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FIXED POINTS AND STABILITY
IN NEUTRAL NONLINEAR DIFFERENTIAL EQUATIONS

WITH VARIABLE DELAYS

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. By means of Krasnoselskii’s fixed point theorem we obtain boundedness and
stability results of a neutral nonlinear differential equation with variable delays. A stability
theorem with a necessary and sufficient condition is given. The results obtained here extend
and improve the work of C.H. Jin and J.W. Luo [Nonlinear Anal. 68 (2008), 3307–3315],
and also those of T.A. Burton [Fixed Point Theory 4 (2003), 15-32; Dynam. Systems Appl.
11 (2002), 499–519] and B. Zhang [Nonlinear Anal. 63 (2005), e233–e242]. In the end we
provide an example to illustrate our claim.
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1. INTRODUCTION

Certainly, the Lyapunov direct method has been, for more than 100 years, the main
tool for the study of stability properties of ordinary, functional and partial differential
equations. Nevertheless, the application of this method to problems of stability in
differential equations with delay has encountered serious difficulties if the delay is
unbounded or if the equation has unbounded terms [1–3]. Recently, T.A. Burton
and T. Furumochi have noticed that some of these difficulties vanish or might be
overcome by means of fixed point theory (see [5–8]). The fixed point theory does not
only solve the problem on stability but has a significant advantage over Lyapunov’s
direct method. The conditions of the former are often averages but those of the latter
are usually pointwise (see [1]).

In this paper we consider the neutral nonlinear differential equation with variable
delays

x′(t) = −a(t)x(t− r1(t)) + b(t)x′ (t− r1(t)) + c(t)G (xγ (t− r2(t))) , (1.1)
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with the initial condition

x(t) = ψ(t) for t ∈ [m(0), 0] ,

where ψ ∈ C ([m(0), 0],R) , mj(0) = inf{t − rj(t), t ≥ 0}, m(0) = min{mj(0),
j = 1, 2}, γ ∈ (0, 1) and γ is a quotient with odd positive integer denominator.
Throughout this paper we assume that a, c ∈ C (R+,R), b ∈ C1 (R+,R) and
r1 ∈ C2 (R+,R+) , r2 ∈ C (R+,R+) with t − rj(t) → ∞ as t → ∞, j = 1, 2. We
also assume that G(·) is locally Lipschitz continuous in x. That is, there is a L > 0
so that if |x|, |y| ≤ 1 then

|G(x)−G(y)| ≤ L|x− y| and G(0) = 0.

Special cases of equation (1.1) have been previously considered and studied un-
der various conditions. Particularly, T.A. Burton in [3] and B. Zhang in [12] have
investigated the boundedness and stability of the linear equation

x′(t) = −a(t)x(t− r1(t)).

In [7], T.A. Burton and T. Furumochi have studied the boundedness and the asymp-
totic stability by using Krasnoselskii fixed point theorem for the following equation:

x′(t) = −a(t)x(t− r1) + b(t)x
1
3 (t− r2(t)) ,

with r1 ≥ 0 is a constant and a ∈ C (R+, (0,∞)). By letting γ = 1/3, G(x) = x
and b(t) = 0 in equation (1.1), C.H. Jin and J.W. Luo [9] studied, by means of
Krasnoselskii’s fixed point theorem, the boundedness and stability, under appropriate
conditions, of the following equation:

x′(t) = −a(t)x (t− r1(t)) + b(t)x
1
3 (t− r2(t)) ,

and generalized the results claimed in [3, 7, 12].
Our purpose here is to give, by using Krasnoselskii fixed point theorem, bounded-

ness and stability results for the nonlinear neutral differential equation with variable
delays (1.1).

In Section 2, we present the inversion of equation (1.1) and we state the hybrid
Krasnoselskii’s fixed point theorem. For details on Krasnoselskii theorem we refer the
reader to [1,11]. We present our main results on stability in Section 3 and at the end
we provide an example to illustrate this work.

