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Abstract. An extension of the Monte Carlo Singular System
Analysis (MC SSA) is described, based on evaluating and
testing regularity of dynamics of the SSA modes against the
colored noise null hypothesis, in addition to the test based
on variance (eigenvalues). The application of the regularity
index, computed from a coarse-grained estimation of mutual
information, enhances the test sensitivity and reliability in
detection of relatively more regular dynamical modes than
those obtained by decomposition of colored noises, in par-
ticular, in detection of irregular oscillations embedded in red
noise. This enhanced MC SSA is successfully applied in de-
tection of period 7.8 years oscillatory modes in records of
monthly average near-surface air temperature from several
European locations, as well as in the monthly North Atlantic
Oscillation index.

1 Introduction

Searching for dynamical mechanisms underlying experimen-
tal data in order to understand, model, and predict complex,
possibly nonlinear processes, such as those studied in geo-
physics, in many cases starts with an attempt to identify
trends, oscillatory processes and/or other potentially deter-
ministic signals in a noisy environment. Singular system (or
singular spectrum) analysis (SSA) in its original form (also
known as principal component analysis, or Karhunen-Loève
decomposition) is a method for identification and distinction
from noise of important information in multivariate data. It is
based on an orthogonal decomposition of a covariance matrix
of multivariate data under study. The SSA provides an or-
thogonal basis onto which the data can be transformed, mak-
ing thus individual data components (“modes”) linearly in-
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dependent. Each of the orthogonal modes (projections of the
original data onto new orthogonal basis vectors) is character-
ized by its variance, which is given by the related eigenvalue
of the covariance matrix. Here we will deal with a univari-
ate version of SSA (which, however, can be generalised into
a multivariate version, see, e.g. Allen and Robertson, 1996)
in which the analyzed data is a univariate time series and
the decomposed matrix is a time-lag covariance matrix, i.e.
instead of several components of multivariate data, a time se-
ries and its time-lagged versions are considered. This type of
the SSA application, which has frequently been used espe-
cially in the field of meteorology and climatology (Vautard
and Ghil, 1989; Ghil and Vautard, 1991; Keppenne and Ghil,
1992; Yiou et al., 1994; Allen and Smith, 1994), can provide
a decomposition of the studied time series into orthogonal
components (modes) with different dynamical properties and
thus “interesting” phenomena such as slow modes (trends)
and regular or irregular oscillations (if present in the data)
can be identified and retrieved from the background of noise
and/or other “uninteresting” non-specified processes.

In the traditional SSA, the distinction of “interesting”
components (signal) from noise is based on finding a thresh-
old (jump-down) to a “noise floor” in a sequence of eigenval-
ues given in a descending order.

This approach might be problematic if the signal-to-noise
ratio is not sufficiently large, or the noise present in the
data is not white but “colored”. For such cases statistical
approaches utilizing the Monte Carlo simulation techniques
have been proposed (Ghil and Vautard, 1991; Vautard et al.,
1992) for reliable signal/noise separation. The particular case
of the Monte Carlo SSA (MCSSA) which considers the “red”
noise, usually present in geophysical data, has been intro-
duced by Allen and Smith (1996). In this paper we present
and develop an extension of the Monte Carlo Singular Sys-
tem Analysis based on evaluating and testing regularity of
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dynamics of the SSA modes.
A brief introduction into the Monte Carlo singular system

analysis is given in Sect. 2, its enhancement by testing the
dynamics of modes is explained in Sect. 3. The practical
implementation of the enhanced MCSSA, used here, as well
as examples of its applications using numerically generated
data are presented in Sect. 4. Section 5 summarizes the ap-
plication of the enhanced MCSSA to monthly average near-
surface temperature records from ten European locations. An
enhanced MCSSA detection of an oscillatory mode in the
NAO index series and its comparison with the related mode
detected in the temperature data is described in Sect. 6. Dis-
cussion and conclusion are given in Sect. 7.

2 Monte Carlo Singular System Analysis

Let a univariate time series{y(i)}, i=1, . . . , N0, be a real-
ization of a stochastic process{Y (i)} which is stationary and
ergodic. A map into a space ofn-dimensional vectorsx(i)

with componentsxk(i), wherek=1, . . . , n, is given as

xk(i)=y(i + k − 1). (1)

The sequence of the vectorsx(i), i=1, . . . , N=N0− (n−1),
is usually referred to as then×N trajectory matrixX={xk

i },
the numbern of the constructed components is called the
embedding dimension, or the length of the (embedding) win-
dow. Suppose that the studied time series{y(i)} results from
a linear combination ofm different dynamical modes,m<n.
Then, in an ideal case, the rank of the trajectory matrixX is
rank(X)=m, and,X can be transformed into a matrix with
only m nontrivial linearly independent components. Instead
of then×N matrixX it is more convenient to decompose the
symmetricn×n matrix C = XT X, since rank(X) = rank(C).
The elements of the covariance matrixC are

ckl=(1/N)

N∑
i=1

xk(i)xl(i), (2)

where 1/N is the proper normalization and the components
xk(i), i=1, . . . , N , are supposed to have zero mean. The
symmetric matrixC can be decomposed as

