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Abstract. The spatial structure of pairing correlations in120Sn is investigated making use of
both the bare nucleon-nucleon potential and the interaction induced by the exchange of collective
vibrations, taking into account self-energy effects. The resulting pairing gap is strongly peaked on
the nuclear surface.
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INTRODUCTION

In this work we report results of a study of the spatial dependence of the pairing
gap of the nucleus120Sn, based on a microscopic approach. We shall first discuss the
results obtained making use of the bare v14 Argonne nucleon-nucleon interaction, adding
afterwards some of the most important medium polarization effects. Because our study
aims at determining the basic features of the spatial dependence of the gap, rather than
its precise magnitude, use is made of approximations to dealwith some of these effects,
in particular with self-energy effects, so as to gain in transparency in the presentation
of the results. In order to make contact with other, more phenomenological approaches
available in the current literature, we shall parametrize our results in terms of a density-
dependent, zero-range interaction.

CALCULATIONS WITH THE BARE NUCLEON-NUCLEON
FORCE

Contrary to the case of infinite matter, calculations in finite nuclei have seldom used a
bare interaction in the pairing channel [1, 2, 3], although this represents the first step
in a consistent many-body approach [4]. Here we shall present results obtained solving
the pairing gap equation making use of the nucleon-nucleon v14 Argonne interaction.
We shall start by performing a Hartree-Fock calculation with the two-body interaction
SLy4. As expected, the absolute value of the pairing gap depends on the value of the
effective massmk associated with this particular interaction. Of notice that to deal with
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FIGURE 1. (a) Pairing field as a function of the position of the center ofmass for different values of the
relative momentumk calculated for the Argonne interaction. Going from top to bottom, the curves refer
to values ofk going fromk = 0.25 fm−1 to k = 1.75 fm−1, in steps of 0.5 fm−1. (b) Local pairing field
obtained with the semiclassical approximation.

the presence of a hard core in the pairing interaction, one must integrate the gap equation
up to about 1 GeV, and the results will be sensitive to the density of single-particle
states not only close to Fermi energy, but also at higher energies. On the other hand, the
spatial dependence of the pairing gap turns out to be rather independent of the particular
properties ofmk.

Instead of considering directly the pairing gap∆(~r,~r ′), it is better to consider its
Fourier transform respect to the relative distance of the two nucleons,~r12 =~r −~r ′, (see
Fig. 1(a)):

∆(Rc.m.,k) =

∫

dr12 ei~k·~r12∆(Rc.m., r12), (1)

whereRc.m. denotes the center of mass of the pair, and we have averaged over the angle
between~Rc.m. and~k. In this representation it is simple to separate the effect of the
repulsive core, which affects the gap mostly at large valuesof the relative momentum
k, where∆ can become negative. For small values ofRc.m., ∆ depends strongly on the
contributions of thel = 0 orbitals. In particular, in120Sn the 3s1/2 orbital is close to the
Fermi energy and this determines the large value of the gap close toRc.m. = 0. The other
dominant feature observed in Fig. 1(a) is the peak aroundRc.m. = 6 fm, that is, close
to the surface of the nucleus. For any given value ofRc.m., the pairing gap decreases
as a function ofk: this is in keeping with the behaviour of the pairing gap∆(k) at a
given density in infinite matter [5], and is related to the behaviour of the experimental
phase shift in the1S0 channel„ which decreases monotonously as a function of the
relative momentum, until it becomes negative fork ∼ 1.7 fm−1. It is useful to make
a semiclassical approximation, plotting the quantity∆loc ≡ ∆(Rc.m.,kF(Rc.m.)), where
kF(Rc.m.) denotes the local Fermi momentum. The result is plotted in Fig. 1(b), and
clearly shows the surface character of the pairing gap with the Argonne interaction. A
qualitatively similar result is obtained applying the local density approximation (LDA)
directly to the pairing gap calculated in nuclear matter, shown in Fig. 2. In fact, the
pairing gap at the Fermi energy is small forkF ∼ 1.3 fm−1, corresponding to saturation
density, and is maximum forkF ∼ 0.9 fm−1, that is, for densities corresponding to
that found at the nuclear surface; this behaviour is directly related to the momentum
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FIGURE 2. The semiclassical pairing gap already shown in Fig. 1(b) is compared to the gap obtained
using the simple LDA.

dependence of the experimental phase shifts [6, 7] . However, the LDA produces a too
pronounced surface peak.

