp), a proxy of particulate
organic carbon (POC) are also uniform in this layer (Fig. 6).
Moving eastwards, a sub-surface Chl-a maximum develops
at ∼70 m that lies on the pycnocline (station HLN- St1),
while cp remains homogenous in this layer. Oligotrophic
conditions start at St2 with the presence of a deep chlorophyll
maximum (DCM) located at∼120 m. Below (>300 m), a
noticeable signal of Chl-a fluorescence higher than the other
surface values observed during the transect is clearly asso-
ciated with suboxic (<50µmole kg−1) conditions (Fig. 6b).
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Table 1. Date and Location of the stations investigated along the
BIOSOPE transect.

station Date Longitude Latitude

MAR1 26 Oct. 2004 –141.23 –8.42
MAR2 27 Oct. 2004 –141.27 –8.39
MAR3 28 Oct. 2004 –141.26 -8.34
MAR4 29 Oct. 2004 –141.27 –8.32
HNL1 31 Oct. 2004 –136.86 –9.00
HNL2 1 Nov. 2004 –136.89 –9.01
HNL3 02 Nov. 2004 –136.98 –9.06
STA1 3 Nov. 2004 –134.35 –11.51
STB1 03 Nov. 2004 –134.10 –11.74
STA2 4 Nov. 2004 –132.39 –13.31
STB2 4 Nov. 2004 –132.11 –13.55
STA3 5 Nov. 2004 –130.38 –15.13
STB3 5 Nov. 2004 –129.93 –15.53
STA4 6 Nov. 2004 –128.38 –16.87
STB4 6 Nov. 2004 –127.97 –17.23
STA5 7 Nov. 2004 –125.95 –18.51
STB5 7 Nov. 2004 –125.55 –18.75
STA6 8 Nov. 2004 –123.41 –20.13
STB6 8 Nov. 2004 –122.89 –20.45
STA7 9 Nov. 2004 –120.86 –21.75
STB7 9 Nov. 2004 –120.38 –22.05
STA8 10 Nov. 2004 –118.33 –23.29
STB8 10 Nov. 2004 –117.89 –23.55
STA9 11 Nov. 2004 –116.02 –24.71
GYR1 12 Nov. 2004 –114.00 –26.00
GYR2 12 Nov. 2004 –113.99 –26.00
GYR3 13 Nov. 2004 –114.02 –26.02
GYR4 14 Nov. 2004 –114.02 –26.03
GYR5 15 Nov. 2004 –114.01 –26.06
GYR6 16 Nov. 2004 –113.99 –26.07
STA10 17 Nov. 2004 –110.67 –26.85
STA11 20 Nov. 2004 –107.59 –27.70
STB11 20 Nov. 2004 –107.29 –27.77
STA12 21 Nov. 2004 –104.75 –28.44
STB12 21 Nov. 2004 –104.31 –28.54
STA13 22 Nov. 2004 –101.83 –29.15
STB13 22 Nov. 2004 –101.48 –29.23
STA14 23 Nov. 2004 –98.87 –29.92
STB14 23 Nov. 2004 –98.39 –30.04
STA15 24 Nov. 2004 –95.83 –30.70
STB15 24 Nov. 2004 –95.43 –30.79
STA16 25 Nov. 2004 –93.00 –31.42
EGY1 25 Nov. 2004 –91.47 –31.82
EGY2 26 Nov. 2004 –91.47 –31.82
EGY3 27 Nov. 2004 –91.44 –31.85
EGY4 28 Nov. 2004 –91.41 –31.86
EGY5 29 Nov. 2004 –91.41 –31.90
EGY6 30 Nov. 2004 –91.41 –31.90
STA17 01 Dec. 2004 –87.43 –32.30
STB17 1 Dec. 2004 –86.78 –32.40
STA18 2 Dec. 2004 –84.21 –32.67
STB18 2 Dec. 2004 –84.07 –32.68
STA19 3 Dec. 2004 –81.64 –32.95
STB19 3 Dec. 2004 –81.20 –33.02
STA20 4 Dec. 2004 –78.37 –33.32
STB20 4 Dec. 2004 –78.12 –33.35
STA21 5 Dec. 2004 –75.84 –33.58
UPW1 6 Dec. 2004 –73.37 –34.00
UPW2 7 Dec. 2004 –73.39 –33.98
UPW3 8 Dec. 2004 –73.34 –33.86
UPX1 9 Dec. 2004 –72.42 –34.51
UPX2 10 Dec. 2004 –72.43 –34.58
UPX3 11 Dec. 2004 –72.49 –34.69
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Claustre et al., Figure 3Fig. 3. Currents and Brunt-V̈aisälä frequency along the BIOSOPE
transect. (a) Zonal component (cm s−1): purple is westward and
red is eastward.(b) Meridional component (cm s−1): red is north-
ward and purple is southward.(c) Brunt- Väis̈alä frequency (cyc
h−1). No current was monitored in the masked area (no echo for
the 75 Khz RDI ADCP because of the very low level of particles in
this layer).

