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ABSTRACT
Niche theory predicts that species occurrence and abundance show non-linear,
unimodal relationships with respect to environmental gradients. Unimodal mod-
els, such as the Gaussian (logistic) model, are however more difficult to fit to data
than linear ones, particularly in a multi-species context in ordination, with trait
modulated response and when species phylogeny and species traits must be taken
into account. Adding squared terms to a linear model is a possibility but gives unin-
terpretable parameters.

This paper explains why and when generalized linear mixed models, even without
squared terms, can effectively analyse unimodal data and also presents a graphical
tool and statistical test to test for unimodal response while fitting just the generalized
linear mixed model. The R-code for this is supplied in Supplemental Information 1.

Subjects Ecology, Statistics
Keywords Environmental gradient, Testing unimodal response, Niche theory, Generalized linear
mixed model, Gaussian logistic model

INTRODUCTION
Niche theory predicts that species occurrence and abundance show non-linear, unimodal

relationships with respect to environmental gradients (Austin, 1987; Palmer & Dixon, 1990;

Whittaker, 1967). Many studies fail to test for unimodal response (Austin, 2007). Thus

straight-line relationships are often fitted without justification (e.g., Gibson et al., 2004).

Pollock, Morris & Vesk (2012) propose a generalized linear mixed model for investigating

trait modulation of the environmental response of a number of species. In their data

unimodal response was said to be precluded, presumably as they examined relatively short

environmental gradients. But might their method or a small modification thereof have

worked for unimodal response? Ives & Helmus (2011) recently proposed phylogenetic

generalized linear mixed models. Can these models usefully analyze unimodal response?

A similar question arises in community ecological ordination, a class of multivariate

methods to analyze the occurrence and/or abundance of a set of species in a set of sites and

resulting in a configuration of the sites in a factorial plane, the directions of which can be

interpreted as latent environmental variables (Jongman, ter Braak & van Tongeren, 1995;

ter Braak & Prentice, 1988; Walker & Jackson, 2011). Principal component analysis and
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redundancy analysis are linear ordination methods whereas (detrended) correspondence

analysis and canonical correspondence analysis are claimed to be able to analyze unimodal

response (ter Braak, 1985; ter Braak, 1986). Nevertheless, (canonical) correspondence

analysis is an eigen vector method and therefore inherently linear. This is most apparent

in the reconstitution formula of (canonical) correspondence (Greenacre, 1984; ter Braak

& Verdonschot, 1995). How can it be understood that these methods are able to model

unimodal data but are inherently linear?

Some insight in this question is given by Ihm & Van Groenewoud (1984) and further

worked out by ter Braak (1987) and de Rooij (2007) who showed the relationship between

the unimodal model and a generalized (bi)linear model, also known as Goodman’s RC

model. The relationship can be used both ways. Ihm & Van Groenewoud (1984) use the

relationship to justify their model B which is a (bi)linear model, for ecological ordination

and de Rooij (2007) uses it to transform the linear predictor of the RC model into a

quadratic form, with the graphical purpose to transform a vector representation or biplot

to a distance representation that is supposed to be easier to interpret for naı̈ve users of

multivariate methods. Additional insight is given by Zhu, Hastie & Walther (2005) who

introduced a weighted sample model to show the equivalence of canonical correspondence

analysis and linear discriminant analysis.

In this paper we propose a graphical tool and statistical test to test for unimodal

response while fitting just a generalized linear mixed model (GLMM) without squared

terms. GLMMs are model-based, inferential statistical tools. GLMMs are very useful

for describing the community patterns and are becoming popular in ecological and

evolutionary studies (Bolker et al., 2009; Ives & Helmus, 2011; Zuur et al., 2009). Even

when unimodality is detected using the proposed tool and test, we claim that GLMMs can

effectively analyze unimodal data when the niche width is not very different among species

and illustrate this claim by comparing the GLMM approach with an explicit unimodal

model approach on data that show unimodal response. We focus on explicit environmental

variables. In this case of direct gradient analysis, we can of course add the squares of

environmental variables to the model (ter Braak & Looman, 1986) and test the statistical

significance of the addition, but the argument extends to the trait modulated response

(Jamil et al., 2012) and to latent variable models (Walker & Jackson, 2011) for which models

without squared terms are easier to handle with software that is more widely available.