C=V6VT , (3)

where V={vij } is an n×n orthonormal matrix,
6= diag(σ1, σ2, . . . , σn), σi are non-negative eigenvalues of
C by convention given in descending orderσ1≥σ2≥ . . . ≥σn.
If rank(C)=m<n, then

σ1≥ . . . ≥σm>σm+1= . . .=σn=0. (4)

In the presence of noise, however, all eigenvalues are positive
and the relation (4) takes the following form (Broomhead and
King, 1986):

σ1≥ . . . ≥σm >> σm+1≥ . . .≥σn > 0. (5)

Then, the modesξ k
i

ξ k
i =

n∑
l=1

vlkx
l
i , (6)

for k=1, . . . , m are considered as the “signal” part, and the
modesξ k

i , k=m + 1, . . . , n, are considered as the noise part
of the original time series. The “signal” modes can be used
to reconstruct the denoised signalx̃k

l as

x̃k
i =

m∑
l=1

vklξ
l
i . (7)

Of course, the original time seriesxk
i can be reconstructed

back from the modes as

xk
i =

n∑
l=1

vklξ
l
i . (8)

In the latter relation – decomposition (8), the modesξ k
i can

also be interpreted as time-dependent coefficients and the or-
thogonal vectorsvk={vkl} as basis functions, usually called
the empirical orthogonal functions (EOF’s).

The clear eigenvalue-based signal/noise distinction (5) can
be obtained only in particularly idealized situation when the
signal/noise ratio is large enough and the background con-
sists of a white noise. A kind of a colored noise, the “red”
noise, which is particularly important for its presence in
many geophysical processes (Allen and Smith, 1996), can
be modeled by using an AR(1) model (autoregressive model
of the first order):

u(i)−û=α(u(i − 1)−û)+γ z(i), (9)

whereû is the process mean,α andγ are process parameters,
andz(i) is a Gaussian white noise with a zero mean and a unit
variance.

The red noises possess power spectra of the 1/f type, and
their SSA eigenspectra have the same character, i.e. an eigen-
spectrum of a red noise is equivalent to a coarsely discretized
power spectrum, where the number of frequency bins is given
by the embedding dimensionn. The eigenvalues related to
the slow modes are much larger than the eigenvalues of the
modes related to higher frequencies. Thus, in the classical
SSA approach applied to a red noise, the eigenvalues of the
slow modes might incorrectly be interpreted as a (nontrivial)
signal, or, on the other hand, a nontrivial signal embedded
in a red noise might be neglected, if its variance is smaller
than the slow-mode eigenvalues of the background red noise.
Therefore the mutual comparison of eigenvalues inside an
eigenspectrum cannot lead to a reliable detection of a non-
trivial signal, if a red noise is present in studied data. In
order to correctly detect a signal in a red noise, the following
approach has been proposed (Allen and Smith, 1996):
First, the eigenvalues are plotted not according to their val-
ues, but according to a frequency associated with a particular
mode (EOF), i.e. the eigenspectrum in this form becomes a
sort of a (coarsely) discretized power spectrum in general,
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not only in the cases of red noises (when the eigenspectra
have naturally this form, as mentioned above).

Second, an eigenspectrum obtained from a studied data is
compared, in a frequency-by-frequency way, with eigenspec-
tra obtained from a set of realizations of an appropriate noise
model (such as the AR(1) model, Eq. 9), i.e. an eigenvalue
related to a particular frequency bin obtained from the data
is compared with a range of eigenvalues related to the same
frequency bin, obtained from the set of so-called surrogate
data, i.e. the data artificially generated according to the cho-
sen noise model (null hypothesis) (Allen and Smith, 1996;
Smith, 1992; Theiler et al., 1992; Paluš, 1995).

The detection of a nontrivial signal in an experimental time
series becomes a statistical test in which the null hypothe-
sis that the experimental data were generated by a chosen
noise model is tested. When (an) eigenvalue(s) associated
with some frequency bin(s) differ(s) with a statistical sig-
nificance from the range(s) of related noise model eigenval-
ues, then one can infer that the studied data cannot be fully
explained by the considered null hypothesis (noise model)
and could contain an additional (nontrivial) signal. This is a
rough sketch of the approach, for which we will use the term
Monte Carlo SSA (MCSSA), as coined by Allen and Smith
(see (Allen and Smith, 1996) where also a detailed account
of the MCSSA approach with analyses of various levels of
null hypotheses is given) although the same term was earlier
used for other SSA methods, which considered white noise
background (Ghil and Vautard, 1991; Vautard et al., 1992).

3 Enhancement of MCSSA by testing dynamics of
modes

The above MCSSA is a sophisticated technique, however, it
still assumes a very simple model that the signal of interest
has been linearly added to a specified background noise and
therefore the variance in the frequency band, characteristic
for the searched signal, is significantly greater than the typ-
ical variance in this frequency band obtained from the con-
sidered noise model. If the studied signal has a more compli-
cated origin, e.g. when an oscillatory mode is embedded into
a background process without significantly increasing vari-
ance in a particular frequency band, the standard MCSSA
can fail. In order to be able to detect any interesting dynam-
ical mode independently of its (relative) variance, Paluš and
Novotńa (1998) have proposed to test also dynamical prop-
erties of the SSA modes against the modes obtained from
the surrogate data. How can we characterize dynamics in a
simple, computationally effective way?