This relative oxygen minimum likely reflects the signature of
a north-westwards propagation of the oxygen minimum zone
developing along South America (Fiedler and Talley, 2006).
At this location, these suboxic conditions might also affect
the degradation of particulate matter sinking from the upper
layers.

4.1.1 The transition zone between the sub Equatorial area
and the SPG (St2 to St6: 132◦ W–123◦ W).

In the surface/sub-surface layer of this area, the so-called
South Tropical Surface Waters (STSW) (Fiedler and Tal-
ley, 2006) are clearly characterized by a very high salinity
(Figs. 4b and 7), actually the highest of the Pacific (Tom-
czak and Godfrey, 2001), with the 36.5 isohaline being de-
tected near the surface at 128◦ W, 15◦ S. These salty wa-
ters result from evaporation strongly exceeding precipitation
(Tomczak and Godfrey, 2001). The area does not present
any noticeable currents (Fig. 3), which is confirmed by the
moderate displacement of the two profiling floats deployed

www.biogeosciences.net/5/679/2008/ Biogeosciences, 5, 679–691, 2008
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Table 2. ARGO floats deployed along the BIOSOPE transect. The left column refers to the 5 main zones defined in the paper.

Deployment location
Float number/ http link Date of deployment

Latitude Longitude

Zone 1 2339/http://sio-argo.ucsd.edu/0049910c.html 5 Nov 2004 13.58 132.10
Zone 1 2338/http://sio-argo.ucsd.edu/0049909c.html 4 Nov 2004 12.00 134.09
Zone 1 2336/http://sio-argo.ucsd.edu/0045842c.html 26 Okt 2004 10.05 142.28
Zone 2 2342/http://sio-argo.ucsd.edu/0049913c.html 8 Nov 2004 18.82 125.45
Zone 2 2341/http://sio-argo.ucsd.edu/0049913c.html 7 Nov 2004 17.23 128.09
Zone 3 2348/http://sio-argo.ucsd.edu/0049919c.html 23 Nov 2004 29.30 101.50
Zone 3 2347/http://sio-argo.ucsd.edu/0049918c.html 21 Nov 2004 27.73 107.40
Zone 3 2346/http://sio-argo.ucsd.edu/0049917c.html 17 Nov 2004 26.14 113.93
Zone 3 2345/http://sio-argo.ucsd.edu/0049916c.html 11 Nov 2004 23.62 117.95
Zone 3 2344/http://sio-argo.ucsd.edu/0049915c.html 10 Nov 2004 22.11 120.36
Zone 3 2343/http://sio-argo.ucsd.edu/0049914c.html 9 Nov 2004 20.38 122.83
Zone 4 2356/http://sio-argo.ucsd.edu/0049927c.html 4 Dec 2004 33.06 81.18
Zone 4 2355/http://sio-argo.ucsd.edu/0049926c.html 3 Dec 2004 32.79 84.04
Zone 4 2354/http://sio-argo.ucsd.edu/0049925c.html 2 Dec 2004 32.30 86.79
Zone 4 2353/http://sio-argo.ucsd.edu/0049924c.html 1 Dec 2004 31.86 91.41
Zone 4 2352/http://sio-argo.ucsd.edu/0049923c.html 26 Nov 2004 31.43 92.88
Zone 4 2350/http://sio-argo.ucsd.edu/0049921c.html 25 Nov 2004 30.77 95.45
Zone 4 2349/http://sio-argo.ucsd.edu/0049920c.html 24 Nov 2004 30.09 98.32
Zone 5 2358/http://sio-argo.ucsd.edu/0049929c.html 6 Dec 2004 33.62 75.95

in this region (Table 2, floats #2341, #2342). This zone
is also characterized by increasing oligotrophic conditions
with the deepening of the nutricline. Nitrates are totally de-
pleted (<3 nM) in the 0–100 m water column, while phos-
phates and silicates are still detectable (0.1 and 1µM, respec-
tively). The DCM deepens very markedly eastward (∼170 m
at station 6). This is associated with a strengthening of the
permanent thermocline, a consequence of the deepening of
the sub-surface isotherm (e.g. the 15◦C isotherms deepens
from 240 to 320 m). In the deeper layer (>300 m) the flu-
orescence signal as well as the suboxic conditions observed
north-westwards are clearly vanishing.