MATERIAL & METHODS
Generalized linear mixed models and unimodal response
For ease of exposition we start with a logistic linear mixed model for presence–absence data

as example GLMM. The same approach can be followed for count data and loglinear

models, which would relate to the RC model (de Rooij, 2007). Consider the logistic

linear mixed model that relates the probability of occurrence pij of species j in site i to a

quantitative environmental variable xi by the formula

logit(pij)= αj+βjxi+ γi (i= 1,...,n;j= 1,...,m) (1)
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with αj an intercept, βj a slope and γi a site effect, which we all take as random parameters

with normal distributions with zero mean and variances σ 2
α , σ 2

β and σ 2
γ . In this random

intercept, random slope model (Gelman & Hill, 2007; Zuur et al., 2009) it is prudent to have

an additional parameter ρ for the correlation between the intercepts {αj} and slopes {βj};

otherwise the model would change by just centering the environmental variable. Inclusion

of the random site effects {γi} are a means to avoid pseudoreplication (Hurlbert, 1984) as

they introduce correlation among species. These correlations were not modelled by Pollock,

Morris & Vesk (2012) which makes their statistical tests liberal. The site effects may account

for the size of the site, the fertility of the site or any other unknown factors that influence

the probability of occurrence of all species in the site. The site effect γi will thus be expected

to be related to the expected number of species in a site, that is to
∑

jpij and, in terms of

the data, to the number of species that is observed in a site, for short the site total, defined

as Si =
∑

jyij. The site total and the site effect are expected to have a monotonic positive

relationship.

We now turn to one of the simplest unimodal curves for presence–absence, the Gaussian

logistic curve (Oksanen et al., 2001; ter Braak & Looman, 1986)

logit(pij)= aj−
(xi− uj)

2

2t2
j

(2)

with aj a coefficient related to maximum probability of occurrence, uj the species optimum

and tj the tolerance of species j. This model thus has a logistic form but is nonlinear in this

parameterization. By expanding the quadratic term,

aj−
(xi− uj)

2

2t2
j

= aj−
1

2t2
j

x2
i −

1

2t2
j

u2
j +

1

t2
j

xiuj =

(
aj−

1

2t2
j

u2
j

)
+

(
uj

t2
j

)
xi−

1

2t2
j

x2
i (3)

it can be fitted to the data of each individual species by a generalized linear model (GLM)

by using x and x2 as predictors (Jongman, ter Braak & van Tongeren, 1995; ter Braak &

Looman, 1986). The fit is unimodal if the regression coefficient of x2 is negative.

Might we be able to model unimodal response even without the squared term? On

assuming tj = t and setting

αj = aj−
1

2t2
u2

j , βj =
uj

t2
and γi =

−1

2t2
x2

i , (4)

we obtain Eq. (1) again. If t would vary among species then Eq. (1) does not exactly hold

because x2
i /t2

j then also depends on j. With equal tolerances, unimodal response can thus

be represented by a simple linear model with site effects and, as we propose, be fitted by

a GLMM based on Eq. (1). The GLMM has additional normality assumptions. In case of

unimodal response, the assumption that the site effects {γi} are independent normal is

false, as the site effects then depend on xi through x2
i /t2. This will be the basis of our test

on unimodal response in the next section. The site effects in Eq. (4) also have a nonzero

mean, but that is not a problem, as the mean can be taken out and transferred to the

intercepts (αj).
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The unimodal model with two or more environmental variables (ter Braak & Prentice,

1988) can similarly be rewritten as a simple linear model without squared terms if the

tolerances are equal (Appendix 1). In conclusion, up to distributional assumptions, the

GLMM (e.g., Eq. (1)) can be interpreted as a Gaussian logistic model with equal tolerances

for the species.

A graphical tool and statistical test for unimodal response
Equation (4) suggests a graphical tool for detecting unimodal response and also a statistical

test. The idea is to fit a GLMM to the binary data {yij} with respect to the environmental

variable with values {xi} (i = 1,...,n). In the R package lme4 (Bates, Maechler & Bolker,

2011) , the model can be fitted by

lmer(y∼ 1+ x+ (1+ x | sp)+ (1 | site),

family= binomial(link= "logit"),data),

where y represents the vectorized response data while sp and site are factors indicating

species and sites. The site effects {γi} obtained from the fit are then plotted against the

environmental variable {xi}. There is an indication of unimodal response in terms of

the species response with respect to the environmental variable x if this graph shows a

n-shaped (as opposed to u-shaped) quadratic relationship. If the shape is not quadratic but

curved, a transformation of x may improve it.

