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Abstract. Ontologies are explicit specifications of a conceptualization
intended for logical processing. They are used to express meaning and to
apply it on otherwise less structured data. Nevertheless other models of
organization and structure of knowledge, like database models and XML
document definition standards, are widely used and valuable. In order to
extend ontology usage to multiple layers of an application, or to integrate
ontologies with pre-existing software, the use of these various means to
structure data could be necessary. We are therfore using metadata in
order to adapt an ontology to these use cases and provide the example of
automatically generating user interfaces for goal descriptions in IRS-III
[1] by extracting an XML schema from an ontology.

1 Introduction

The semantic web vision foresees the advent of automatic machine operable ser-
vices through the use of knowledge based technologies. An interesting class of
standardized services are web services, which are widely accepted if not yet mas-
sively used by the industry. Current web service implementations are, however,
relatively inflexible, and not powerful enough to support automatic discovery,
mediation and composition. Therefore ongoing research is investigating how se-
mantic web technology can alleviate this. The IRS-III (Internet Reasoning Ser-
vice) framework [1] supports the creation of semantic web services according
to the WSMO ontology [2], and extends it. Users of IRS-III directly invoke web
services via goals i.e. IRS-III supports capability-driven service execution. A goal
is described as a class in OCML (Operational Conceptual Modelling Language)
[3] and related to one or more web services through mediators, which provide
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the required flexibility by allowing to specify mapping mechanisms between goal
input roles, output roles, and matching web services.

Ontologies, like the ones used in a goal description to define a capability, are
intended for logical inference, and are often loosely related to applications based
on them; therefore one has to provide some glue to allow diverse aspects of an
application to conform to an ontology; the problem of data consistency, of user
input for example, usually occurs and is hard to tackle in a generic way.

Our motivating example is to provide a consistent interface to IRS-III goals.
The input to these goals, i.e. the data one has to provide in order to expect
achievement of the goal, is defined in an OCML ontology, and uses data types
provided by it. For example an exchange rate goal will have three input roles:
has-source-currency, has-target-currency and has-amount, which represents the
amount which has to be converted from source to target currency.

The difficulty is that OCML types are used to describe the roles, i.e. pound
or euro are instances of a currency class. The enumeration of available currencies
is therefore well defined in the ontology and this constraint has to be reflected
in the actual web or Java goal access interfaces, task which is actually achieved
by the developer, in a disconnected and hence highly error-prone way.

2 Translating OCML ontologies to XML schema

The relation between ontologies and XML schemas (XSD [5]) has already been
described (for example in [4]): ontology languages are a means to specify do-
main theories while XML schemas provide integrity constraints for information
sources, but both provide vocabularies and structure for describing information
sources that are intended for exchange. However ontology modelling languages
like OCML do not offer rich collections of built-in data types for two main rea-
sons:

1. Providing clear semantics and reasoning support for a large collection of
complex data types is difficult.

2. The precise representation of a data type is often superfluous in a knowledge
modeling context, i.e. a date may be an important aspect of a domain but
various representations of it are not.

The XML schema type system has been inspired by language independent
data types as well as actual query and object-oriented programming idioms like
SQL or JAVA [5]. OCML is a frame-based, i.e. object-centered, knowledge repre-
sentation system, which also provides a relational view. These systems therefore
present similarities that we can exploit and a quite intuitive mapping appears
between the two (see table 1).

Unfortunately the XSD type system does not support multiple inheritance,
and even simple derived types can be only created either by restriction or by ex-
tension but not both at the same time. However this kind of modelling is mostly
useful for knowledge representation and have usually little role to play when
interacting with other software architectures. Moreover we are only interested



Table 1. OCML to XSD data types

OCML XSD

class complexType
slot element

string, float, ... simpleType

by the constraints allowed by an XSD definition, not by the reuse of the derived
XSD types since we are able to generate them on the fly. Therefore we chose to
treat these cases by defining a new type for every OCML class, inherited or not,
containing all the slots (local and inherited) as elements. Also there is actually
no planned support in our approach for classes defined in OCML intensionally
by logical expressions.

Still the result of this simple mapping is not very helpful from an applicative
point of view since we do not have any validation constraints yet, i.e. we do
not know, because it is not specified in the ontology, that for our purposes the
slot/element called has-amount must be smaller than a given value (otherwise
the program may crash, or the database will not be able to store the value, etc).

3 Constraint metadata applied to ontologies

Constraint information could simply be added to the ontology, however the ap-
plicative environment (Java program, web interface, database) may change while
the ontology is already shared in multiple contexts, therefore it is more appro-
priate to only attach this information to the ontology, without any modification,
hereby allowing for multiple views or aspects of it depending of the applica-
tive context. Without doing so constraints on a goal could be superfluous or
even conflicting depending on the context, e.g. the maximum value of a number
could be greater for a Java application than for a Web interface, while entirely
meaningless for the knowledge domain.

During the translation process we therefore use a metadata system to store
the constraints we chose to add to the ontology XSD representation for our
specific context dependent purpose. Our metadata system is composed of:

1. A naming convention mimicking the has-a tree-like structure of the ontology
and allowing to request information about a particular element of it (class,
slot or relation). For example:

’(transform classes EXCHANGE-RATE-GOAL HAS-AMOUNT)

2. A repository which can be anything from a DBMS to simple association
lists, able to store the information regarding a node according to the naming
structure, for example the required length of a string, as well as other relevant
information like OCML basic types mappings to XSD:



’((transform ((classes ((EXCHANGE-RATE-GOAL

((HAS-AMOUNT

((maxInclusive ((1000000)))))))))

(types ((float (("xs:decimal"))))))))

3. An access interface to the metadata repository that has to provide neces-
sary access functions as well as commodity ones required by the generation
program.

By using the metadata convenience (through the repository called mddb) we
can now easily map an OCML ontology to a constrained XSD schema:

Algorithm OCML2XSD(ontology, mddb)
1. for c ∈ classes(ontology)
2. do Create element complexType with attribute name = name(c)
3. Create sequence element
4. for s ∈ slots(c)
5. if s is a type referenced as basic in mddb
6. then create element simpleType
7. add base attribute with value specified in mddb
8. if s has attached constraints in mddb
9. then add the constraints as restriction elements
10. else create element with type attribute set to class(s)

It is straightforward to restrict this algorithm to the slots representing in-
put roles of an IRS-III goal. Then, by applying an XSL transformation to the
generated schema, we obtain a web interface with embedded validation.

4 Conclusion

We demonstrated the use of metadata applied to ontologies in order to adapt
them to practical application contexts, and used this technique to generate XML
schema from an OCML goal description in order to obtain a consistent validating
web interface. Metadata can be used to produce many applicative views of an
ontology, like SQL Data Definition Language statements for persisting ontology
instances, or JavaBeans template code to ease ontology driven enterprise appli-
cation building. In further work we aim to generalise this process by providing
a language for building generative mappings.
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