2. INVERSION OF EQUATION (1.1)

We have to invert equation (1.1). For this, we use the variation of parameter formula
to rewrite the equation as an integral equation suitable for Krasnoselskii theorem.
Besides, the integration by parts will be applied. In our consideration we suppose
that

r′1(t) 6= 1, ∀t ∈ R+. (2.1)
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Lemma 2.1. Let g : [m(0),∞) → R+ be an arbitrary continuous function and sup-
pose that (2.1) holds. Then x is a solution of (1.1) if and only if

x(t) =

(
x(0)− b(0)

1− r′1(0)
x (−r1(0))−

0∫
−r1(0)

g(u)x(u)du

)
e−

R t
0 g(u)du+

+
b(t)

1− r′1(t)
x (t− r1(t)) +

t∫
t−r1(t)

g(u)x(u)du−

−
t∫

0

e−
R t

s
g(u)dug(s)

( s∫
s−r1(s)

g(u)x(u)du

)
ds+

+

t∫
0

e−
R t

s
g(u)du [g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)]x (s− r1(s)) ds+

+

t∫
0

e−
R t

s
g(u)duc(s)G (xγ (s− r2(s))) ds,

(2.2)

where
µ(s) =

(b′(s) + b(s)g(s)) (1− r′1(s)) + r′′1 (s)b(s)
(1− r′1(s))

2 . (2.3)

Proof. Let x be a solution of (1.1). Rewrite equation (1.1) as

x′(t) = −g(t)x(t) + (d/dt)

t∫
t−r1(t)

g(s)x(s)ds+

+ [g (t− r1(t)) (1− r′1(t))− a(t)]x (t− r1(t)) +
+ b(t)x′ (t− r1(t)) + c(t)G (xγ (t− r2(t))) .

Multiply both sides of the above equation by e
R t
0 g(s)ds and then integrate from 0 to

t to obtain

x(t)=x(0)e−
R t
0 g(s)ds +

t∫
0

e−
R t

s
g(u)dud

( s∫
s−r1(s)

g(u)x(u)du

)
+

+

t∫
0

e−
R t

s
g(u)du [g (s− r1(s)) (1− r′1(s))− a(s)]x (s− r1(s)) ds+

+

t∫
0

e−
R t

s
g(u)dub(s)x′ (s− r1(s)) ds+

t∫
0

e−
R t

s
g(u)duc(s)G (xγ (s− r2(s))) ds.

(2.4)
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Letting
t∫

0

e−
R t

s
g(u)dub(s)x′ (s− r1(s)) ds =

=

t∫
0

e−
R t

s
g(u)du b(s)

(1− r′1(s))
(1− r′1(s))x′ (s− r1(s)) ds.

By performing an integration by parts, we have
t∫

0

e−
R t

s
g(u)dub(s)x′ (s− r1(s)) ds =

=
b(t)

1− r′1(t)
x (t− r1(t))−

b(0)
1− r′1(0)

x (−r1(0)) e−
R t
0 g(u)du−

−
t∫

0

e−
R t

s
g(u)duµ(s)x (s− r1(s)) ds, (2.5)

where µ(s) is given by (2.3), and
t∫

0

e−
R t

s
g(u)dud

( s∫
s−r1(s)

g(u)x(u)du

)
=

= −e−
R t
0 g(u)du

0∫
−r1(0)

g(u)x(u)du+

t∫
t−r1(t)

g(u)x(u)du−

−
t∫

0

e−
R t

s
g(u)dug(s)

( s∫
s−r1(s)

g(u)x(u)du

)
ds.

(2.6)

Finally, substituting (2.5) and (2.6) into (2.4) ends the proof.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the stability of the zero solution. For its proof we refer the reader to [1,11].
Krasnoselskii’s theorem is a captivating tool it is not only used to solve old problems
of existence in nonlinear analysis but it does, as well, solve stability of hard problems
which have frustrated investigators for many years using others method.