In the statistical test for unimodal response, the null model is the GLMM of Eq. (1) with,

specifically, independent and normally distributed site effects. The alternative model is

that the site effects depend quadratically on the environmental variable. As the site effects

typically also depend on the site total S, a sensitive test on unimodal response is obtained by

regressing the site effects on x, x2 and S, according to the model formula

γ ∼ x+ x2
+ S. (5)

There is evidence of unimodal response if the squared term is significant as judged by a

z-test or, equivalently, an ANOVA test on its regression coefficient, the null model being

γ ∼ x+ S. The R-code for making the graph and performing the test on unimodality is

supplied in Supplemental Information 1.

Simulated data
In the first example series the procedure to simulate data is the following:

(1) Generate n = 50 values of an environmental variable x as a random sample from the

uniform distribution, x ∼ U(−2,2).

(2) Generate a vector u of length m from a uniform distribution U(−τ,τ ), where τ = 2+ t,

for a fixed value of t, to ensure that optima are also placed outside the sample range

of x.

(3) Generate a vector a of length m drawn at random from the standard normal

distribution.
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Figure 1 Simulated unimodal response (occurrence probability pij of a species at a site) against
environmental variable x for a selection of species. For left to right: three tolerances (t = 0.5, 1
and 4).

(4) Generate binomial probabilities pij from the unimodal response curve

pij = logit−1

(
aj−

(xi− uj)
2

2t2
j

)
(6)

and generate presence–absence data yij at random from a Bernoulli distribution with

probability pij and tj = t. We simulate data with constant tolerance in each data set for

m= 100 species and vary t between data sets (t = 0.5, 1 and 4). Figure 1 indicates how the

simulated species response curves look in each data set. We repeated the example with x

and u having normal distributions instead (x ∼ N(0,1) and u∼ N(0,t2)), but do not show

the results as they were very similar to the uniformly distributed case.

In the second example series, we vary the tolerance lognormally among species,

t ∼ Log N(0,σ ) with σ = 0.25, 0.5 and 1 so that the median tolerance is 1. For σ = 1,

the coefficient of variation is larger than 100%. In the third example series we vary the

number of species (m= 10, 50 and 100) with t = 1. For the rest, the simulation is set up as

in the first series. We also simulated data according to Eq. (1) with the strict assumptions of

the GLMM of independent normal site effects.

Each dataset was characterized by beta diversity and length of gradient. The index of

beta diversity is βw = T/S− 1, where T is the total number of species, and S is the average

number of species per site (Whittaker, 1960). Length of gradient, obtained by analyzing the

data with detrended correspondence analysis (DCA), is expressed in standard deviation

(SD) units (Hill & Gauch, 1980). Values greater than 4 are commonly taken to indicate

unimodal response. Beta diversity was calculated using the asbio package (Aho, 2011) and

DCA was performed in the vegan package (Oksanen et al., 2011), both in R.

Real data
We illustrate our method with three real data sets. The first is the Dune Meadow data

(Jongman, ter Braak & van Tongeren, 1995). This is a small data set of 28 higher plants in

20 sites in a dune area in the Netherlands. Environmental variables, related to soil and

management, were measured at each site; we use the variable Moisture.

The second data set includes the vegetation of the rising seashore on the island

Skabbholmen in the Stockholm archipelago, eastern central Sweden (Cramer & Hytteborn,

1987) and is part of the Canoco package (ter Braak & Smilauer, 1998). The data set consists
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of 63 sites sampled in both 1978 and 1984 and contains 68 species. The environmental

variable is Elevation.

The third data set involves phytoplankton communities of 203 lakes located within

four climate zones and associated measurements on various environmental variables

and morphological species traits of 60 species (Kruk et al., 2011). We consider the

environmental variable Temperature.

