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Abstract. In the present paper we discuss the motion of
charged particles in three different regions of the Earth mag-
netotail: in the region with magnetic field reversal and in the
vicinities of neutral line ofX- andO-types. The presence
of small parameters (ratio of characteristic length scales in
and perpendicular to the equatorial plane and the smallness
of the electric field) allows us to introduce a hierarchy of mo-
tions and use methods of perturbation theory. We propose a
parameter that plays the role of a measure of mixing in the
system.

1 Introduction

In recent years there has been much interest in the non-
linear dynamics of charged particles in various regions of
the earth magnetotail. This research started with the pa-
pers (Northrop, 1963; Speiser, 1965, 1967; Sonnerup, 1971;
Lyons and Speiser, 1982). Since then, the motion of particles
in the magnetic field reversal configurations was studied by
different authors, both numerically and analytically for quite
different approximations of the magnetic field geometry. The
most basic, one-dimensional, approximation was discussed
in many publications (seeChen(1992) and references there-
in). Longitudinal variations of the magnetic field were first
taken into consideration analytically inZelenyi et al.(1990)
and numerically inKarimabadi et al.(1990), where the prob-
lem was considered for a variety of configurations of mag-
netic field.

The motion of particles in the vicinity of anX-type neu-
tral line was studied theoretically and numerically (Martin,
1986; Burkhart et al., 1991; Moses et al., 1993), numerically
by (Bruhwiler and Zweibel, 1992; Smets et al., 1993; No-
cera et al., 1996). The impact of the electric field was studied
analytically and numerically inDeeg et al.(1991) and nu-
merically in Petkaki and Mackinnon(1994). The dynamics
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in the vicinity of anO-type neutral line was studied numer-
ically in Martin et al.(1991) and analytically inLarson and
Tracy(1993).

It is known that for a wide range of parameters the mo-
tion of charged particles in the magnetotail is chaotic (Chen
and Palmadesso, 1986; Büchner and Zelenyi, 1989), see al-
soChen(1992) for a review. It was shown byBüchner and
Zelenyi (1989), that in the domain where the Larmor radius
of charged particles is much larger than the smallest radius
of curvature of magnetic field lines the jumps of an adiabatic
invariant lead to chaotic behaviour. In closed systems chaotic
behaviour necessarily leads to complete mixing in the acces-
sible part of the phase space. However, in the real magne-
totail the electric field accelerates particles, thus limiting the
time they spend in the magnetotail, which, in turn, defines
how much mixing can happen before the particles leave the
system.

One of the standard methods of studying the chaotization
and mixing (in both analytical and numerical approaches) is
to look at the behaviour of approximate invariants of a sys-
tem. The action variableIz (the action variable of the mo-
tion perpendicular to the equatorial plane), that is a standard
action variable of the Hamiltonian dynamics and analogous
to the the magnetic momentµ in the guiding center theory,
was introduced bySpeiser(1970). The important role played
by Iz was first recognized bySonnerup(1971). That single
action variable is, naturally, not sufficient for a complete de-
scription of more realistic models, which include both varia-
tions of parameters of the magnetic field along the equatorial
plane and the influence of the electric field. InZelenyi et al.
(1990) new results were obtained by introducing an addition-
al, longitudinal, adiabatic invariant, that is analogous toJ‖

(the action associated with the motion along a magnetic field
line) in the guiding center theory. This approach proved to be
quite useful and allowed the authors to obtain important es-
timates of the particles’ acceleration. The method was based
on two consecutive averagings of the equations of motion,
and the validity of the approach, that may be non-trivial (be-
cause of separatrix crossings, even the adiabatic invariant of
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the fastest motion,Iz, is not well-conserved) were not dis-
cussed. The situation here is quite different from the case
when the guiding center theory works. In the latter case,
two consecutive averagings of the equations of motions are
clearly valid and the adiabatic invariants are preserved for
timescales growing exponentially with the magnetic field in-
tensity (seeBenettin and Sempio, 1994).

In the present paper we consider the motion of charged
particles in three distinct regions of the Earth magnetotail:
in the region with magnetic field reversal (MFR), taking in-
to consideration the longitudinal variations of the magnetic
field, and in the vicinities of neutral lines ofX- andO-type
(XO). In all three regions the magnetic field was considered
two-dimensional (no cross-tail component) and the presence
of the constant electric field was taken into account. The are
several objectives of the present publication. First, our goal
is to define what results obtained for uniform normal compo-
nent of the magnetic field,Bn, are applicable forx-dependent
Bn and what phenomena are qualitatively different. Second,
we would like to obtain the conditions under which the mix-
ing in the phase space is not too strong. We propose a new
parameter that describes the extent of mixing in the system
(see Sect. 5). This parameter depends on the magnitude of
the electric field and the smoothness and the curvature of the
magnetic field. Depending on the value of this parameter, the
jumps of the adiabatic invariants destroy original structures
in the distribution function or particles accelerate and leave
the tail quickly enough to keep the distribution function rel-
atively intact. And finally, we use the technique developed
in Büchner and Zelenyi(1986, 1989); Zelenyi et al.(1990)
to study the motion of charged particles near neutral lines of
X- andO-types in order to understand the impact of process-
es that occur in the vicinities of neutral lines on the overall
picture of particles acceleration.

There are two basic phenomena that may affect the pic-
ture constructed in the present paper: the time-dependent
perturbations (like electromagnetic waves) and the presence
of the additional cross-tail component of the magnetic field.
The impact of the electromagnetic waves on the dynamics
of particles in the magnetotail was studied started inCat-
tell et al. (1995); Ma and Summers(1998). A range of pa-
rameters for which the structure obtained for stationary field
configurations survive in the presence of the electromagnetic
waves was obtained analytically inVainchtein et al.(2004).
The role of the cross-tail component of the magnetic field
in the MFR region was first discussed inKarimabadi et al.
(1990) and later studied, both analytically and numerically,
in many papers, includingBüchner and Zelenyi(1991); Zhu
and Parks(1993); Chapman and Rowlands(1998); Ynner-
man et al.(2000); Tsalas et al.(2001). It was shown that
for a certain range of the ratios of the typical values of the
components of the magnetic field the structures obtained for
two-dimensional model stay qualitatively the same even in
the presence of the third component.