4.1.2 The central part of the SPG: (St6 to St13: 123◦ W–
101◦ W)

The central part of the gyre is characterized by the strongly
stratified Eastern South Pacific Central Waters (ESPCW)
(Emery and Meincke, 1986) that cover a wide range of
temperature and salinity values (Fig. 7) and correspond to
the water masses associated with the permanent thermocline
(Tomczak and Godfrey, 2001). This area is delineated by
extremely low levels of Chl-a fluorescence in the surface
layer (∼0.02 mg Chl-a m−3) (Fig. 6) as well as by an ex-
tremely deep DCM which lies in the 160–200 m range over
a distance of∼2500 km. The DCM position appears to be
mainly driven by the density field (the base of the DCM fol-
lows the 26 kg m−3 isopycnal). The lowest levels ofcp in the
0–200 m layer are recorded in this region, especially at sta-

tion 6, 7 and 8. No inorganic nitrogen is a priori available for
the biological production throughout the 0–150 m water col-
umn (nitrates<3 nM). In contrast, both phosphates and sili-
cates are always present at significant concentrations (0.1 and
1µM, respectively). In the eastern part of the zone, on each
side of 100◦ W, two eastward flowing current veins repre-
sent probably the signature of the South Pacific Current (west
wind drift) which splits in two bands (Stramma et al., 1995)
and delineates the northern limit of the Subtropical Front,
also identified by the strong salinity gradient at∼100◦ W.
Mesoscale features related to Rossby waves (e.g. Wang et
al., 1998) may also explain these current patterns. The six
profiling floats deployed in this zone remained in a very re-
stricted region (displacement of only a few degrees in latitude
or longitude) over a three-year period (Table 2).

4.1.3 The transition zone between the SPG and the coastal
upwelling area (St13 to St19: 100◦ W–81◦ W)

East of 100◦ W, the transition zone between the salty ES-
PCW and the waters influenced by fresher Subantarctic Sur-
face Waters (SASW) (Emery and Meincke, 1986; Tomczak
and Godfrey, 2001) (Fig. 7) clearly delineates the core of
the subtropical front (Chaigneau and Pizarro, 2005b). This
zone also corresponds to a shoaling of the DCM which is
located at 80 m at EGY station (91◦ W; 32◦ S) and of the nu-
triclines (e.g. the 0.1µM NO3 isoline rises from 160 m at St
13 to 30 m at EGY). East of EGY (stations 17 to 19) HLNC
conditions are observed with surface nitrates>2.5µM and
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Claustre et al., Figure 4Fig. 4. Hydrological section along the BIOSOPE transect. (a)
Potential temperature (◦C). (b) Salinity. (c) Potential density
(kg m−3).

surface Chl-a<0.2 mg m−3(<0.1 for St 19). At this loca-
tion, a tongue of low salinity waters observed at a depth of
300 m progressively uplifts in an easterly direction and out-
crops at the surface (salinity 34) at 78◦ W 33◦ S. Here, the
waters present the highest oxygen saturation levels of the
whole transect. This location, at the south-eastern edge of
the SPG, corresponds to the source of the South Pacific Inter-
mediate Water, ESPIW, (Emery and Meincke, 1986), which
then spreads north-westwards into the intermediate layer of
the SPG (Schneider et al., 2003) and transfers the surface
water properties of the waters off central Chile to tropical
latitudes.