Consider a complex, dynamic process evolving in time. A
series of measurements done on such a system in consecu-
tive instants of timet=1, 2, . . . is usually called a time series
{y(t)}. Consider further that the temporal evolution of the
studied system is not completely random, i.e. that the state
of the system in timet in some way depends on the state in
which the system was in timet−τ . The strength of such a de-
pendence per a unit time delayτ , or, inversely, a rate at which

the system “forgets” information about its previous states,
can be an important quantitative characterization of temporal
complexity in the system’s evolution. The time series{y(t)},
which is a recording of (a part of) the system temporal evo-
lution, can be considered as a realization of a stochastic pro-
cess, i.e. a sequence of stochastic variables. Uncertainty in
a stochastic variable is measured by its entropy. The rate in
which the stochastic process “produces” uncertainty is mea-
sured by its entropy rate.

The concept of entropy rates is common to the theory
of stochastic processes as well as to the information the-
ory where the entropy rates are used to characterize informa-
tion production by information sources (Cover and Thomas,
1991).

Alternatively, the time series{y(t)} can be considered as
a projection of a trajectory of a dynamical system, evolving
in some measurable state space. A. N. Kolmogorov, who in-
troduced the theoretical concept of classification of dynami-
cal systems by information rates, was inspired by the infor-
mation theory and generalized the notion of the entropy of
an information source (Sinai, 1976). The Kolmogorov-Sinai
entropy (KSE) (Cornfeld et al., 1982; Petersen, 1983; Sinai,
1976) is a topological invariant, suitable for classification of
dynamical systems or their states, and is related to the sum
of the system’s positive Lyapunov exponents (LE) according
to the theorem of Pesin (1977).

Thus, the concept of entropy rates is common to theories
based on philosophically opposite assumptions (randomness
vs. determinism) and is ideally applicable for characteriza-
tion of complex geophysical processes, where possible deter-
ministic rules are always accompanied by random influences.

However, possibilities to compute the exact entropy rates
from experimental data are limited to a few exceptional
cases. Therefore Paluš (1996) has proposed “coarse-grained
entropy rates” (CER’s) instead. The CER’s are relative mea-
sures of regularity and predictability of analyzed time series
and are based on coarse-grained estimates of information-
theoretic functionals. In the simplest case, applied here,
we use so called mutual information. The mutual infor-
mationI (X; Y ) of two random variablesX andY is given
by I (X; Y )=H(X)+H(Y)−H(X, Y ), where the entropies
H(X), H(Y), H(X, Y ) are defined in the usual Shannonian
sense (Cover and Thomas, 1991). A detailed account on rela-
tions between the entropy rates and the information-theoretic
functionals is given in (Palǔs, 1996, 1997a). For a time se-
ries {x(t)}, considered as a realization of a stationary and
ergodic stochastic process{X(t)}, t=1, 2, 3, . . ., we com-
pute the mutual informationI (x; xτ ) as a function of time
lag τ . In the following we will markx(t) asx andx(t+τ)

asxτ . For defining the simplest form of CER let us find such
τmax that forτ ′

≥τmax: I (x; xτ ′)≈0 for the analysed datasets.
Then we define the norm of the mutual information

||I (x; xτ )||=
1τ

τmax−τmin+1τ

τmax∑
τ=τmin

I (x; xτ ) (10)
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with τmin=1τ=1 sample as a usual choice. The CERh1 is
then defined as

h1
=I (x, xτ0)−||I (x; xτ )||. (11)

It has been shown that the CERh1 provides the same classi-
fication of states of chaotic systems as the exact KSE (Paluš,
1996). Since usuallyτ0=0 and I (x; x)=H(X) which is
given by the marginal probability distributionp(x), the sole
quantitative descriptor of the underlying dynamics is the mu-
tual information norm (Eq. 10) which we will call the regu-
larity index. Since the mutual informationI (x; xτ ) measures
the average amount of information contained in the process
{X} about its futureτ time units ahead, the regularity index
||I (x; xτ )|| gives an average measure of predictability of the
studied signal and is inversely related to the signal’s entropy
rate, i.e. to the rate at which the system, or process, produc-
ing the studied signal, “forgets” information about its previ-
ous states.

4 Implementation of the enhanced MCSSA and numer-
ical examples

We realize the enhanced version of MCSSA as follows.

1. The studied time series undergoes SSA as described in
Sect. 2, i.e. using an embedding window of lengthn, the
n×n lag-correlation matrixC is decomposed using the
SVDCMP routine (Press et al., 1986). In the eigenspec-
trum, the position of each eigenvalue on the abscissa is
given by the dominant frequency associated with the re-
lated EOF, i.e. detected in the related mode. That is,
the studied time series is projected onto the particular
EOF, the power spectrum of the projection (mode) is
estimated, and the frequency bin with the highest power
is identified. This spectral coordinate is mapped onto
one of then frequency bins, which equidistantly divide
the abscissa of the eigenspectrum.