The structure of the paper is as follows. In Sect. 2 we
describe the basic models for all the configurations of elec-
tromagnetic fields that we use the rest of the paper. In Sect. 3

we discuss the properties of the fastest (perpendicular to the
equatorial plane) motion. We show that dynamics is exactly
the same for MFR and XO problems. In Sect. 4 we illus-
trate the averaging method and provide the description of the
phase portraits of the averaged system. In Sect. 5 we describe
the long-time properties of the particles’ dynamics (on times
of order of the lifetime of particles in the magnetotail) and in-
troduce a parameter that can be used as a measure of mixing.
In Sects. 6 and 7 we derive the acceleration rates in the adia-
batic case in the MFR andXO problems. Section 8 contains
conclusions.

2 Main equations

We start with a derivation of the Hamiltonian of a charged
particle in different regions of the Earth magnetotail. We
separate three distinct regions: the region with magnetic field
reversal (referred as MFR below), and the vicinities of neu-
tral lines ofX- andO-types. The descriptions of the motion
of charged particles near the neutral lines of two types are
mathematically very similar. We denote by XO the equa-
tions applicable to the dynamics near either neutral line and
provide the separate descriptions when necessary.

We use the following models of the magnetic field:

B = −B
z

Lz

ex + Bn(x)ez (MFR),

(1)

B = sB
z

Lz

ex + B
x

Lx

ez (XO).

In Eq. (1), ei are the unit vectors of a Cartesian coordinate
system in which the x-axis is directed towards the earth, the
y-axis is in the equatorial plane and is directed from dusk to
dawn and the z-axis is perpendicular to the equatorial plane
and is directed from south to north;Lx andLz are the charac-
teristic length scales inx- andz-directions, respectively;s is
a parameter that is equal to+1 for the problem for anX-line
and is equal to−1 for the problem for anO-line.

The electric field is induced by the solar wind and has the
form

E = Eey .

In the magnetotailE can reach the values of order of
0.1 mV/m. These values ofE correspond to a total potential
drop of order of 25 kV. The latter quantity gives the upper
boundary for the energy that a particle can gain in the mag-
netosphere due to the acceleration in a dawn-dusk electric
field.

For the MFR problem the specified configuration of the
electromagnetic field is schematically shown in Fig. 1a and
can be described by a vector potential

A =

(
0;

∫ x

x0

Bn(ζ )dζ − B
z2

2Lz

− cEt; 0

)
,

wherex0 is an arbitrary constant (it corresponds to an ambi-
guity in choosing a vector potential),t is the time andc is the
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Fig. 1. Characteristic configuration of electromagnetic field:(a) In the MFR region,(b) in the vicinity of a neutral line ofX type, and(c) in
the vicinity of a neutral line ofO type.

speed of light. In the specified gauge, the Hamiltonian of a
charged particle is

H =
1

2m

P 2
x +

(
Py −

e

c

(
Bn

∫ x

x0

β̃(ζ )dζ − B
z2

2Lz

− cEt

))2

+ P 2
z

 ,

(2)

where Bn is some typical value of Bn(x) and
β̃(x)=Bn(x)/Bn.

Note, that the time dependence in (2) is just a standard pay
off for using a vector potential and the Hamiltonian form of
equations of motion (see e.g.Landau and Lifshitz, 1959) and
is not related to time-dependent field reversal configurations
similar to those considered inChapman(1994); Chapman
and Watkins(1996).

The configurations of electromagnetic fields in the vicinity
of X- andO-lines are shown in Figs. 1b and c, respectively.
The vector potential can be written as

A =

(
0; sB

x2

2Lx

− B
z2

2Lz

− cEt; 0

)
,

and the Hamiltonian of a charged particle is

H =
1

2m

P 2
x +

(
Py −

e

c

(
sB

x2

2Lx

− B
z2

2Lz

− cEt

))2

+ P 2
z

 . (3)

In Eqs. (2) and (3), P=
(
Px, Py, Pz

)
, m ande are the gen-

eralized momentum, the mass and the charge of a particle
respectively. AsH does not depend ony explicitly, Py is an
integral of motion:Py=Py,0=const.

Introduce dimensionless variables

x1 = x/
√

ρLLz, P1 = P/mv, t1 = tv/
√

ρLLz, h = H/mv2, (4)

wherev is a typical velocity of a particle andρL=cmv/eB

is the Larmor radius. Introduce a scaled time:

τ = εt1 + Py,0,

whereε is the normalized electric field:

ε =
cE

vBn

(MFR), ε =
cE

vB

Lz
√

LzρL

(XO).

Estimates of the magnitude ofε (based on representative val-
ues ofE=0.1 mV/m, Bn=1 nT, andv=700 km/sec, see e.g.
(Kivelson and Russell, 1995)) yield 1/10<ε<1/3. Note, that
although the values ofε are not too small, it is the product of
the normalized magnitude of the electric field,ε, and the pa-
rameter of the nonuniformity of thex− component of the
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magnetic field (ν for MFR problem,λ for the XO problem,
see below) that defines the ratio of the characteristic time
scales. And those products are sufficiently small. There-
fore, the new timeτ can be considered to be slow. In the new
variables Hamiltonians (2) and (3) have the form

h =
1

2

P 2
x1

+

(
κ

∫ x1

x1,0

β̃(ζ )dζ −
1

2
z2

1 − κτ

)2

+ P 2
z1

 (MFR), (5)

h =
1

2

[
P 2

x1
+

(
s

1

2
λ2x2

1 −
1

2
z2

1 − τ

)2

+ P 2
z1

]
(XO). (6)

In (5) and (6),

κ =
Bn

B

√
Lz/ρL (MFR), (7)

and

λ2
=

Lz

Lx

(XO).

Parametersκ andλ, that is equivalent tobn from Burkhart
et al.(1991), play a crucial role in the description of the dy-
namics of charged particles.
Now let’s consider two problems separately.

2.1 The Hamiltonian in MFR.

Let us start with the MFR problem. For constantBn,
the Hamiltonian is time-independent in the moving coordi-
nate framêx=x−tcE/Bn (de Hoffman – Teller substitution,
de Hoffman and Teller, 1950). One of the main objectives
of the present paper is to define what results obtained for
uniform Bn (seeBüchner and Zelenyi, 1989; Zelenyi et al.,
1990) are applicable forx-dependentBn and what phenom-
ena are qualitatively different.

If Bn depends onx smoothly then the Hamiltonian de-
pends smoothly on time. IfBn does not change the sign, we
can introduce

x2 =

∫ x1

x1,0

β̃(ζ )dζ

as a new variable. Define a dimensionless parameterν

which characterizes the smoothness ofBn(x) such that
β(νx2)=β̃(x) and(1/β)(∂β(νx2)/∂(νx2))∼1. Hamiltonian
(5) gets the form

h =
1

2

P 2
x β2(νx) + P 2

z +

(
x′

−
z2

2

)2
 , (8)

where

x′
= κ(x − τ). (9)

In Eq. (8) and below, we do not write subscripts ofx, Px and
z, Pz.