For each data set we fit a GLMM according to Eq. (1) with x the noted environmental

variable, plot the resulting site effects against x and test for unimodal response at the 5%

significance level explained by and below Eq. (5). For the seashore data, we analyzed 1978

and 1984 separately. We also compare the regression coefficient βj as estimated by GLMM

with the optimum uj as obtained by explicitly fitting Eq. (2) using GLM (ter Braak &

Looman, 1986) for species with a well-defined optimum, that is, the squared term of which

has a z-ratio smaller than−1 in the GLM model. In the small Dune Meadow data set we

used z-ratio< 0.

RESULTS
Simulated data
Figure 1 shows the simulated response curves in example series 1; the sampled range of the

environmental variable is the range of x shown. With increasing tolerance the part of the

curves that is sampled shows less unimodal response. This is expressed quantitatively in the

length of gradient SD units which varies between about 1 SD (not so unimodal) to 6 SD

(very unimodal); the beta diversity varies correspondingly between 1 and 5.

In Fig. 2, the site effects estimated by the GLMM analysis of each of the simulated data

sets are plotted against the environmental variable. In all three series, site effects shows

a clear quadratic relationship with the environmental variable except for large tolerance

(t = 4) in the first series. Note the decreasing range of site effects as the tolerance increases

in the first row of Fig. 2; for large tolerance, the site effects are close to zero. Nevertheless,

the squared term in Eq. (5) was significant in all examples (P < 0.001) so that the method

detects unimodal response even if it is moderate (t = 4). When the data are simulated

according to Eq. (1) with the strict normality assumptions of the GLMM, the squared term

was not judged significant more often than expected on the basis of Type I error of the test.

Figure 3 shows the relationship between the random slopes (βj) estimated by GLMM

and the true optima (uj) in the three simulation series. The relation is positive as predicted

by Eq. (4). The relationship is weaker the larger the tolerance (Fig. 3, first row). With

tolerance varying across species, the relationship continues to hold true surprisingly well

(Fig. 3, second row), except perhaps when the coefficient of variation of the tolerance is

large (>100%). The larger the number of species the clearer the predicted relationships

(last row of Figs. 2 and 3).

Real data example
The site effects estimated by GLMM show a quadratic relationship with the noted

environmental variable in each of the three data sets (Fig. 4 top row), with the least
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Figure 2 Simulated data: site effects as estimated by GLMM based on Eq. (1) plotted against environ-
mental variable x. A quadratic relationship indicates a unimodal response. Rows: example series 1–3,
columns: parameter varied.

unimodal response in the Dune Meadow data. Unimodal response is significant in all

cases, as judged by our proposed significance test (P < 0.001) and the relationship between

the random slopes (βj) estimated by GLMM and the optima (uj) obtained from a fit of the

unimodal model of Eq. (1) is close to linear (Fig. 4, bottom row). In the Dune Meadow data

there is one outlier for a species with a z-ratio close to 0. In the phytoplankton data, the

species with similar low values for the optimum received differential values for the slope,

but otherwise there is a good agreement.

DISCUSSION
Our analysis of multi-species data sets showed that a GLMM without squared terms

but with site effects is able to detect unimodal response. The theory required equal

tolerances among species, but the simulations showed remarkable robustness to this
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Figure 3 Simulated data: GLMM random slopes of Eq. (1) plotted against the true optima of the
Gaussian logistic curve of Eq. (2). Rows: example series 1–3, columns: parameter varied. In the two
bottom rows the (median) tolerance is 1.

assumption. With significant unimodal response, as judged by our test, the assumption

of independence and normality of the site effects underlying the GLMM is clearly violated.

This result can be interpreted in two ways. The first way is to try and adapt the model

so that the assumptions are no longer (grossly) violated, for example, by extending the

GLMM with an explicit square of the environmental variable as fixed effect, yielding

logit(pij)= αj+β1jxi+β2x2
i + γi (7)

and then testing the normality assumption on the new site effects, for example by making

a Q–Q plot (Gelman & Hill, 2007). The site effects γi obtained from the fit can then be

plotted against the environmental variable to assess whether or not the unimodality is

adequately modeled using quadratic terms. The extended model still assumes constant
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Figure 4 Real data: site effects (top) and the GLMM random slopes (bottom) plotted against the envi-
ronmental variable x and the optima of the Gaussian logistic curve as estimated by GLM, respectively.

tolerance (as does Eq. (1)) as it can be rewritten as

logit(pij)= aj−
(xi−uj)