Theorem 2.2 (Krasnoselskii). LetM be a closed convex nonempty subset of a Banach
space (S, ‖ · ‖). Suppose that A and B map M into S such that:
(i) x, y ∈M, implies Ax+By ∈M ,
(ii) A is continuous and AM is contained in a compact set,
(iii) B is a contraction with constant α < 1.
Then there exists z ∈M with z = Az +Bz.
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3. STABILITY BY KRASNOSELSKII FIXED POINT THEOREM

From existence theory, which can be found in [1], we conclude that for each continuous
initial function ψ : [m(0), 0]→ R, there is a continuous solution x(t, 0, ψ) on an inter-
val [0, T ) for some T > 0 and x(t, 0, ψ) = ψ(t) on [m(0), 0]. For stability definitions
we refer to [1].

Theorem 3.1. Let (2.1) holds and suppose that there are constants α ∈ (0, 1),
k1, k2 > 0 and a function g ∈ C ([m(0),∞) ,R+) such that for |t2 − t1| ≤ 1,

∣∣∣ t2∫
t1

|c(u)| du
∣∣∣ ≤ k1 |t1 − t2| , (3.1)

and

∣∣∣ t2∫
t1

g(u)du
∣∣∣ ≤ k2 |t1 − t2| , (3.2)

while for t ≥ 0∣∣∣∣ b(t)
1− r′1(t)

∣∣∣∣+
t∫

t−r1(t)

g(u)du+

t∫
0

e−
R t

s
g(u)dug(s)

( s∫
s−r1(s)

g(u)du
)
ds+

+

t∫
0

e−
R t

s
g(u)du {|g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)|+ L|c(s)|} ds ≤ α.

(3.3)

If ψ is a given continuous initial function which is sufficiently small, then there is a
solution x(t, 0, ψ) of (1.1) on R+ with |x(t, 0, ψ)| ≤ 1.

Proof. For α ∈ (0, 1) , find an appropriate δ > 0 such that(
1 +

∣∣∣∣ b(0)
1− r′1(0)

∣∣∣∣+
0∫

−r1(0)

g(u)du
)
e−

R t
0 g(s)dsδ + α ≤ 1.

Let ψ : [m(0), 0]→ R be a given small bounded initial function with ‖ψ‖ < δ. In the
same context as in papers [1,7,9], let h : [m(0),∞)→ [1,∞) be any strictly increasing
and continuous function with h(m(0)) = 1, h(s)→∞ as s→∞, such that∣∣∣∣ b(t)

1− r′1(t)

∣∣∣∣+
t∫

t−r1(t)

g(u)h(u)/h(t)du+

t∫
0

e−
R t

s
g(u)dug(s)

( s∫
s−r1(s)

g(u)h(u)/h(t)du

)
ds+

+

t∫
0

e−
R t

s
g(u)du |g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)|h (s− r1(s)) /h(t)ds ≤ α.

(3.4)
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Let (S, | · |h) be the Banach space of continuous ϕ : [m(0),∞)→ R with

|ϕ|h := sup
t≥m(0)

|ϕ(t)/h(t)| <∞,

and define the set Sψ by

Sψ = {ϕ ∈ S : |ϕ(t)| ≤ 1 for t ∈ [m(0),∞) and ϕ(t) = ψ(t) if t ∈ [m(0), 0]} .

Define the mappings A,B : Sψ → Sψ by

(Aϕ) (t) =

t∫
0

e−
R t

s
g(u)duc(s)G (ϕγ (s− r2(s))) ds, (3.5)

and

(Bϕ) (t) =

ϕ(0)− b(0)
1− r′1(0)

ϕ (−r1(0))−
0∫

−r1(0)

g(u)ϕ(u)du

 e−
R t
0 g(s)ds+

+
b(t)

1− r′1(t)
ϕ (t− r1(t)) +

t∫
t−r1(t)

g(u)ϕ(u)du−

−
t∫

0

e−
R t

s
g(u)dug(s)

 s∫
s−r1(s)

g(u)ϕ(u)du

 ds+

+

t∫
0

e−
R t

s
g(u)du [g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)]ϕ (s− r1(s)) ds.