For the parameterκ introduced in (7) we haveκ2
≡ρc/ρL,

where isρc is a characteristic minimal curvature radius of a
magnetic field line. Recall, that to defineκ we used some the
quantityBn, which is typical value of theBn(x) for a region
where the motion is localized. Therefore,κ is constant. It
was shown byWagner et al.(1979), that if κ�1, the parti-
cles are magnetized and their motion can be described by the
guiding center theory (GCT). In the magnetotail, electrons
are always magnetized, except for the very close vicinity of
theX-line. The value ofκ for ions strongly depends on what
part of the tail we study and can be anywhere fromκ�1 in
the distant tail toκ�1 near the earth with all the stops in
between. Like electrons, ions are magnetized ifκ�1. Up
to the best of our knowledge, there is no complete analytical
picture of the dynamics ifκ∼1 (see e.g. (Delcourt and Mar-
tin, 1999) and references therein for progress in research in
that region). We are interested in the caseκ�1 with other
parameters satisfying the following conditions:

ν ≤ κ � 1, ε � 1.

The physical meaning ofν≤κ is thatBn(x) does not change
too much over the amplitude of thex-motion. In particular, it
excludes from the consideration all the trajectories that come
too close to the earth. These inequalities are valid approx-
imately further then 10RE from the earth, whereRE is the
radius of the earth. In this approximation there is a hierarchy
of motions. The fastest motion is on the(z, Pz) plane (i.e. the
motion perpendicular to the equatorial plane), the motion on
the(x, Px) plane (the motion towards – away from the earth)
is slower and on the(t, h) (acceleration) is the slowest.

Let us now comment on the approximations used in the
present paper. First, we neglected the cross-tail compo-
nent of the magnetic field,By , which was first discussed in
Karimabadi et al.(1990) and later studied, both analytical-
ly and numerically, in many papers, includingBüchner and
Zelenyi (1991); Zhu and Parks(1993); Chapman and Row-
lands(1998); Ynnerman et al.(2000); Tsalas et al.(2001). It
was shown that for a certain range of the ratios of the typi-
cal values of the components of the magnetic field the struc-
tures obtained for two-dimensional model stay qualitatively
the same even in the presence of the third component. One
way to takeBy into account is to modify the definition ofκ
to

κ =
Bn

B

√
Lz/ρL

(
1 +

(
By

Bn

)2
)3/4

.

For realistic values ofBy (of order of Bn) the value ofκ
would increase approximately twice, remaining smaller than
unity. However, further increase ofBy does result in chaoti-
zation of ion dynamics – the way it should be forκ of order 1.
For even larger values ofBy , the ions are magnetized and we
could use guiding center theory instead of the quasiadiabatic
theory.

Another nuance is that definition (7), derived inBüchner
and Zelenyi(1989) for thick sheets (Lz>ρL) should be used
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Fig. 2. Characteristic phase portrait of thez-motion for (a)x′>0 and (b)x′<0.

with care for thin sheets (Lz>ρL). As was shown in later
papers (Savenkov et al., 1991, 1997) for thin sheets the def-
inition of κ becomesκ=Bn/B. Hence, as it was pointed by
Chen(1992) the dynamics of ions depends on two param-
etersBn/B and Lz/ρL. The latter parameter contains the
energy of particles, H, and whenH→∞, Lz/ρL→0, but the
value ofκ stays at a fixed valueκ=Bn/B. In this case one
could use a bilinear model of tail field, where particle mo-
tion is easily integrable. However, the methods used in the
present study are applicable for either definition ofκ, in other
words regardless of the relation betweenLz andρL.

2.2 The XO Hamiltonian

The motion of charged particles in the vicinity of the neutral
lines ofX- andO-types is described by Hamiltonian (6). The
typical values ofx are of orderλ−1 and the typical values of
z are of order 1. FollowingMartin (1986), we assumeλ to be
of order of 0.1−0.2, which does not contradict to available
experimental data. Therefore, we have the same hierarchy of
motions as in the MFR case. For XO we denote

x′
= s

1

2
λ2x2

− τ,

and Hamiltonian (6) takes the form

h =
1

2

P 2
x + P 2

z +

(
x′

−
z2

2

)2
 . (10)

For particles residing nearX-line, a similar Hamiltonian was
considered inMartin (1986); Moses et al.(1993) and (with-
out the electric field) inBurkhart et al.(1991).

3 The motion on the(z, Pz) plane

The ratio of typical frequencies forz- andx-motion is of or-
der 1/κ�1 (MFR) (in the part of the tail we are interested
in) or of order 1/λ�1 (XO). Therefore, when studying the
z-motion, we fix the values ofx, Px , τ andh. Therefore, the

Hamiltonian of thez-motion,

hz =
1

2

P 2
z +

(
x′

−
z2

2

)2
 , (11)

is the same for MFR and XO and coincides with the Hamil-
tonian considered byZelenyi et al.(1990); Burkhart et al.
(1991).

Characteristic phase portraits of thez-motion are shown
in Fig. 2a forx′>0 and in Fig. 2b forx′<0. The separatrix
Sz in Fig. 2a is specified byhz=hz,sep=(x′)2/2. The action
variable,

Iz =
1

2π

∮
Pzdz,

is equal to the normalized by 2π area inside a phase curve
on the(z, Pz) plane. The value ofIz is given bySonnerup
(1971); Büchner and Zelenyi(1989); Burkhart et al.(1991):

Iz =
8

3π
I ′
z =

8

3π
(2hz)

3/4 f (k) , (12)

f (k) =


fa (k) =

(
1 − k2

)
K (k) +

(
2k2

− 1
)
E (k) , k < 1,

fb (k) =
1
2

(
2
(
1 − k2

)
kK

(
k−1

)
+
(
2k2

− 1
)
kE

(
k−1

))
, k > 1.

In (12), the subscripta corresponds to the motion in the do-
main withhz>hz,sep, and the subscriptb corresponds to the
motion in one of two domains withhz<hz,sep (in what fol-
lows, we also use the notationaandb to denote the respective
region);

k2
=

1

2

(
1 + x′ (2hz)

−1/2
)

;

E(k) andK(k) are complete elliptic integrals. It is conve-
nient to useI ′

z, which is just a constant multiple ofIz, in
order to avoid repeating appearances of the factor 8/3π .
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4 The motion on the(x, Px) plane.