2. An AR(1) model is fitted on the series under study, the
residuals are computed.

3. The surrogate data are generated using the above AR(1)
model, “scrambled” (randomly permutated in temporal
order) residuals are used as innovations.

4. Each realization of the surrogates undergoes SSA as de-
scribed in item 1. Then, the eigenvalues for the whole
surrogate set, in each frequency bin, are sorted and the
values for the 2.5th and 97.5th percentiles are found.
In eigenspectra, the 95% range of the surrogates eigen-
value distribution is illustrated by a horizontal bar be-
tween the above percentile values.

5. For each frequency bin, the eigenvalue obtained from
the studied data is compared with the range of the surro-
gate eigenvalues. If an eigenvalue lies outside the range
given by the above percentiles, the null hypothesis of
the AR(1) process is rejected, i.e. there is a probability

p<0.05 that the data can be explained by the null noise
model.

6. For each SSA mode (a projection of the data onto a par-
ticular EOF) its regularity index is computed, as well as
for each SSA mode for all realizations of the surrogate
data. The regularity indices are processed and statisti-
cally tested in the same way as the eigenvalues. The reg-
ularity index is based on mutual information obtained
by a simple box-counting approach with marginal equi-
quantization (Palǔs, 1995, 1996, 1997a). In general, this
testing approach is not limited to the particular regu-
larity index used, but can be based on a suitable in-
formation/entropy measure obtained by a different al-
gorithm, employing novel methods such as that of re-
currence plots (Romano et al., 2004); or even different
complexity measures (Wackerbauer et. al., 1994).

Performing MCSSA using the embedding window of the
lengthn, there aren eigenvalues in the eigenspectrum, andn

statistical tests are done. Therefore the problem of the simul-
taneous statistical inference should be considered in appli-
cations (see (Paluš, 1995) and references therein). However,
since here we are interested in a detection of a signal in a spe-
cific frequency band (and not in rejecting the null hypothesis
by a digression from the surrogate range by an eigenvalue or
a regularity index in any frequency band), we will not discuss
this topic here.

Rejecting the null hypothesis of the AR(1) (or other ap-
propriate) noise model, one can infer that there is something
more in the data than a realization of the null hypothesis
(noise) model. The rejection based on the eigenvalues in-
dicates a different covariance structure than the noise model
used. The rejection based on the regularity index indicates
that the studied data contains a dynamically interesting sig-
nal with higher regularity and predictability than a mode ob-
tained by linear filtration of the considered noise model.

The presented approach is demonstrated here by using nu-
merically generated data.
1. A periodic signal with randomly variable amplitude
(Fig. 1a) was mixed with a realization of an AR(1) process
with a strong slow component (Fig. 1b). The used noise
model is defined asxi=0.933xi−1+ξi, whereξi are Gaus-
sian deviates with a zero mean and a unit variance. The sig-
nal to noise ratios obtained by mixing the signals were 1:2
(Fig. 1c), and 1:4 (Fig. 1d). (The given signal/noise ratios
are the ratios of the standard deviations.) The latter two se-
ries are analyzed by the presented method.

The eigenspectrum of the time series consisting of the sig-
nal (Fig. 1a) and the AR(1) noise (Fig. 1b) in the ratio 1:2
(Fig. 1c) is presented in Fig. 2a, where logarithms of the
eigenvalues are plotted as the bursts (“LOG POWER”). The
series is considered as unknown experimental data, so that an
AR(1) model is fitted on the data and the surrogates are gen-
erated as described above. The vertical bars in the eigenspec-
trum represent the surrogate eigenvalue ranges from 2.5th
to 97.5th percentiles, which were obtained from 1500 sur-
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quantitativedescriptorof theunderlyingdynamicsis themu-
tual informationnorm (10) which we will call the regular-
ity index. Sincethe mutual information } � � � � � � measures
the averageamountof informationcontainedin the process��~q	

aboutits future { time units ahead,the regularity in-
dex

�E� } � � � �T� ���E� givesanaveragemeasureof predictabilityof
thestudiedsignalandis inverselyrelatedto thesignal’s en-
tropy rate, i.e., to the rateat which the system,or process,
producingthestudiedsignal,“forgets”informationaboutits
previousstates.

4 Implementation of the enhancedMCSSA and numer-
ical examples

We realizetheenhancedversionof MCSSAasfollows.

1. Thestudiedtime seriesundergoesSSAasdescribedin
Sec.2, i.e.,usinganembeddingwindow of length � , the�)0�� lag-correlationmatrixC is decomposedusingthe
SVDCMProutine(Pressetal.,1986).In theeigenspec-
trum, thepositionof eacheigenvalueon theabscissais
givenby thedominantfrequency associatedwith there-
latedEOF, i.e., detectedin the relatedmode. That is,
the studiedtime seriesis projectedonto the particular
EOF, the power spectrumof the projection(mode) is
estimated,andthefrequency bin with thehighestpower
is identified. This spectralcoordinateis mappedonto
oneof the � frequency bins,which equidistantlydivide
theabscissaof theeigenspectrum.