(3.6)

That A maps Sψ into itself can be deduced from condition (3.3).
We now show that ϕ, φ ∈ Sψ implies that Aϕ+Bφ ∈ Sψ. When doing this we see

that also B maps Sψ into itself by letting ϕ = 0 in the preceding sum. Now, let ‖·‖ be
the supremum norm on [m(0),∞) of ϕ ∈ Sψ if ϕ is bounded. Note that if ϕ, φ ∈ Sψ
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then

|(Aϕ) (t) + (Bφ) (t)| ≤

≤

(
1 +

∣∣∣∣ b(0)
1− r′1(0)

∣∣∣∣+
0∫

−r1(0)

g(u)du

)
e−

R t
0 g(s)ds ‖ψ‖+

+ ‖φ‖
∣∣∣∣ b(t)
1− r′1(t)

∣∣∣∣+

+ ‖φ‖
t∫

t−r1(t)

g(u)du+

+ |φ|
t∫

0

e−
R t

s
g(u)dug(s)

 s∫
s−r1(s)

g(u)du

 ds+

+ |φ|
t∫

0

e−
R t

s
g(u)du {|g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)|} ds+

+ ‖ϕ‖γ
t∫

0

e−
R t

s
g(u)duL|c(s)|ds ≤

≤

(
1 +

∣∣∣∣ b(0)
1− r′1(0)

∣∣∣∣+
0∫

−r1(0)

g(u)du

)
e−

R t
0 g(s)dsδ + α ≤ 1.
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Next, we show that ASψ is equicontinuous. If ϕ ∈ Sψ and 0 ≤ t1 < t2 with
t2 − t1 < 1

|(Aϕ) (t2)− (Aϕ) (t1)| =

=

∣∣∣∣∣∣
t2∫

0

e−
R t2

s
g(u)duc(s)G (ϕγ (s− r2(s))) ds−

−
t1∫

0

e−
R t1

s
g(u)duc(s)G (ϕγ (s− r2(s))) ds

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
t2∫
t1

e−
R t2

s
g(u)duc(s)G (ϕγ (s− r2(s))) ds

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
t1∫

0

[
e−

R t2
s
g(u)du − e−

R t1
s
g(u)du

]
c(s)G (ϕγ (s− r2(s))) ds

∣∣∣∣∣∣ ≤

≤ L
t2∫
t1

e−
R t2

s
g(u)dud

 s∫
t1

|c(s)|ds

+

+ L
∣∣∣e− R t2

s
g(u)du − e−

R t1
s
g(u)du

∣∣∣ eR t1
0 g(u)du

t1∫
0

e−
R t1

s
g(u)du|c(s)|ds ≤

≤ L
t2∫
t1

|c(u)| du

1 +

t2∫
t1

e−
R t2

s
g(u)dug(s)ds

+ α
∣∣∣e− R t2

t1
g(u)du − 1

∣∣∣ ≤

≤ 2L

t2∫
t1

|c(u)| du+ α

∣∣∣∣∣∣
t2∫
t1

g(u)du

∣∣∣∣∣∣ ≤
≤ (2Lk1 + αk2) |t2 − t1| ,

by (3.1)–(3.3). In the space (S, | · |h), the set ASψ resides in a compact set.
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Now we show that B is a contraction with constant α. We have

|(Bφ1) (t)− (Bφ2) (t)| /h(t) ≤

≤
∣∣∣∣ b(t)
1− r′1(t)