The action variableIz is the adiabatic invariant of thex-
motion. Substitutinghz=hz

(
Iz, x

′
)

into (8) or (10), in other
words, averaging the equations of motion overz-oscillations,
we obtain the Hamiltonian of thex-motion possessing 112 de-
grees of freedom:

h =
1

2
P 2

x β2 (νx) + hz

(
Iz, x

′
)

(MFR),

(13)

h =
1

2
P 2

x + hz

(
Iz, x

′
)

(XO).

The slow time,τ , appears in (13) via the dependence ofx′

on τ . Note, that in (13) the functionhz is the same for the
MFR and XO problems. But asx′ depends onx andτ differ-
ently for two problems, properties of thex-motion are also
different.

We start our description of thex-motion with the construc-
tion of phase portraits.

4.1 Phase portraits for MFR.

There are two ways to plot a phase portrait on the(x′, Pxβ)

plane. One can either seth=h0 and plot phase curves as lines
of constantIz (Fig. 3a), or setIz=Iz,0 and plot phase curves
as lines of constanth (Fig. 3b). The advantages of both of
these methods will become quite clear later (see Sect. 5 be-
low). Every point on the(x′, Pxβ) plane corresponds to a
unique closed phase curve on the(z, Pz) phase plane.

Figure 3a is very similar to what is shown inBüchner and
Zelenyi (1989). The difference is that in Fig. 3a the vertical
axis isPxβ instead ofPx . The very similarity proves that
by appropriate transformation of variables the problem with
varyingBn(x) can be reduced on some time scale to that of
Büchner and Zelenyi(1989). This fact may not be immedi-
ately obvious from the original Hamiltonian structure (5).

The special curveS (an uncertainty curve,UC, seeWis-
dom, 1985) corresponds to the separatrix of thez-motion.

When a phase point moving along a phase curve on the
(x′, Pxβ) plane arrives atS, the corresponding phase curve
of thez-motion resides onSz. In Fig. 3a theUC has the form
of a semi-circle:(

x′
)2

+ (Pxβ)2
= 2h, x′ > 0,

and it is a straight line in Fig. 3b:

x′
=
(
I ′
z

)2/3
.

The fixed pointC is the point of maximum off (k). At the
maximumk=kc ≈ 0.91 andf (kc) =fc ≈ 1.16. Hence

x′
c = (2h)−1/2

(
2k2

c − 1
)

≈ 0.47h−1/2 in Fig. 3a, (14)

x′
c =

(
I ′
z/fc

)2/3
(
2k2

c − 1
)

≈ 0.59
(
I ′
z

)2/3 in Fig. 3b. (15)

In Fig. 3a the outer orbits correspond to the smaller values of
I ′
z, while the inner orbits correspond to the larger values of

I ′
z, with I ′

z reaching its maximum value ofI ′
z,max=fc (2h)3/4

at C. Similarly, in Fig. 3b the outer orbits correspond to the
larger values ofh, while the inner orbits correspond to the
smaller values ofh. On both phase portraits there is a unique
curve0 that is tangent toS. It divides the phase plane into
two regions: the regionA outside0 and the regionB within
0. All the trajectories residing in the regionB do not cross
S, and all the trajectories residing in the regionA crossS.

4.2 Phase portraits in the vicinity of anX-line

As Hamiltonian (6) depends on the parameters, the phase
portraits of thex-motion in the vicinities of neutral lines of
X- andO-types are significantly different. The behaviour
of particles in the vicinity of anX-line was studied in sev-
eral papers (see e.g.Martin, 1986; Burkhart et al., 1991). In
Burkhart et al.(1991) the phase portraits were numerically
constructed as surface of sections of trajectories of the orig-
inal system. Contrarly to that, the phase portraits presented
below are constructed purely analytically using the method
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Fig. 4. Phase portraits on the(λx′, Px) plane for theX-line problem,Iz=Iz,0, phase curves are lines of constanth. (a) τ<−
(
I ′
z

)2/3, (b)

−
(
I ′
z

)2/3
<τ<τc, (c) τc<τ<0, (d) τ>0.

of averaging and the perturbation theory. As a result, we
were able to describe the structure of phase portraits of x-
motion in more details. In particular, we found that there
were not three, but four qualitatively different types of the
phase portraits depending on the values of the slow variables
andI ′

z (see below).
We construct phase portraits for theXO problem in the

same way the phase portrait in Fig. 3b was constructed: on
the whole phase planeIz=Iz,0 and the phase curves are lines
of constanth.

Depending on the value ofτ , there are four qualitative-
ly different types of phase portraits for the particles residing
near anX-line.

1). −∞<τ<−
(
I ′
z

)2/3

A typical phase portrait is shown in Fig. 4a. For these val-
ues ofτ , there is noUC. Particles do not cross the equatorial
(z=0) plane. Hence, they reside within the regionB on the
(z, Pz) phase plane . The only stationary point is at the ori-
gin.

2). −
(
I ′
z

)2/3
<τ<τc

A typical phase portrait is shown in Fig. 4b. The critical
valueτc is

τc = −x′
c, (16)

wherex′
c is given by (15). TheUC consists of two straight

lines, S±, that are parallel to thePx-axis and are separated
from it by a distance

(λx)s =

√
2
(
−τ −

(
I ′
z

)2/3
)
.

The only stationary point is still at the origin. The phase
curve0, that is tangent toUC, divides the phase plane into
two regions:A andB.

3). τc<τ<0.

A typical phase portrait is shown in Fig. 4c. Atτ=τc the
elliptic stationary pointO at the origin undergoes a bifurca-
tion: the pointO becomes hyperbolic and there are two new
elliptic stationary points,C±, located at

(λx)c = ±

√
2(τ − τc).

There is a new special curve on the phase portrait – the
separatrix of thex-motion,σ . The curveσ separates the tra-
jectories that are localized on one side of theX-line (those
insideσ ) from those that move from side to side of theX-
line within one period of thex-motion.

4). τ>0.
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A typical phase portrait is shown in Fig. 4d. Atτ=0, σ is
tangent toS± and for larger values ofτ, crosses it. The curve
0 now consists of two separate curves0± and, therefore, the
regionB consists of two separate domains,B+ andB−, that
are bounded by0+ and0−, respectively.

4.3 Phase portraits in the vicinity of anO-line.

Depending on the value ofτ there are three qualitatively dif-
ferent types of phase portraits.

1). −∞<τ<−
(
I ′
z

)2/3.