2

2t2
+ γ̃i (8)

with

t = 1/
√
−2β2, uj = t2β j, aj = αj+

1

2t2
u2

j , and γ̃i = γi+
1

2t2
x2

i . (9)

We can go one step further and test the assumption of equi-tolerance by adding the squared

term x2 also as a random (species-dependent) component to Eq. (7) and testing the

significance of this extra variance component. In the R package lme4 (Bates, Maechler

& Bolker, 2011), the two models to compare are (with xx= x2)

lmer(y∼ 1+ x+ xx+ (1+ x | sp)+ (1 | site)

family= binomial(link= "logit"),data)

and

lmer(y∼ 1+ x+ xx+ (1+ x+ xx | sp)+ (1 | site)

family= binomial(link= "logit"),data).
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We are currently investigating robust ways of testing the equi-tolerance assumption on the

basis of these two models, as the default ANOVA test has inflated type I error for small t.

The second way of interpretation is to conclude that the GLMM based on Eq. (1) is

remarkably robust to the normality assumption on the site effects and the equi-tolerance

assumption and that it can be used as a basis of more complicated models, such as the

trait modulated response model (Jamil et al., 2012; Pollock, Morris & Vesk, 2012) and latent

variable models (Walker & Jackson, 2011), even for unimodal response. In this way, the site

effects are treated as nuisance parameters and the independence and normal distributions,

needed for efficient computation, as a prior distribution that a posteriori may turn out

to be false. Cormont et al. (2011) used this type of rationale to claim that their linear

trait-environment method is well suited to analyze unimodal response.

CONCLUSIONS
Site effects in multi-species GLMM serve three purposes in ecological data, first to avoid

pseudoreplication (Hurlbert, 1984), second to account for differences in species richness

among sites (Ives & Helmus, 2011) and third (this paper) to allow for common nonlinear,

unimodal response. The results of this paper imply that the phylogenetic generalized linear

mixed models of Ives & Helmus (2011) are not in conflict with niche theory as they include

random site effects and can thus deal with unimodal response.

Walker & Jackson (2011) used a latent variable approach to test for unimodal response.

We tried their approach with the phytoplankton data, but failed to get an answer because

the program for fitting the quadratic model crashed. We focused this paper on the easier

task of detection unimodal response to measured environmental variables by using a

GLMM without squared terms. To scale up to a latent variable approach we need factor

analytic structure within a GLMM. This already exists for linear mixed models (Thompson

et al., 2003; Verbyla et al., 2003) and it is a matter of time that it becomes standardly

available for GLMM. This paper shows the utility of such factor analytic models in ecology

(Walker & Jackson, 2011) if they allow additional random site effects.

A GLMM with terms that are linear in quantitative predictors is, of course, linear. But

with random site effects included, GLMMs can detect and fit unimodal response, with

the provision that the differences in niche widths among species is not too large. The

application scope of GLMM in ecology is thus much broader than one might think at first

glance.
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Appendix 1
This appendix shows that similarity between the Gaussian logit models and GLMMs

extends beyond the Gaussian logistic curve. The Gaussian logistic model can be extended

to two environmental variables as follows (ter Braak & Prentice, 1988)

logit(pij)= aj−
1

2
(d1(xi1− u1j)

2
+ d2(xi2− u2j)

2
− 2d12j(xi1− u1j)(xi2− u2j))
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where d’s are precision parameters, in the context of the bivariate normal distribution

(Rue & Held, 2005). By setting

αj = aj−
1

2
(d1u2

1j+ d2u2
2j− 2d12ju1ju2j),

β1j = d1u1j− d12ju2j,

β2j = d2u2j− d12ju1j,

β3j = d12j,

and

γi =−
1

2
(d1x2

i1+ d2x2
i2)

we can write

logit(pij)= αj+β1jxi1+β2jxi2+β3jxi1xi2+ γi.

Here β3j are random effects for interactions. If the ‘co-precisions’ are equal (d12j = d12)

the term β3jxi1xi2 can be subsumed in to the site effects γi and the model can do without

interactions. The γi account for the quadratic term arising from the Gaussian (logit)

model. Extension to more than two environmental variables is immediate. In conclusion,

up to distributional assumptions, the GLMM can be interpreted as a Gaussian logistic

model with equal tolerances for the species.
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