∣∣∣∣ |φ1(t)− φ2(t)| /h(t) +

t∫
t−r1(t)

g(u) |φ1(u)− φ2(u)| /h(t)du+

+

t∫
0

e−
R t

s
g(u)dug(s)

 s∫
s−r1(s)

g(u) |φ1(u)− φ2(u)| /h(t)du

 ds+

+

t∫
0

e−
R t

s
g(u)du |g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)| ×

× |φ1 (s− r1(s))− φ2 (s− r1(s))| /h(t)ds ≤

≤ |φ1 − φ2|h

{ ∣∣∣∣ b(t)
1− r′1(t)

∣∣∣∣+
t∫

t−r1(t)

g(u)h(u)/h(t)du+

+

t∫
0

e−
R t

s
g(u)dug(s)

 s∫
s−r1(s)

g(u)h(u)/h(t)du

 ds+

+

t∫
0

e−
R t

s
g(u)du |g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)|h (s− r1(s)) /h(t)ds

}
≤

≤ α |φ1 − φ2|h ,

by (3.4).
Finally, we need to show that A is continuous. Let ε > 0 be given and let

ϕ ∈ Sψ. Now xγ is uniformly continuous on [−1, 1] so for a fixed T > 0 with
4/h(t) < ε there is an η > 0 such that |x1 − x2| < ηh(t) implies |xγ1 − x

γ
2 | < ε/2.

Thus for |ϕ(t)− φ(t)| < ηh(t) and for t > T we have
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|(Aϕ) (t)− (Aφ) (t)| /h(t) ≤

≤ (1/h(t))

t∫
0

e−
R t

s
g(u)du|c(s)| |G (ϕγ (s− r2(s)))−G (φγ (s− r2(s)))| ds ≤

≤ L (1/h(t))

t∫
0

e−
R t

s
g(u)du|c(s)| |ϕγ (s− r2(s))− φγ (s− r2(s))| ds ≤

≤ L (1/h(t))


T∫

0

e−
R t

s
g(u)du|c(s)| |ϕγ (s− r2(s))− φγ (s− r2(s))| ds +

+2

t∫
T

|c(s)|e−
R t

s
g(u)duds

 ≤ L {(αε) / (2h(t)) + 2α/h(t)} ≤

≤ L {(αε/2) + (2α/h(t))} < Lαε.

The conditions of Krasnoselskii’s theorem are satisfied and there is a fixed point.
This completes the proof.

Letting r1(t) = r1, a constant, and g(t) = a (t+ r1) with a ∈ C (R+,R+), we
obtain the following corollary.

Corollary 3.2. Let (3.1) and (3.2) hold and (3.3) be replaced by

|b(t)|+
t∫

t−r1

a(u+ r1)du+

t∫
0

e−
R t

s
a(u+r1)dua(s+ r1)

 s∫
s−r1

a(u+ r1)du

 ds+

+
t∫
0

e−
R t

s
a(u+r1)du (|b′(s) + b(s)a (s+ r1)|+ L|c(s)|) ds ≤ α. (3.7)

If ψ is a given continuous initial function which is sufficiently small, then there is a
solution x(t, 0, ψ) of (1.1) on R+ with |x(t, 0, ψ)| ≤ 1.

Letting γ = 1/3, b(t) = 0 and G(x) = x, we have the following corollary.

Corollary 3.3. Let (3.1) and (3.2) hold and (3.3) be replaced by

t∫
t−r1(t)

g(u)du+

t∫
0

e−
R t

s
g(u)dug(s)

 s∫
s−r1(s)

g(u)du

 ds+

+

t∫
0

e−
R t

s
g(u)du {|g (s− r1(s)) (1− r′1(s))− a(s)|+ |c(s)|} ds ≤ α.

(3.8)

If ψ is a given continuous initial function which is sufficiently small, then there is a
solution x(t, 0, ψ) of (1.1) on R+ with |x(t, 0, ψ)| ≤ 1.
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Remark 3.4. Obviously Corollary 3.3 reduces to Theorem 2.1 of [9]. Thus,
Theorem 3.1 above is a generalization of Theorem 2.1 of [9].