4.1.4 The coastal upwelling area (St19 to UPX: east of
81◦ W)

East of 78◦ W, the ESPIW lies above the relatively saltier
(>34.5) Equatorial Subsurface Water (EESW) (Blanco et al.,
2001) which extends in the 100–400 m range and is part, es-
pecially when approaching the Chilean coast, of the pole-
ward Peru-Chile undercurrent (PCUC). The PCUC presents
two veins at this location (Fig. 3) that have their velocity
maximum at∼250 m. Two (0–500 m) veins of the equator-
ward PCC are also embedded with the PCUC illustrating the
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Claustre et al., Figure 5Fig. 5. Nutrient concentrations (µM l−1) along the BIOSOPE
transect. (a) Nitrate (NO3). (b) Phosphates (PO4). (c) Silicates
(Si(OH)4).

complexity of the circulation in the water off Chile (Shaffer
et al., 1995). The only float deployed in this area (∼76◦ W;
#2358, Table 2) presented a clear northern drift during the
December 2004–December 2006 period. In the surface layer,
the shoaling and the narrowing of the isotherms allow the
delineation of a reduced mixed layer (∼15–20 m) where the
highest nutrient concentrations (nitrates up to 15µM in sur-
face) as well as the highest Chl-a fluorescence (correspond-
ing to 3 mg Chl-a m−3) andcp signal are recorded. The in-
termediate layer where PCUC predominates is clearly asso-
ciated with suboxic conditions and with a very significant
signal of “deep” Chla fluorescence.

5 Special issue presentation

The goal of this special issue is to present the knowledge
gained concerning the South East Pacific based on the large
dataset acquired during the BIOSOPE cruise. Although
a disciplinary approach around three main topics (biology,
biogeochemistry and optics) was adopted for data acquisi-
tion, many questions relevant to this project have benefited
from multidisciplinarity. The cruise strategy as well as on-
board experimental design has been organized to promote
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Claustre et al., Figure 6Fig. 6. Distribution of specific biogeochemical and optical proper-
ties along the BIOSOPE transect. (a) In vivo fluorescence of Chl-a
(V). (b) Oxygen concentration (µM kg−1). (c) attenuation coeffi-
cient, cp (m−1). The attenuation coefficient data have been pro-
cessed as described in Claustre et al. (2007), by correcting for deep
(450–500 m) values.

and favour such a synergic approach. Therefore, even if pa-
pers from this special issue (and for some others published
elsewhere) are introduced below according to disciplines,
most of the contributions have taken advantage of this col-
lective effort so that paper scopes are often multidisciplinary
too. Finally, it should be noted that some papers compare
data acquired within the SEP with data acquired with sim-
ilar techniques in other oceanic provinces. These papers
represent a first step in revealing the existence (or the lack)
of specificities of SEP waters with respect to other environ-
ments.

5.1 Biology and biodiversity

The very large trophic gradient that was extensively sampled
during the BIOSOPE cruise offered a unique opportunity to
better understand how the structure of biological communi-
ties in the open ocean adapts to varying nutrient conditions,
with a specific focus on the extremely oligotrophic condi-
tions of the central SPG. It is expected that under such con-
ditions, the community structure shifts towards very small
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Claustre et al., Figure 7
Fig. 7. Temperature-salinity diagram and identification of the main
waters masses encountered along the BIOSOPE transect. STSW
: South Tropical Surface Waters ; ESPCW : Eastern South Pacific
Central Waters; ESPIW: South Pacific Intermediate Water; EESW :
Equatorial Subsurface Water; AAIW: Antarctic Intermediate Wa-
ters. The colour code refers to the day of the mission starting
near Marquesas Archipelago (purple) and ending along the Chilean
Coast (red). 224 CTD casts are used for this plot. Except for four
deep casts (down to the sea floor), the other ones were performed
down to 500 m.

cell sizes and that the microbial loop becomes dominant.
However, whether the extreme conditions (e.g. depth of the
DCM and relative isolation of the SPG waters) have favoured
the establishment of yet unknown communities and micro-
organisms is an intriguing possibility.

The autotrophic community was analysed in detail us-
ing different approaches, some of which are quite novel.
The overall distribution of phytoplankton communities was
assessed from HPLC pigment signatures and compared to
distribution modelled from statistical relationships for the
global ocean in order to highlight SEP peculiarities (Ras et
al., 2008). Grob et al. (2007) relied on flow cytometry to de-
termine the distribution of picoplankton and its impact on
POC and on the particle attenuation coefficient. Masque-
lier and Vaulot (2008) used epifluorescence microscopy to
look at picoplanktonic groups such as cyanobacteria (in par-
ticular those forming colonies), autotrophic picoeukaryotes,
but also at larger protists such as ciliates and dinoflagellates
(in particular some displaying intriguing green autofluores-
cence that are particularly abundant in this area). The di-
versity of picophytoplankton was assessed by novel cultur-
ing approaches (Le Gall et al., 2008). Beaufort et al. (2007)
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investigated another important autotrophic group, the coccol-
ithophorids, and in particular their impact on calcite produc-
tion in the SEP.