A typical phase portrait is shown in Fig. 5a. TheUC has
the form of two straight linesS±, that are parallel to thePx-
axis and are separated from it by a distance

(λx)s =

√
2
(
−τ −

(
I ′
z

)2/3
)
.

There are three fixed points:O (hyperbolic) at the origin and
C± (elliptic) at

(λx)c = ±

√
2(−τ + τc).

2). −
(
I ′
z

)2/3
<τ<τc.

A typical phase portrait is shown in Fig. 5b. For these val-
ues ofτ , there is noUC, hence, the motion of particles on
the entire phase plane is regular outside of a small domain in
the vicinity ofσ .

3). τc<τ .

A typical phase portrait is shown in Fig. 5c. Atτ=τc

the hyperbolic fixed pointO and the elliptic fixed pointsC±

merge giving rise to a single elliptic fixed point at the origin.

4.4 Motion in the regionB

In both (MFR and XO) problems the behaviour of particles
residing in the regionsA andB is drastically different.

In the regionB, both in MFR and XO problems, the phase
space is filled by the invariant tori up to a residue of expo-
nentially small measure (of order of∼ exp(−C/

√
κ) where

C is some constant) and the value of adiabatic invariant,Iz,
is conserved eternally: on infinite time interval it has only
oscillations of orderκ (the Arnold theorem about perpetual
adiabatic invariance, see e.g.Arnold et al., 1988). We can
introduce the second action variable

Ix =
1

2π

∮
Pxdx, (17)

where the integral is taken over a closed phase trajectory on
the(x, Px) plane.

4.5 Motion in the regionA

In the regionA, the motion is more complicated. The value of
Iz is conserved only far fromS and undergoes a jump every
time a phase point crossesS. The asymptotic formulas for
the jump of adiabatic invariant on a separatrix were obtained
by Timofeev(1978) for particular case of a pendulum in a
slowly varying gravity field, byNeishtadt(1986) andCary
et al. (1986) for systems with one degree of freedom plus
slowly varying parameter and byNeishtadt(1987) for sys-
tems with two degrees of freedom, one corresponding to the
fast motion and the other corresponding to the slow motion.
This theory was first applied to magnetospheric problems by
Büchner and Zelenyi(1989). We have

1Iz = Iz,a − 2Iz,b ≈ ∓
4

π
κβ2Px ln (2 sin2) (MFR),

(18)

≈ ∓
1

π
λ (λx) Px ln (2 sin2) (XO).

In (18), Iz,a andIz,b are the values ofIz in the domainsa
andb, respectively, the minus and plus signs correspond to
passages fromb to a and froma to b, respectively (see the
discussion below Eq. (12) in Sect. 3). The phase2 char-
acterizes a separatrix crossing and it depends not only onx

andPx but onz andPz as well. The value of2 is very sensi-
tive to small perturbations of the initial conditions and can be
treated as a random variable uniformly distributed on(0, π).
It is shown byNeishtadt(1987), that in the limitκ→0, for
multiple crossings1Iz can be treated as a random value with
a zero mean and dispersion of order∼κ2 (MFR) or (due to
normalizing conditionsλx∼1) of order∼λ2 (XO). Because
of these jumps,Iz was referred to as a quasi-adiabatic invari-
ant byBüchner and Zelenyi(1989).

Because of the jumps inIz no unique value ofIz can be
assigned to a whole orbit of thex-motion. (Moreover, in the
exact system projections of phase curves on the(x, Px) phase
plane are not even closed curves – while in the averaged sys-
tem the trajectories are closed.) Nevertheless, while a parti-
cle moves far from the uncertainty curve the value ofIz re-
mains nearly constant (with accuracy of orderκ, see the dis-
cussion in the previous subsection) and can be used to specify
segments of trajectories between consecutive crossings of the
uncertainty curve. Recall, that the characteristic values of the
jumps’ magnitude are small (of order∼κ). Therefore, at ev-
ery single crossing the value ofIz does not change much. It is
the accumulation of the jumps (see Sect. 5 below) that leads
to chaotic dynamics and mixing in the phase space. Despite
the jumps, the notion ofIz was used to characterize orbits
by many different authors (see e.g.Karimabadi et al., 1990;
Burkhart et al., 1991; Moses et al., 1993). In particular, the
value ofIz characterizes the motion in a sense that it foretells
if a given trajectory (for frozen values of the slow variables)
intersects the separatrix or not. There exists a critical value
of Iz (seeBüchner and Zelenyi, 1989, and Subsects. 4.1–
4.3) such that if at any point along a trajectoryIz is larger
(smaller) then that critical value, the trajectory does (does
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z
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−
(
I ′
z

)2/3
<τ<τc, (c) τ>τc.

not) intersect the separatrix. Jumps ofIz can not moveIz

across the critical value. Besides that, the current value ofIz

such important properties of thex-motion as the period and
the distance of the closest approach to the earth (the location
of the rightmost point in Fig. 3).

Despite the jumps ofIz in the regionA, we can formally
introduce the actionIx as the normalized by 2π area within a
curveh=const,Iz=const on the(x, Px) plane.Ix undergoes
jumps, that are synchronized with the jumps ofIz:

1Ix ∼
∂Ix

∂Iz

1Iz.

As the jumps ofIz are small,1Iz∼κ, the corresponding
jumps ofIx are also small. Hence, although even the origi-
nal adiabatic invariant,Iz, is not exactly conserved, we can
introduce and use the second adiabatic invariant in the case
when the aggregate change inIz is small (see Sect. 5 for more
details). Therefore,Ix can also be called a quasi-adiabatic
invariant and plays the role of the longitudinal invariant in
GCT.

For the XO problem we can obtain the explicit formula for
Ix , that is valid in the regionA as well as in the regionB.
The similar formula for the MFR problem forBn=const was
derived byZelenyi et al.(1990). It follows from (12) and
(17), that

Ix = α
2
√

2

π
I ′
z

k2∫
k1

Q (k)

f 2 (k)

[
2h
(
I ′
z

)−4/3
f 4/3 (k) − 1(

2k2 − 1
)
+ τ

(
I ′
z

)−2/3
f 2/3 (k)

]1/2

dk,

(19)

where

Q(k) =

{
kK (k) , k < 1,

K
(
k−1

)
, k > 1;

andf (k) was defined in (12). The values ofk1, k2 andα

depend on whether a particle moves in the vicinity ofX- or
O-line and on the position of a phase curve on the phase
plane.