CALCULATION INCLUDING MANY-BODY POLARIZATION
EFFECTS

It is well known that single-particle motion is strongly renormalized by the coupling to
collective vibration, which leads to (i) an increase of the level density close to the Fermi
energy, and (ii) to a fragmentation of the single-particle strength. These phenomena in
turn affect the pairing gap in different ways: while (i) enhances the gap, (ii) suppresses
it. Moreover, a contribution to the gap arises from the exchange of collective vibrations
between pairs of states in time reversal. The exchange of density and spin vibrations
lead respectively to an attractive and to a repulsive pairing interaction [8]. The former
is dominant in finite nuclei, where surface vibrations are strongly collective, while the
latter is dominant in infinite neutron matter. A consistent treatment of these effects is
obtained solving the Nambu-Gorkov equation [4, 9]. Here, weshall limit ourselves to a
simple approximation, adding the contribution of the induced interaction to the matrix
elements of the bare pairing interaction, multiplying the total matrix element, sum of the
Argonne and of the induced interaction, by the average quasiparticle strengthZ:

vArg+ind = Z(vArg+vind). (2)

Using the valueZ = 0.7, which is close to that obtained in theoretical calculations
[10], we obtain a pairing gap at Fermi energy close to that deduced from the experimental
odd-even mass difference (∆F ∼ 1.3 MeV). We then solve the gap equation as was done
for the bare interaction. We include the coupling to the phonons of multipolarity up to
λ = 5 and energy up to 30 MeV, calculated in the random phase approximation using
the same SLy4 interaction used to calculate the mean field.
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FIGURE 3. (a) Pairing field as a function of the position of the center ofmass for different values of the
relative momentumk, for the Argonne plus induced interaction vArg+ind. Going from top to bottom, the
curves refer to values ofk going fromk = 0.25 fm−1 to k = 1.75 fm−1, in steps of 0.5 fm−1. (b) Pairing
field obtained with the semiclassical approximation.

In Fig. 3(a) and 3(b) we show the pairing gap and its local approximation. It is seen
that many-body effects enhance the surface character of thepairing interaction, due to
the action of surface collective phonons. At the same time, the interaction within the
volume is suppressed by the action of spin modes.

COMPARISON WITH PHENOMENOLOGICAL INTERACTIONS

Pairing correlations in finite nuclei are often parametrized making use of a simple
phenomenological zero-range interactions supplemented with a cutoff procedure, as e.g.,

vpair(~r,~r
′) = v0

(

1−η
(

ρ(r)
ρ0

)α)

δ (~r −~r ′), (3)

whereρ0 is the saturation density, and include a density dependence(if η 6= 0). The
abnormal densityΦ(~r,~r ′)is then calculated and the pairing gap obtained as∆(~r,~r ′) =
−vpairΦ. The the spatial dependence of the abnormal density is largely independent
of the specific pairing interaction, being dominated by a feworbitals around the Fermi
surface [11]. As a consequence, the various choices of the parameters in Eq.(3) lead to
pairing gaps with a very different spatial dependence. Recently, large-scale calculations
have been performed, studying the dependence of the calculated binding energies on
the parameters of the pairing interaction (3) [12, 13, 14]. The r.m.s. deviation between
the gaps deduced from the experimental and theoretical odd-even mass differences is
of the order of 0.3 MeV [14] and turns out to be rather insensitive to the particular
density dependence assumed in Eq.(3), with a weak preference, however, for the surface
interaction. It remains to be seen whether other observables, and in particular the cross
sections of two-particle transfer reactions represent more sensitive probes [15]. We have
determined the parametersα andη in Eq.(3) requiring that they reproduce in the best
way the local pairing gap obtained in our microscopic approach, shown in Fig. 3(b). We
have adopted a cutoff of 60 MeV above the Fermi energy, fixing the value of v0 so as to
reproduce the scattering length at zero density, as in ref. [16].



0 2 4 6 8 10
R

c.m. 
[fm]

-600

-400

-200

0

200

v 
[M

eV
 fm

3 ]

v
Arg+ind 

v
Arg+ind 

 (only density)

Volume
Surface 
Mixed

FIGURE 4. Spatial dependence of the contact pairing interaction introduced in this work to simulate
the local pairing gap obtained with the bare+induced interaction vArg+ind. We also show the interaction
obtained suppressing the coupling to spin modes. These results are compared to the spatial dependence of
phenomenological interactions of volume, surface and mixed type.

The resulting interaction is displayed in Fig. 4, and corresponds to the parameters
v0 = −458.4 MeV fm3, α = 2.0, η = 1.32. We compare it to three schematic phe-
nomenological interactions which are often used and have the form of Eq.(3) withα = 1
: a volume force (η = 0), a surface force (η = 1) and a mixed force (η = 0.5).The value
of v0 in the three cases has been determined imposing that the average value of the
pairing field weighted with the nuclear density, be equal to 1.24 MeV using the cut-
off described above [17]. It is seen that our microscopic interaction has a pronounced
surface character and is repulsive in the interior of the nucleus. The latter feature is asso-
ciated with the interaction induced by the spin modes: suppressing them, the interaction
essentially vanishes in the nuclear volume, as also shown inFig. 4.

CONCLUSIONS

We have presented a microscopic approach to the calculationof pairing correlations in
120Sn, adding a bare nucleon-nucleon interaction and an induced interaction which takes
into account the exchange of RPA vibrational modes, including self-energy effects in a
simplified way. The resulting interaction is surface peaked, in keeping with the fact that
the bare interaction is mostly attractive for low values of relative momentum, and that
the exchange of collective surface modes gives the largest contribution to the induced
interaction at the nuclear surface. While this result appears to be well established, to get
a more reliable calculation of the magnitude of the gap, one should remove some of the
simple approximations we have used to estimate self-energyeffects, and go beyond the
RPA in the calculation of the properties of nuclear vibrations.
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