2. An AR(1) modelis fitted on theseriesunderstudy, the
residualsarecomputed.

3. ThesurrogatedataaregeneratedusingtheaboveAR(1)
model,“scrambled”(randomlypermutatedin temporal
order)residualsareusedasinnovations.

4. Eachrealizationof thesurrogatesundergoesSSAasde-
scribedin item 1. Then,the eigenvaluesfor the whole
surrogateset,in eachfrequency bin, aresortedandthe
valuesfor the 2.5th and 97.5th percentilesare found.
In eigenspectra,the95%rangeof thesurrogateseigen-
valuedistribution is illustratedby a horizontalbar be-
tweentheabovepercentilevalues.

5. For eachfrequency bin, the eigenvalueobtainedfrom
thestudieddatais comparedwith therangeof thesurro-
gateeigenvalues.If aneigenvalueliesoutsidetherange
given by the above percentiles,the null hypothesisof
theAR(1) processis rejected,i.e., thereis a probability�B6 `V� `_� thatthedatacanbeexplainedby thenull noise
model.

6. For eachSSAmode(aprojectionof thedataontoapar-
ticularEOF)its regularity index is computed,aswell as
for eachSSAmodefor all realizationsof thesurrogate
data. The regularity indicesareprocessedandstatisti-
cally testedin thesamewayastheeigenvalues.Thereg-
ularity index is basedon mutual informationobtained
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Fig. 1. Numericallygeneratedtestdata:(a) A periodicsignalwith
randomlyvariableamplitudewasmixedwith (b) a realizationof an
AR(1) processwith a strongslow component,obtainingthesignal
to noiseratio1:2 (c), and1:4 (d).

by asimplebox-countingapproachwith marginalequi-
quantization(Paluš,1995,1996,1997a).In general,this
testingapproachis not limited to the particular regu-
larity index used,but can be basedon a suitablein-
formation/entropy measureobtainedby a different al-
gorithm, employing novel methodssuchas that of re-
currenceplots (Romanoet al., 2004);or evendifferent
complexity measures(Wackerbaueret.al., 1994).

PerformingMCSSA usingthe embeddingwindow of the
length � , thereare � eigenvaluesin theeigenspectrum,and �
statisticaltestsaredone.Thereforetheproblemof thesimul-
taneousstatisticalinferenceshouldbe consideredin appli-
cations(see(Paluš,1995)andreferencestherein).However,
sincehereweareinterestedin adetectionof asignalin aspe-
cific frequency band(andnot in rejectingthenull hypothesis
by a digressionfrom thesurrogaterangeby aneigenvalueor
aregularityindex in any frequency band),wewill notdiscuss
this topic here.

Rejectingthe null hypothesisof the AR(1) (or otherap-
propriate)noisemodel,onecaninfer thatthereis something
more in the data than a realizationof the null hypothesis
(noise)model. The rejectionbasedon theeigenvaluesindi-
catesa different covariancestructurethan the noisemodel
used. The rejectionbasedon the regularity index indicates
that the studied data contains a dynamically interesting
signalwith higherregularity andpredictabilitythana mode
obtainedby linearfiltration of theconsiderednoisemodel.

Thepresentedapproachis demonstratedhereby usingnu-
mericallygenerateddata.

Fig. 1. Numerically generated test data:(a) A periodic signal with
randomly variable amplitude was mixed with(b) a realization of an
AR(1) process with a strong slow component, obtaining the signal
to noise ratio 1:2(c), and 1:4(d).

rogate realizations (here, as well as in the following exam-
ples). The eigenvalues of the AR(1) surrogates uniformly
fill all the n frequency bins (here, as well as in the follow-
ing examplen=100), while in the case of the test data, some
bins are empty, others contain one, two or more eigenvalues.
We plot the surrogate bars only in those positions, in which
(an) eigenvalue(s) of the analyzed data exist(s). Note the 1/f

character of the surrogate eigenspectrum, i.e. the eigenvalues
plotted according to increasing dominant frequency associ-
ated with the related modes are monotonously decreasing in
a 1/f α way. The low-frequency part of the eigenspectrum
from Fig. 2a is enlarged in Fig. 2b. The two data eigenvalues
related to the frequency 0.02 (cycles per time unit) are clearly
above the surrogate bar, i.e. they are significant on the 95%
level and the null hypothesis is rejected. Further study of
the significant modes shows that they are related to the em-
bedded in noise signal from Fig. 1a, in particular, one of the
modes contains the signal together with some noise of sim-
ilar frequencies, and the other include an oscillatory mode
shifted byπ/2 relatively to the former. Note that the simple
SSA based on the mutual comparison of the data eigenvalues
could be misleading, since the AR(1) noise itself “produces”
two or three eigenvalues which are larger than the two eigen-
values related to the signal embedded in the noise.