For particles in the vicinity of anX-line k2 is given by the
conditionsk2>kc and

2hf 4/3 (k2) =
(
I ′
z

)4/3
. (20)

The values ofk1 and α depend on whether a phase curve
intersects the linex=0 or not. If the whole curve is on one
side of linex=0 thenk1 is given by (20) and the condition
k1<kc; in this caseα=1. If a phase curve intersects line the
x=0 thenα=2 andk1 is given by

−τ =
(
I ′
z/f (k1)

)2/3
(
2k2

1 − 1
)

.
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For a particle in the vicinity of anO-line k1 is given by the
conditionsk1<kc and

2hf 4/3 (k1) =
(
I ′
z

)4/3
. (21)

If the whole curve is on one side of the linex=0 thenk2 is
given by (21) and the conditionk2>kc; in this caseα=1. If a
phase curve intersects linex=0 thenα=2 andk2 is given by

−τ =
(
I ′
z/f (k2)

)2/3
(
2k2

2 − 1
)

.

5 Long-time dynamics: regular transport and mixing

The earth magnetotail is an open system. Charged particles
from the solar wind enter in the far region and then accelerate
and drift towards the earth. In the present section we discuss
the properties of particles’ dynamics on the time scales of the
life time of particles in the magnetotail, which for a typical
particle is much longer then the period of thex-motion.

After averaging over thex-motion, we can study the mo-
tion on the(τ, h) plane (i.e. the acceleration of the particles).
For givenIz and Ix , every point on the(τ, h) plane corre-
sponds to the entire phase curve on the(x, Px) plane.

In the absence of the electric field the particles would stay
in the region where they originally resided (A or B) forever.
As it was discussed before, the jumps of adiabatic invariants
cannot move particles from the regionA to the regionB (re-
call, the particle in the regionBdo not cross the separatrix). It
is the presence of the electric field combined with the longi-
tudinal variations of the magnetic field that causes the energy
drift and the particles move from the regionB to the region
A, or from the regionA to the regionB. The direction of the
drift depends on the location of a particle in the magnetotail.

5.1 RegionB

While a particle resides in the regionB, the values of both
adiabatic invariants,Iz andIx , are conserved up to the oscil-
lations of orderκ (see Subsect. 4.4). The motion of a particle
on the(τ, h) plane is described by conservation laws

Iz = const, Ix = const. (22)

Let us consider the drift in energy for the MFR problem.
On the(x′, Pxβ) phase plane in Fig. 3b, the shape of the
phase curves does not change with time, each trajectory be-
ing specified by a value of energy. Consequently, as the ener-
gy drifts, particle drift from one phase curve to another. The
direction of this drift depends on the sign ofdh/dt averaged
over thex-motion:

dh

dt
=

∂h

∂t
= εν

〈
P 2

x β
∂β

∂ (νx)

〉
, (23)

where brackets denote the averaging over thex-motion. It
follows from (23), that the particle’s acceleration is affected
only by large-scale variations ofβ(νx) with a typical length
scale comparable with the amplitude ofx-oscillations.

The experimental observations show (seeTsyganenko
(1987)) that, on average,∂β/∂x>0 (i.e.Bn(x) increases to-
wards the earth). Hence, the energy increases with time and
particles move from the regionB to the regionA. The time
t0 that a particle spends in the regionB (in other words, the
time before a particle reaches0 in Fig. 3b) is given by

Ix (h0, t0) = Ix (h0, t0) ,

whereh0 is the initial energy of the particle and

h0 =
1

2

(
I ′
z

)4/3

is the energy corresponding to0.

5.2 RegionA

The motion of particles in the regionA is affected by two
phenomena: (1) the drift over energy under the influence of
the electric field and (2) the jumps of adiabatic invariants.
The behavior of particles depends on the relative importance
of these phenomena.

Wiggins(1988) proved the presence of Smale horseshoes
in domains with separatrix crossings, which, in turn, implies
the existence of chaotic trajectories. The accumulation of the
jumps of adiabatic invariants could produce chaotic dynam-
ics, a phenomena called adiabatic chaos inWiggins (1988).
For the problem under consideration the presence of chaotic
dynamics was demonstrated in (Büchner and Zelenyi, 1989;
Zelenyi et al., 1990). The properties of the long-term evo-
lution of adiabatic invariants depend on whether consecutive
crossings are statistically dependent or independent.

In general case, the statistical independence follows from
the divergence of phases along trajectories, which, in turn,
depends on the relation between the values of the phase2

(see Eq.18) at two successive separatrix crossings. Denote
the respective values of2 as21 and22. A small variation
δ21 of 21 produces the variation of the jump value ofIz by
a quantity of orderκ δ21. As a result, the phase22 changes
by the quantityδ22∼C(1/κ)κ δ21=Cδ21. The coefficient
C, that is proportional to∂Tx/∂Iz, defines the divergence of
trajectories. IfC is large trajectories diverge fast: a small
change in the resonance phase before one crossing generally
results in a big change in the value of the resonance phase of
the next crossing. In that case the jumps of adiabatic invari-
ant at two successive crossings can be considered as inde-
pendent. On the other hand, small values ofC lead to nearly
adiabatic motion.

With consecutive jumps being independent, evolution of
the adiabatic invariant due to multiple separatrix crossings
can be treated as a random walk with a step of order ofκ

without a preferred direction. Such a diffusion of adiabatic
invariants is observed in (nearly all) numeric simulations of
various systems. Diffusion time can be estimated as a char-
acteristic slow period divided by a characteristic mean square
value of the jump. Thus estimated, diffusion time was shown
to be in a good agreement with numerical simulations (see
Bruhwiler and Cary, 1989).
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The assumption of statistical independence is crucial for
chaotization: when phases on the successive crossings are re-
lated a regular motion can emerge.Cary and Skodje(1989)
showed that for some initial conditions consecutive crossings
are statistically dependent. It was shown byElskens and Es-
cande(1991) andNeishtadt et al.(1997) that the islands of
stability, albeit being of a small measure, do exist inside large
chaotic sea. A similar phenomenon of statistical dependence
of consecutive jumps in a model of the roll convection was
discussed inItin et al. (2002). A somewhat different phe-
nomenon appears ifTx is (approximately) independent ofIz.
In this case∂Tx/∂Iz approximately vanishes and consecutive
phases become correlated. In particular, consecutive jumps
may cancel each other producing a phenomenon called en-
ergy resonances or beamlets (see e.g.Chen, 1992; Ashour-
Abdalla et al., 1993), that is well known in magnetospher-
ic applications, but involves only a relatively small number
of particles in the process of the convection from the dis-
tant tail to the earth. For nearby trajectories the net effect of
jumps (averaged for all the crossings during one period of the
x-motion), although not exactly vanishing, is much smaller
than in a general case. Consequently, the beamlet particles
behave as if they are in an adiabatic regime. It is important to
note that the beamlets are occur only for not too small values
of κ. In the formal limit ofκ→0 the beamlets disappear. We
return to the topic of the beamlets in the end of the current
section where we discuss the rate of mixing.