Theorem 3.5. Let (2.1) and (3.1)–(3.3) hold and assume that

t∫
0

e−
R t

s
g(u)du|c(s)|ds→ 0 as t→∞. (3.9)

If ψ is a given continuous initial function which is sufficiently small, then (1.1) has
a solution x(t, 0, ψ)→ 0 as t→∞ if and only if

t∫
0

g(s)ds→∞ as t→∞. (3.10)

Proof. First, suppose that (3.10) holds. We set

N = sup
t≥0

{
e−

R t
0 g(s)ds

}
. (3.11)

All of the calculations in the proof of Theorem 3.1 hold with h(t) = 1 when | · |h is
replaced by the supremum norm ‖ · ‖. For ϕ ∈ Sψ, we have

|(Aϕ) (t)| ≤ L
t∫

0

e−
R t

s
g(u)du|c(s)|ds =: q(t), (3.12)

where q(t)→ 0 as t→∞ by (3.9).
Add to Sψ the condition that ϕ ∈ Sψ implies that ϕ(t)→ 0 as t→∞. We can see

that for ϕ ∈ Sψ then (Aϕ) (t)→ 0 as t→∞ by (3.12) and (Bφ) (t)→ 0 as t→∞ by
(3.10). Since ASψ has been shown to be equicontinuous, A maps Sψ into a compact
subset of Sψ (see [1], Theorem 1.2.2 on p. 20). By Krasnoselskii’s theorem there is an
x ∈ Sψ with Ax+Bx = x. As x ∈ Sψ, x(t)→ 0 as t→∞.

Conversely, suppose (3.10) fails. Then there exists a sequence {tn} , tn → ∞ as
n → ∞ such that limn→∞

∫ tn
0
g(u)du = l for some l ∈ R. We may also choose

a positive constant J satisfying

−J ≤
tn∫
0

g(s)ds ≤ J,

for all n ≥ 1. To simplify the expression, we define

ω(s) = |g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)|+ L|c(s)|+ g(s)

s∫
s−r1(s)

g(u)du,
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for all s ≥ 0. By (3.3), we have

tn∫
0

e−
R tn

s
g(u)duω(s)ds ≤ α.

This yields

tn∫
0

e
R s
0 g(u)duω(s)ds ≤ αe

R tn
0 g(u)du ≤ J.

The sequence
{∫ tn

0
e

R s
0 g(u)duω(s)ds

}
is bounded, so there exists a convergent subse-

quence. For brevity of notation, we may assume

lim
n→∞

tn∫
0

e
R s
0 g(u)duω(s)ds = λ,

for some λ ∈ R+ and choose a positive integer m so large that

tn∫
tm

e
R s
0 g(u)duω(s)ds < δ0/4N,

for all n ≥ m, where δ0 > 0 satisfies 2δ0NeJ + α ≤ 1.
We now consider the solution x(t) = x (t, tm, ψ) of (1.1) with ψ (tm) = δ0 and

|ψ(s)| ≤ δ0 for s ≤ tm. We may choose ψ so that |x(t)| ≤ 1 for t ≥ tm and

ψ (tm)− b (tm)
1− r′1 (tm)

ψ (tm − r1 (tm))−
tm∫

tm−r1(tm)

g(s)ψ(s)ds ≥ 1
2
δ0.
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It follows from (3.5) and (3.6) with x(t) = (Ax) (t) + (Bx) (t) that for n ≥ m

∣∣∣∣x (tn)−
b (tn)

1− r′1 (tn)
x (tn − r1 (tn))−

tn∫
tn−r1(tn)

g(s)x(s)ds
∣∣∣∣ ≥

≥ 1
2
δ0e
−

R tn
tm

g(u)du −
tn∫

tm

e−
R tn

s
g(u)duω(s)ds =

=
1
2
δ0e
−

R tn
tm

g(u)du − e−
R tn
0 g(u)du

tn∫
tm

e
R s
0 g(u)duω(s)ds =

= e−
R tn

tm
g(u)du

(
1
2
δ0 − e−

R tm
0 g(u)du

tn∫
tm

e
R s
0 g(u)duω(s)ds

)
≥

≥ e−
R tn

tm
g(u)du

(
1
2
δ0 −N

tn∫
tm

e
R s
0 g(u)duω(s)ds

)
≥

≥ 1
4
δ0e
−

R tn
tm

g(u)du ≥ 1
4
δ0e
−2J > 0.