With respect to larger autotrophs, the relation between
the physico-chemical conditions and the composition of the
diatom assemblage in two different HNLC conditions, the
tropical central Pacific and the offshore Peru-Chile Current,
was examined by Ǵomez et al. (2007). Numerous contribu-
tions to the knowledge of dinoflagellates, a group of special
relevance in warm oligotrophic oceans have been presented
in other journals (Ǵomez, 2006; Ǵomez, 2008a; Ǵomez,
2008b; Ǵomez, 2007a; Ǵomez and Furuya, 2007).

During BIOSOPE, heterotrophic bacteria have been stud-
ied in great details from the point of view of their produc-
tion relative to primary production along the trophic gradient
(Van Wambeke et al., 2008) and of the factor(s) regulating
this production both spatially (Van Wambeke et al., 2007a)
and temporally, with a special focus on the diel cycle and
UV impact at long stations (Van Wambeke et al., 2007b).
The relationship between bacteria and available sugars was
investigated by Sempéŕe et al. (2008), while a new approach,
based on the incorporation of labelled phosphorus into phos-
pholipids, allowed showing that heterotrophic bacteria play
a critical role in the phosphorus cycle, especially in the SPG
(Van Mooy et al., 2008). The very specific bacterial commu-
nity of the surface microlayer has been assessed both from
the phylogenetic and activity points of view by Obernosterer
et al. (2007).

Heterotrophic eukaryotes play a key role in recycling the
organic matter from the microbial food web. The diversity of
tintinnids was investigated with respect to the phytoplank-
ton prey by Dolan et al. (2007) and follows on other re-
cent descriptions of this microzooplankton group in the SEP
(Dolan, 2006). The symbiotic association between the di-
atomChaetocerosand the tintinnidEutintinnuswas investi-
gated as an example of microplankton adaptation to the se-
vere oligotrophic conditions (Ǵomez, 2007b). Microscope
observations have also allowed elucidating the mysterious
nature of the consortia between the protozoanSolenicola
and the frustule of the diatomLeptocylindrus mediterraneus
(Gómez, 2007c).

5.1.1 Biogeochemistry

Two “greenhouse” gases have been the subject of dedicated
studies during BIOSOPE. Azouzi et al. (2007) provided an
analysis of anthropogenic CO2 penetration in the SEP and
compared it with earlier estimates of anthropogenic tracers.
Charpentier et al. (2007) focused on the processes of N2O
production and showed differences in the saturation level
as well as in the source of this gas according to the hy-
drodynamic and associated trophic regimes considered. Ni-
trogen cycle was further addressed in Raimbault and Gar-
cia (2008) who showed, in particular, that nitrogen fixation,
while extremely low in the SPG, nevertheless sustained most

of new production in this area. This extremely weak nitrogen
fixation was supported by extremely low abundance of the
cyanobacterialnifH gene (Bonnet et al., 2008). Iron which
is an essential element for life, in particular for nitrogen fix-
ation, is vanishing low in the top 350 m (∼0.1 nM) (Blain et
al., 2008) which confirmed the extremely low atmospheric
deposition recorded by Wagener et al. (2008). As a result of
low iron concentration and low nitrogen fixation, phosphate
concentration in surface layers was always above a threshold
of 0.1µM (Raimbault et al., 2008) and thus never consti-
tuted a limiting element for phytoplankton growth (Moutin
et al., 2008), even in the hyperoligotrophic conditions of the
SPG. A new method based on simultaneous spiking of wa-
ter samples with33P and14C allowed to measure autotrophic
and bacterial contribution for various size fractions and sug-
gested that the microbial community turns over very slowly
(Duhamel et al., 2007). Primary production measurement us-
ing 13C labelling confirmed extremely low rates in the core
of the SPG (100 mg C−2 d−1). These results were however
partly contradictory with the bacterial carbon demand esti-
mated by Van Wambeke et al. (2008). An optical technique
based on the diel cycle in the attenuation coefficient (Claus-
tre et al., 2008) suggested that rates of community production
are much higher than expected and could result fromexcep-
tional DOC release during photosynthetic processes. This
DOC release, unfortunately not measured during the cruise,
might explain part of the discrepancies between bacterial car-
bon demand and production rates using various methods.