In the pure parabolic field model the particles stay in the
magnetotail forever. In that case, the mixing is complete and
all the structures in the distribution functions of the chaotic
region that were present when particles entered the magneto-
tail are washed out. On the other hand, in real magnespheric
configurations the particles spend in the magnetotail only a
finite time, and the number of jumps may not be sufficient
for complete mixing.

Introduce the characteristic time of mixing,Tj , as a time
over which the value of the adiabatic invariant changes by a
quantity of order 1 (see below). As the jumps of the adiabatic
invariant are localized near the uncertainty curve,UC, Tj can
be written as

Tj ∼ Tper

1

D
,

whereTper is a typical time between consecutive crossings
of UC and is of order of the period of thex-motion. D is
the diffusion coefficient and is of order of the average square
of the magnitude of a jump of the adiabatic invariant at one
crossing:

D ∼

〈
(1Iz)

2
〉
. (24)

The extent of mixing in the system depends on the relation
betweenTj andTL, that is a characteristic lifetime of par-
ticles in the magnetotail. IfTj is larger thenTL, then mix-
ing is small everywhere in the phase space and distribution
functions are transported towards the earth relatively intact.
Contrarily, ifTj is less thenTL, then mixing is important and
distribution functions are homogenized.

Introduce a parameter

η =
TL

Tj

.

In MFR, the value ofTper is of order of∼1/κ. A character-
istic size of jumps of the adiabatic invariant on the separatrix
is of order∼κ. Therefore,Tj∼κ−3.

The lifetime of particles is defined by the acceleration due
to the electric field and depends on the magnitude of the con-
stant solar wind-induced electric field and non-uniformity of
magnetic field. A typical rate of change of energy is of order
of εν (see Eq.23). Hence, we haveTL∼(εν)−1 and we arrive
at

η =
κ3

νε
.

Similarly, in XO TL∼ε−1, Tj ∼ λ−3 and

η =
λ3

ε
.

If η�1, drift dominates, jumps are small perturbations and
the mixing is negligible. In the opposite case,η�1, the mix-
ing is strong: particles cross the separatrix sufficient number
of times for adiabatic invariant cover the whole admissible
domain. A similar observation was made (based on numeri-
cal simulations) byKarimabadi et al.(1990). Therefore,η is
a measure of mixing in the system.

Now one can see the advantages of the two types of phase
portraits on the(x′, Px) plane. Ifη�1, Iz remains approxi-
mately constant and, like in the regionB, particles drift from
one phase curve to another in Fig. 3a. On the other hand,
if η�1, particles jump from one phase curve to another in
Fig. 3b remaining on approximately the same energy level.

Note, that ifD is defined by (24), η is an averaged charac-
teristics, that is the same for all the phase space. In order to
describe the evolution of coherent structures, we can consid-
erη as a function of (say) the energyh. The most prominent
consequence of the dependence ofη on h is a possibility for
consecutive jumps to be correlated. To include the correla-
tion in the diffusion coefficient we can redefineD based on
the average square of the magnitude of a total jump of the
adiabatic invariant in one period of thex-motion:

D(h) ∼

〈
(12Iz)

2
〉
/2,

If the consecutive crossings are statistically independent,
12Iz, that is a sum of two changes ofIz during one peri-
od of thex-motion, is of order of the variation of1Iz at one
crossing. However, if for a certain value ofh=hb the jumps
are correlated, like in the case of beamlets, when they cancel
each other,12Iz (and, correspondingly,D(hb)) may go all
the way to zero. In this caseη goes to 0 and at the energy
levelh=hb the dynamics is adiabatic.
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6 Orbits with small Iz in MFR

If the cumulative effect of the jumps of the adiabatic invariant
is small (η�1), then the mixing is weak in the whole domain
and Eq. (22) specify the acceleration rate. In the general case,
the exact solutions cannot be obtained explicitly.

These solutions can be simplified in a particular case
Iz�1, that corresponds to very long orbits with far reflect-
ing points (a reflecting point being the rightmost point on a
phase curve in Fig. 3a, see also Sect. 4). However, one must
keep in mind that the separation of thex- andz-motions is
valid only in the region whereβ∼1 and, therefore, we can
not use the considerations below to describe the motion of
the particles that come too close to the earth.

For largex′ (see9) we can linearize Hamiltonian (8) near
z0= ±

√
2x′. Introducingz=z0+z, wherez�z0, we get

h =
1

2

(
P 2

x β2
+ P 2

z + 2x′z2
)

=
1

2
P 2

x β2
+ hz.

The result is a harmonic oscillator with a variable frequency
ω(x′)=

√
2x′ and, therefore,

hz =
1

2

(
P 2

z + z2ω2(x′)
)

= Izω(x′). (25)

It follows from (17) and (25), that

Ix ≈
1

π

∫ 0

x′

min

Px dx +

∫ x′
max

0

1

β (x′)

1

κ

√
2h − Iz

√
8x′ dx′,

(26)

where x′

min and x′
max are given by the

conditionPx(x=xmin,max)=0. One can see in Fig. 3a that
the first term in (26) is much smaller then the second one and
thus can be neglected. Introduce a new variable

ξ =
√

2x′Iz/h.

In terms ofξ , (26) can be written as

Ix ≈

√
2

π

h5/2

κI2
z

∫ 1

0

1

β
ξ
√

1 − ξ dξ. (27)

In (27) we substitutedξmax=1. Integrating (27) by parts and
taking into account that

dβ

dξ
=

1

κ

dβ

dx

h2

I2
z

ξ and
dβ

dx

1

β
∼ ν.

we get

Ix ≈
2

3

√
2

π

h5/2

κI2
z

[
2

5

1

β
−

ν

κ

h2

I2
z

∫ 1

0

(
(1 − ξ)3/2

−
3

5
(1 − ξ)5/2

)
1

β
dξ

]
.

(28)

The first term in the square brackets in (28) depends on the
average over anx-oscillation value ofβ. The second term

describes variations ofβ over anx-orbit. The relative impor-
tance of the second term in (28) is given by a parameter

γ =
5

2

ν

κ

h2

I2
z

.