(3.13)

On the other hand, if the solution of (1.1) x(t) = x (t, tm, ψ) → 0 as t → ∞, since
tn − r1 (tn)→∞ as n→∞ and (3.3) holds, we have

x (tn)−
b (tn)

1− r′1 (tn)
x (tn − r1 (tn))−

tn∫
tn−r1(tn)

g(s)x(s)ds→ 0 as n→∞,

which contradicts (3.13). Hence condition (3.10) is necessary in order that (1.1) has
a solution x(t, 0, ψ)→ 0 as t→∞. The proof is complete.

Letting r1(t) = r1, a constant, and g(t) = a (t+ r1) with a ∈ C (R+,R+), we have
the following corollary.

Corollary 3.6. Let (3.1), (3.2), and (3.9) hold and (3.3) be replaced by (3.7). If
ψ is a given continuous initial function which is sufficiently small, then (1.1) has a
solution x(t, 0, ψ)→ 0 as t→∞ if and only if

t∫
0

g(s)ds→∞ as t→∞.

For the case γ = 1/3, b(t) = 0 and G(x) = x, we have the following corollary.
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Corollary 3.7. Let (3.1), (3.2), and (3.9) hold and (3.3) be replaced by (3.8). If
ψ is a given continuous initial function which is sufficiently small, then (1.1) has a
solution x(t, 0, ψ)→ 0 as t→∞ if and only if

t∫
0

g(s)ds→∞ as t→∞.

Remark 3.8. Corollary 3.7 reduces to Theorem 2.2 of [9].

Example 3.9. Let

x′(t) = −a(t)x (t− r1(t)) + b(t)x′ (t− r1(t)) + c(t)G (xγ (t− r2(t))) , (3.14)

where γ = 1/3, G(x) = sin(x), r1(t) = 0.232t, r2 ∈ C (R+,R+) with t− r2(t)→∞ as
t→∞, a(t) = 0.768/ (0.768t+ 1), b(t) = t/ (16t+ 16), c(t) = 1/

(
8(t+ 1)2

)
.

Then for any small continuous initial function ψ, every solution x(t, 0, ψ) of the
nonlinear neutral differential equation (3.14) goes to 0 as t→∞.

Indeed, clearly G(0) = 0 and G(x) is locally Lipschitz continuous in x. Let
|x|, |y| ≤ 1, then

|G(x)−G(y)| = |sin(x)− sin(y)| ≤ |x− y|.
Choosing g(t) = 1/(t+ 1), we have

t∫
t−r1(t)

g(s)ds =

t∫
0.768t

1/ (s+ 1) ds = ln
( t+ 1

0.768t+ 1

)
< 0.264,

t∫
0

e−
R t

s
g(u)dug(s)

( s∫
s−r1(s)

g(u)du
)
ds < 0.264,

t∫
0

e−
R t

s
g(u)du |g (s− r1(s)) (1− r′1(s))− a(s)− µ(s)| ds =

= (1/ (16 · 0.768))

t∫
0

e−
R t

s
1

u+1du
1

s+ 1
ds < 0.082,

t∫
0

e−
R t

s
g(u)duL|c(s)|ds ≤ 0.125,

and ∣∣∣∣ b(t)
1− r′1(t)

∣∣∣∣ < 0.082.

Let α = 0.082+0.264+0.264+0.082+0.125 = 0.817 < 1, then by Theorem 3.5, every
solution x(t, 0, ψ) of (3.14) with small continuous initial function ψ, goes to zero as
t→∞.
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