The same analysis applied to the series possessing the sig-
nal/noise ratio 1:4 (Figs. 2c), however, fails to detect the em-
bedded signal – all eigenvalues obtained from the test data
are well confined between the 2.5th and 97.5th percentiles
of the surrogate eigenvalues distributions. Applying the test
based on the regularity index on the mixture with the signal
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Fig. 2. The standard– eigenvalue based(a–c) and the enhanced
– regularity index based(d–f) MCSSA analysisof the numerical
data,presentedin Fig. 1. (a) The full eigenspectrumand(b) the
low-frequency partof theeigenspectrum– logarithmsof eigenval-
ues(“LOG POWER”) plottedaccordingto thedominantfrequency
associatedwith particularmodes,for the signal to noiseratio 1:2.
(c) Low frequency partof theeigenspectrumfor thesignalto noise
ratio 1:4. (d) The regularity spectrumand (e) its low frequency
part for thesignalto noiseratio 1:2. (f) Low frequency partof the
regularity spectrumfor thesignalto noiseratio 1:4. Bursts– eigen-
valuesor regularity indicesfor theanalyseddata;bars– 95%of the
surrogateeigenvaluesor regularity index distribution, i.e., the bar
is drawn from the 2.5th to the 97.5thpercentilesof the surrogate
eigenvalues/regularity indicesdistribution.

1. A periodic signal with randomly variable amplitude
(Fig. 1a) wasmixed with a realizationof an AR(1) process
with a strongslow component(Fig. 1b). The usednoise
modelis definedas ¤¦¥¨§ ©«ª ¬®¯ ¤¦¥±°³²µ´·¶¸¥º¹ where¶¸¥ areGaus-
siandeviateswith a zeromeananda unit variance.Thesig-
nal to noiseratiosobtainedby mixing the signalswere1:2
(Fig. 1c), and1:4 (Fig. 1d). (The given signal/noiseratios
arethe ratiosof thestandarddeviations.) The latter two se-
riesareanalyzedby thepresentedmethod.

Theeigenspectrumof thetimeseriesconsistingof thesig-
nal (Fig. 1a) andthe AR(1) noise(Fig. 1b) in the ratio 1:2
(Fig. 1c) is presentedin Fig. 2a, where logarithmsof the
eigenvaluesareplottedasthebursts(“LOG POWER”). The
seriesis consideredasunknownexperimentaldata,sothatan
AR(1) modelis fittedon thedataandthesurrogatesaregen-
eratedasdescribedabove.Theverticalbarsin theeigenspec-
trum representthe surrogateeigenvalue rangesfrom 2.5th

to 97.5thpercentiles,which were obtainedfrom 1500 sur-
rogaterealizations(here,aswell as in the following exam-
ples).Theeigenvaluesof theAR(1) surrogatesuniformly fill
all the » frequency bins (here,as well as in the following
example »¼§¾½ ©¯© ), while in the caseof the testdata,some
binsareempty, otherscontainone,two or moreeigenvalues.
We plot thesurrogatebarsonly in thosepositions,in which
(an)eigenvalue(s)of theanalyzeddataexist(s).Notethe ½À¿ÂÁ
characterof the surrogateeigenspectrum,i.e., the eigenval-
uesplottedaccordingto increasingdominantfrequency asso-
ciatedwith the relatedmodesaremonotonouslydecreasing
in a ½À¿ÂÁÄÃ way. Thelow-frequency partof theeigenspectrum
from Fig. 2ais enlargedin Fig. 2b. Thetwo dataeigenvalues
relatedto thefrequency 0.02(cyclespertimeunit) areclearly
above thesurrogatebar, i.e., they aresignificanton the95%
level and the null hypothesisis rejected. Furtherstudy of
thesignificantmodesshows that they arerelatedto theem-
beddedin noisesignalfrom Fig. 1a,in particular, oneof the
modescontainsthesignaltogetherwith somenoiseof sim-
ilar frequencies,and the other include an oscillatory mode
shiftedby Å¨¿ÂÆ relatively to theformer. Notethat thesimple
SSAbasedonthemutualcomparisonof thedataeigenvalues
couldbemisleading,sincetheAR(1) noiseitself “produces”
two or threeeigenvalueswhicharelargerthanthetwo eigen-
valuesrelatedto thesignalembeddedin thenoise.