If γ�1 the second term is small and

Ix ≈
4
√

2

15π

h5/2

κI2
z

1

β
.

Using (22) we obtain the acceleration rate,

h ∼ β2/5, (29)

that confirms the result obtained byZelenyi et al.(1990). Ex-
perimental results yield that the conditionγ�1 is satisfied
for the particles withIz�1 beyond 50RE from the Earth.
Note, that ifγ≥1, (29) is not valid.

The period ofx-oscillations is given by

Tx = 2
∫ xmax

xmin

dx

ẋ
= 2

∫ xmax

xmin

dx

Pxβ2
≈

√
2
h3/2

κI2
z

∫ 1

0

1

β

ξdξ
√

1 − ξ
.

Recall that the mixing parameter,η, is proportional to the pe-
riod of thex-motion,Tx . Taking into account that the char-
acteristic values ofh are of order 1, we get that for smallIz,
η has the form

η ∼ I2
z

κ3

νε
. (30)

It follows from (30), that for the particles with smallIz the
mixing is less prominent then for the particles withIz∼1 as
the particles withIz�1 cross the separatrix fewer times be-
fore being carried out of the magnetotail. The similar effect
(that for shorter trajectories the rate of diffusion is larger) was
observed byKarimabadi et al.(1990).

7 Acceleration of particles in XO

Again, consider the caseη�1 (small jumps ofIz). Conser-
vation laws (22) are valid on the whole phase plane. The
motion on the (time, energy) phase plane can be described
using a single phase portrait. Apply a change of variables

x = x
(
I ′
z

)1/3
, h = h

(
I ′
z

)4/3
, τ = τ

(
I ′
z

)2/3
.

px = px

(
I ′
z

)−1/3
, hz = hz

(
I ′
z

)4/3
,

Note, that the value ofk does not change under such a change
of variables. Introduce a new adiabatic invariant

J = Ix/I
′
z.

It follows from (19), that

J = α
2
√

2

π

k2∫
k1

Q (k)

f 2 (k)

[
s

2hf 4/3 (k) − 1

−
(
2k2 − 1

)
− τf 2/3 (k)

]1/2

dk.

(31)
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Fig. 6. Phase portraits on the(τ , h) plane for (a) theX-line problem, (b) theO-line problem. Phase curves are lines of constantJ .

On the
(
τ , h

)
plane phase curves are lines of constantJ ; the

shape of curves does not depend onIz.
It follows from (31), that the lowest possible value ofh is

h
(0)
min= (1/fc)

4/3, although phase curves do not fill the entire

domainh>h
(0)

min. The minimum possible energyhmin as a
function ofτ is given by

hmin =


hmin (τ ) , τ < τ c,

h
(0)

min, τ > τ c,

for particles moving in the vicinity of anX-line and

hmin =

 h
(0)

min, τ < τ c,

hmin (τ ) , τ > τ c,

for particles moving in the vicinity of anO-line, where
hmin (τ ) andτ c (see Eqs.15and16) are given by

(
2h
)4/3

f (khτ ) = 1,

2k2
hτ − 1 = −τ

(
2h
)−1/2

,

τ c = −
1

f
2/3
c

(
2k2

c − 1
)

≈ −0.59. (32)

In the vicinity of anX-line, Eqs. (32) define forτ>τ c on the(
τ , h

)
plane curveσh, that corresponds toσ on the

(
x′, Px

)
plane. In the vicinity of anO-line, Eqs. (32) defineσh for
τ<τ c. In both cases, aboveσh particles cross thex=0 plane
twice within each period of thex-motion. Belowσh parti-
cles move in eitherx>0 orx<0 domain. The horizontal line
Sh:2hs=1 corresponds to theUC.

It follows from J=const, that

∂J

∂τ
dτ +

∂J

∂h
dh = 0,

and for the curves that do not cross thex=0 plane we obtain

dh

dτ
= −

∂J/∂τ

∂J/∂h
= s

1

2

∫ k2

k1

(
2hf 4/3 (k) − 1

)
9(k)dk∫ k2

k1

f 2/3 (k)
(
−

(
2k2

− 1
)

− τf 2/3 (k)
)

9(k)dk

,

(33)

where

9(k) =
Q (k)

f 4/3 (k)

(
2hf 4/3 (k) − 1

)−1/2(
−s

((
2k2 − 1

)
+ τf 2/3 (k)

))3/2
> 0.

It follows from (33), that in the vicinity of anX-line the en-
ergy of particles which do not cross thex=0 plane increases
and the particles initially residing in the regionB drift to the
regionA. Therefore, the motion of particles in the vicinity of
an X-line becomes more and more chaotic with time. The
phase portrait on the

(
h, τ

)
plane (in other words, solutions

of J=const) is shown in Fig. 6a.
On the other hand, in the vicinity of anO-line the energy

of particles which do not crossx=0 decreases and the par-
ticles drift from the regionA to the regionB. Therefore the
motion of particles in the vicinity of anO-line becomes more
and more regular. The phase portrait is shown in Fig. 6b.

The energy of the particles that cross thex=0 plane may
increase as well as decrease. It can be shown numerically
that for anyJ there is a value ofτ J such thatdh/dτ<0 for
τ<τ J anddh/dτ>0 for τ>τ J .

8 Conclusions

We considered the motion of charged particles in three dif-
ferent regions of the earth magnetotail: in the region with
magnetic field reversal and in the vicinities of neutral line of
X- andO-types. The presence of small parameters (ratio of
characteristic length scales in and perpendicular to the equa-
torial plane and the smallness of the electric field) allows us
to introduce the hierarchy of motions.
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We introduced a parameter that plays the role of a measure
of mixing in the system. This parameter describes the relative
importance of the diffusion of adiabatic invariants on a time
scale, defined by the acceleration of particles induced by the
electric field. Depending on the value of this parameter, the
jumps of the adiabatic invariants destroy original structures
in the distribution function or particles accelerate and leave
the tail quickly enough to keep the distribution function rel-
atively intact. In the limit of small jumps of the adiabatic
invariant we obtained the equations that govern the acceler-
ation of particles. Using this parameter we showed that for
particles on long elongated trajectories (small values ofIz)
mixing is less prominent than for the rest of the particles.

Our approach illustrates the usefulness of such quantities
as quasi-adiabatic invariants (even not perfectly conserved)
for the description of particles’ motion in the limit when usu-
al guiding center theory breaks down. The developed ap-
proach may be useful not only for description of the dynam-
ics of the particles in the magnetotail, but also in other open
electromagnetic configurations.
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