A new approach for particle flux determination, based
on the optical quantification of particles forming the stock
of large particulate matter (LPM>90µm) was validated
against the sediment trap fluxes at the six long stations and
then applied along the whole BIOSOPE transect (Guidi et al.,
2008). Significant diel variations in concentration and spec-
tral slope of the particle size distribution were observed for
particles smaller than 100µm, but not for LPM (Stemmann
et al., 2008). Finally, detailed characterization of the nature
of the particle material was achieved using a combination
of lipid biomarkers and carbon isotopic (δ13) composition
(Tolosa et al., 2007).

5.2 Optics and bio-optics

The hyperoligotrophic conditions encountered in the centre
of the gyre during BIOSOPE offered the opportunity to im-
prove our knowledge of pure water optical properties by (1)
setting upper limits to pure water absorption, especially in
the UV range (Morel et al., 2007b) and (2) investigating in
great detail backscattering properties by pure water (Twar-
dowski et al., 2007) and permitting the evaluation of differ-
ent values proposed for this coefficient. Furthermore (Morel
et al., 2007a) highlighted optical singularities of Pacific wa-
ters when compared to Mediterranean waters, especially in
the short wavelength domain including UV and for low Chl-
a. The high penetration of UV radiation in the SPG was also
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confirmed by (T́edetti et al., 2007). Additionally, previously
published model of the so-called bi-directional effects in wa-
ter upwelling radiances was validated for the first time in
these extremely clear waters (Voss et al., 2007). Supplement-
ing the BIOSOPE data-base with data from the eastern At-
lantic Stramski et al. (2008) evaluate several approaches for
quantifying particulate organic carbon concentration in sur-
face waters from the determination of certain optical proper-
ties. Huot et al. (2008) built upon the unique optical measure-
ments of Stramski et al. (2008) and Twardowski et al. (2007)
to establish a relationship between the spectral backscatter-
ing coefficient and the Chl-a concentration and to examine
the variations of the backscattering ratio with trophic status.
Huot et al. (2007) evaluateed the validity of various optical
proxies of phytoplankton biomass, either derived from space
or from in situ measurement, for the estimation of photo-
physiological parameters used in bio-optical modelling of
primary production. Finally, optical measurements made
during BIOSOPE were also used by Uitz et al. (2008) to de-
scribe the photosynthetic characteristics of different phyto-
plankton groups and parameterize them for use in primary
production models, and by Brown et al. (2008) to evalu-
ate a new approach to estimate, from remotely sensed ocean
colour, the concentration of substances other than Chl-a.

6 Final note: the evaluation process and the role of
guest editors

All papers published in this special issue have been evaluated
according to the normal procedure used for regular issues of
Biogeosciences. In particular, none of the three BIOSOPE
guest editors did intervene at any stage of manuscript evalu-
ation. Their role was restricted to the revision of manuscripts
prior to submission and to the coordination of the vari-
ous submissions (ensuring consistency between the various
manuscripts). For each manuscript, the BIOSOPE guest
editors have provided a list of four to five potential refer-
ees which may or may not have been used by the regular
Biogeosciences editors. Therefore, papers published in this
BIOSOPE special issue comply with the general quality stan-
dards of Biogeosciences.
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Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J.
P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutri-
ents limitation of primary productivity in the southeast pacific
(BIOSOPE cruise), Biogeosciences, 5, 215–225, 2008,
http://www.biogeosciences.net/5/215/2008/.

Bouman, H. A., Ulloa, O., Scanlan, D., Zwirglmaier, K., Li, W. K.
W., Platt, T., Stuart, V., Barlow, R. G., Leth, O., Clementson,
L. A., Lutz, V. A., Fukasawa, M., Watanabe, S., and Sathyen-
dranath, S.: Oceanographic basis of the global surface distribu-
tion of prochlorococcus ecotypes., Science, 312, 918–921, 2006.

Brown, C., Huot, Y., Werdell, P. J., Gentili, B., and Claustre, H.:
The origin and global distribution of second order variability in
satellite ocean color, Remote Sensing of Environment, in revi-
sion, 2008.

Carr, M. E.: Estimation of potential productivity in eastern bound-
ary currents using remote sensing, Deep-Sea Res. II, 49, 59–80,
2002.