Thesameanalysisappliedto theseriespossessingthesig-
nal/noiseratio1:4(Figs.2c),however, fails to detecttheem-
beddedsignal— all eigenvaluesobtainedfrom thetestdata
arewell confinedbetweenthe 2.5th and97.5thpercentiles
of thesurrogateeigenvaluesdistributions. Applying thetest
basedon theregularity index on themixturewith thesignal
to noiseratio 1:2 (Figs. 2d,e)onedataregularity index has
beenfoundsignificantlyhigherthantherelatedsurrogatein-
dices.It wasobtainedfrom themoderelatedto thefrequency
bin 0.02,asin thecaseof thesignificanteigenvaluesin Figs.
2a, b. This is the modewhich containsthe embeddedsig-
nal (Fig. 1a) togetherwith somenoiseof similar frequen-
cies. The orthogonalmode,relatedto the samefrequency
bin, which hasthevariancecomparableto theformer (Figs.
2a,b),hasits regularityindex closeto the97.5thpercentileof
thesurrogateregularity indicesdistribution. In otherwords,
if a (nearly)periodicsignalis embeddedin a(colored)noise,
theSSAapproach,in principle, is ableto extract this signal
togetherwith somenoiseof closefrequencies,andproduces
an orthogonal“ghost” modewhich hasa comparablevari-
ance,however, its dynamicalpropertiesarecloserto those
of the modesobtainedfrom the purenoise(null model),as
measuredby theregularity index (10). Nevertheless,thereg-
ularity index usedasa teststatisticin the MCSSA manner
is ableto detectthe embeddedsignalwith a high statistical
significancein this case(signal:noise= 1:2), as well as in
thecaseof thesignalto noiseratio 1:4 (Figs. 2f), whenthe
standard(variance-basedMCSSA) failed (Figs. 2c). In the
lattercasetheorthogonal“ghost” modedid not appear, and
the regularity index of the signalmodeis lower thanin the
previouscase,sincethe modecontainslargerportionof the
isospectralnoise,however, thesignalmoderegularity index

Fig. 2. The standard – eigenvalue based(a)–(c) and the enhanced
– regularity index based(d)–(f) MCSSA analysis of the numerical
data, presented in Fig. 1. (a) The full eigenspectrum and (b) the
low-frequency part of the eigenspectrum – logarithms of eigenval-
ues (“LOG POWER”) plotted according to the dominant frequency
associated with particular modes, for the signal to noise ratio 1:2.
(c) Low frequency part of the eigenspectrum for the signal to noise
ratio 1:4. (d) The regularity spectrum and (e) its low frequency
part for the signal to noise ratio 1:2. (f) Low frequency part of the
regularity spectrum for the signal to noise ratio 1:4. Bursts – eigen-
values or regularity indices for the analysed data; bars – 95% of the
surrogate eigenvalues or regularity index distribution, i.e. the bar
is drawn from the 2.5th to the 97.5th percentiles of the surrogate
eigenvalues/regularity indices distribution.

to noise ratio 1:2 (Figs. 2d and 2e) one data regularity index
has been found significantly higher than the related surrogate
indices. It was obtained from the mode related to the fre-
quency bin 0.02, as in the case of the significant eigenvalues
in Figs. 2a and 2b. This is the mode which contains the em-
bedded signal (Fig. 1a) together with some noise of similar
frequencies. The orthogonal mode, related to the same fre-
quency bin, which has the variance comparable to the former
(Figs. 2a and 2b), has its regularity index close to the 97.5th
percentile of the surrogate regularity indices distribution. In
other words, if a (nearly) periodic signal is embedded in a
(colored) noise, the SSA approach, in principle, is able to
extract this signal together with some noise of close frequen-
cies, and produces an orthogonal “ghost” mode which has a
comparable variance, however, its dynamical properties are
closer to those of the modes obtained from the pure noise
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Fig. 3. Numerically generatedtest data: (a) The wavelet filtered
signalfrom Fig. 1awasembeddedinto (b) a realizationof a mul-
tifractal process,obtainingthe ratio of relatedwavelet coefficients
1:2 (c), and0.5:0.5(d).

is still safely above the surrogatebar, i.e., significantwithÇ·È ©Éª ©®Ê
(Fig. 2f).

2. As a morecomplex examplewe “embed” the testsig-
nal (Fig. 1a)into a realizationof a multifractalprocess(Fig.
3b) generatedasa log-normalrandomcascadeon a wavelet
dyadictree(Arneodoet al., 1998)usingthediscretewavelet
transform(Pressetal.,1986).Usingthewaveletdecomposi-
tion, we embeddthemostsignificantpartof thesignal(Fig.
1a)relatedto aparticularwaveletscale– thiswavelet-filtered
signal is illustratedin Fig. 3a. The mixing is donein the
spaceof the wavelet coefficients, in the first case(in Fig.
3 referredto as“signal addedto multifractal”) the standard
deviation (SD) of the signalwavelet coefficientsis the dou-
ble of the SD of the wavelet coefficientsof the multifractal
signal in the relatedscale(Fig. 3c), i.e., the addedsignal
deviatesfrom the covariancestructureof the “noise” (mul-
tifractal) process,while in the secondcasewe adjustedthe
SD of bothsetsof thewaveletcoefficientsto 50%of theSD
of thewaveletcoefficientsof theoriginal multifractalsignal
in the relatedscale(Fig. 3d), so that the total variancein
this scale(frequency band)doesnot excesstherelatedvari-
anceof the “clean” multifractal. Then, it is not surprising,
thatthevariance-(eigenvalues)-basedMCSSAtest,usingthe
AR(1) surrogatedata(Fig. 4a,b) clearly distinguishesthe
signalfrom themultifractalbackgroundin thefirst case(Fig.
4a) including its orthogonal“ghosts”, while in the second
casenoeigenvalueis over theAR(1) surrogaterange,but the
slow trend mode(Fig. 4b). The AR(1) processis unable
to correctlymimic the multifractal process- the slow mode
(the zero frequency bin) scoresas a significant trend over
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Fig. 4. The low frequency partsof theMCSSAeigenspectra(a–c)
andregularity spectra(d–f) for the signalembeddedinto a multi-
fractal processwith wavelet coefficient ratio 1:2 (a,d)and0.5:0.5
(b,c,e,f).Bursts– eigenvaluesor regularity indicesfor theanalysed
data;bars– 95% of the surrogateeigenvaluesor regularity index
distribution obtainedfrom theAR(1) (a,b,d,e)andthe multifractal
(c,f) surrogatedata.