Chaigneau, A. and Pizarro, O.: Mean surface circulation and
mesoscale turbulent flow characteristics in the eastern south pa-
cific from satellite tracked drifters, J. Geophys. Res.-Oceans,
110, C05014, doi:10.1029/2004JC002628, 2005a.

Chaigneau, A. and Pizarro, O.: Surface circulation and fronts of
the south Pacific Ocean, east of 120◦w, Geophys. Res. Lett., 32,
L08605, doi:10.1029/2004GL022070, 2005b.

Charpentier, J., Farias, L., Yoshida, N., Boontanon, N., and Raim-
bault, P.: Nitrous oxide distribution and its origin in the central
and eastern South Pacific Subtropical Gyre, Biogeosciences, 4,
729–741, 2007,
http://www.biogeosciences.net/4/729/2007/.

Chavez, F. P., Buck, K. R., Bidigare, R. R., Karl, D. M., Hebel, D.,
Latasa, M., Campbell, L., and Newton, J.: On the chlorophyll a
retention properties of glass-fiber gf/f filters, Limnol. Oceanogr.,
40, 428–433, 1995.

Ciotti, A. M. and Bricaud, A.: Retrievals of a size parameter for
phytoplankton and spectral light absorption by colored detrital
matter from water-leaving radiances at seawifs channels in a con-
tinental shelf region off brazil, Limnology and Oceanography
Methods, 4, 237–253, 2006.

Claustre, H., and Maritorena, S.: The many shades of ocean blue,
Science, 302, 1514–1515, 2003.

Claustre, H., Huot, Y., Obernosterer, I., Gentili, B., Tailliez, D., and
Lewis, M. R.: Gross community production and metabolic bal-

Biogeosciences, 5, 679–691, 2008 www.biogeosciences.net/5/679/2008/

http://www.biogeosciences-discuss.net/4/1815/2007/
http://www.biogeosciences-discuss.net/4/3267/2007/
http://www.biogeosciences.net/5/269/2008/
http://www.biogeosciences.net/5/215/2008/
http://www.biogeosciences.net/4/729/2007/


H. Claustre et al.: BIOSOPE: introduction to the special issue 689

ance in the South Pacific Gyre, using a non intrusive bio-optical
method, Biogeosciences, 5, 463–474, 2008,
http://www.biogeosciences.net/5/463/2008/.

Dandonneau, Y.: Introduction to the special section: Biogeochemi-
cal conditions in the equatorial Pacific in late 1994, J. Geophys.
Res., 104, 3291–3295, 1999.

Daneri, G. and Quinones, R. A.: Undersampled ocean systems: A
plea for an international study of biogeochemical cycles in the
southern Pacific gyre and its boundaries, US JGOFS Newsletter,
January 2001, 9, 2001.

Dolan, J. R.: Re-discovered beauty - new images for old, descrip-
tions - tropical tintinnids of the genus,xystonellopsis(ciliophora,
tintinnia), Protist, 57, 251–253, 2006.

Dolan, J. R., Ritchie, M. E., and Ras, J.: The “neutral” commu-
nity structure of planktonic herbivores, tintinnid ciliates of the
microzooplankton, across the se tropical Pacific Ocean, Biogeo-
sciences, 4, 297–310, 2007,
http://www.biogeosciences.net/4/297/2007/.

Duhamel, S., Moutin, T., Van Wambeke, F., Van Mooy, B. A. S.,
Rimmelin, P., Raimbault, P., and Claustre, H.: Growth and spe-
cific p-uptake rates of bacterial and phytoplanktonic communi-
ties in the Southeast Pacific (BIOSOPE cruise), Biogeosciences,
4, 941–956, 2007,
http://www.biogeosciences.net/4/941/2007/.

Eldin, G.: Eastward flows of the South Equatorial Central Pacific,
Journal of Physical Oceanography, 13, 1461–1467, 1983.

Emery, W. J. and Meincke, J.: Global water masses: Summary and
review, Oceanologica Acta, 9, 383–391, 1986.

Fiedler, P. C. and Talley, L. D.: Hydrography of the Eastern Tropical
Pacific: A review, Progress In Oceanography, 69, 143–180, 2006.

Forgsbergh, E. D. and Joseph, J.: Phytoplankton production in the
South-eastern Pacific, Nature, 200, 87–88, 1963.
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