theAR(1) surrogaterange,while thevarianceon subsequent
frequenciesis overestimated(Fig. 4a,b).On theotherhand,
even the AR(1) surrogatemodel is ableto detectthe added
signalin thefirst case(Fig. 4a). If we userealizationsof the
samemultifractal processas the surrogatedata, the signal
is detectedin the first case(not presented,just comparethe
burstson frequency 0.02in Fig. 4aandtherelatedsurrogate
bar in Fig. 4c), while in the secondcase,the eigenvalues-
basedMCSSA neglectsthe signal embeddedinto the mul-
tifractal “noise” – all the datamixture eigenvalues(bursts)
are inside the multifractal surrogatebars(Fig. 4c). In the
MCSSA testsusingthe regularity index, the embeddedsig-
nal is safelydetectedtogetherwith its orthogonal“ghosts”
and higher harmonicsnot only in the first case(Fig. 4d),
but alsoin the secondcase,eitherusingAR(1) (Fig. 4e)or
themultifractalsurrogatedata(Fig. 4f), whenit is, from the
point of view of the covariancestructure,indistinguishably
embeddedinto themultifractalprocess.

Fig. 3. Numerically generated test data:(a) The wavelet filtered
signal from Fig. 1a was embedded into(b) a realization of a mul-
tifractal process, obtaining the ratio of related wavelet coefficients
1:2 (c), and 0.5:0.5(d).

(null model), as measured by the regularity index (Eq. 10).
Nevertheless, the regularity index used as a test statistic in the
MCSSA manner is able to detect the embedded signal with a
high statistical significance in this case (signal:noise = 1:2),
as well as in the case of the signal to noise ratio 1:4 (Fig. 2f),
when the standard (variance-based MCSSA) failed (Fig. 2c).
In the latter case the orthogonal “ghost” mode did not appear,
and the regularity index of the signal mode is lower than in
the previous case, since the mode contains larger portion of
the isospectral noise, however, the signal mode regularity in-
dex is still safely above the surrogate bar, i.e. significant with
p<0.05 (Fig. 2f).

2. As a more complex example we “embed” the test
signal (Fig. 1a) into a realization of a multifractal process
(Fig. 3b) generated as a log-normal random cascade on a
wavelet dyadic tree (Arneodo et al., 1998) using the discrete
wavelet transform (Press et al., 1986). Using the wavelet
decomposition, we embedd the most significant part of the
signal (Fig. 1a) related to a particular wavelet scale – this
wavelet-filtered signal is illustrated in Fig. 3a. The mixing is
done in the space of the wavelet coefficients, in the first case
(in Fig. 3 referred to as “signal added to multifractal”) the
standard deviation (SD) of the signal wavelet coefficients is
the double of the SD of the wavelet coefficients of the mul-
tifractal signal in the related scale (Fig. 3c), i.e. the added
signal deviates from the covariance structure of the “noise”
(multifractal) process, while in the second case we adjusted
the SD of both sets of the wavelet coefficients to 50% of the
SD of the wavelet coefficients of the original multifractal sig-
nal in the related scale (Fig. 3d), so that the total variance in
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Fig. 3. Numerically generatedtest data: (a) The wavelet filtered
signalfrom Fig. 1awasembeddedinto (b) a realizationof a mul-
tifractal process,obtainingthe ratio of relatedwavelet coefficients
1:2 (c), and0.5:0.5(d).

is still safely above the surrogatebar, i.e., significantwithÇ·È ©Éª ©®Ê
(Fig. 2f).

2. As a morecomplex examplewe “embed” the testsig-
nal (Fig. 1a)into a realizationof a multifractalprocess(Fig.
3b) generatedasa log-normalrandomcascadeon a wavelet
dyadictree(Arneodoet al., 1998)usingthediscretewavelet
transform(Pressetal.,1986).Usingthewaveletdecomposi-
tion, we embeddthemostsignificantpartof thesignal(Fig.
1a)relatedto aparticularwaveletscale– thiswavelet-filtered
signal is illustratedin Fig. 3a. The mixing is donein the
spaceof the wavelet coefficients, in the first case(in Fig.
3 referredto as“signal addedto multifractal”) the standard
deviation (SD) of the signalwavelet coefficientsis the dou-
ble of the SD of the wavelet coefficientsof the multifractal
signal in the relatedscale(Fig. 3c), i.e., the addedsignal
deviatesfrom the covariancestructureof the “noise” (mul-
tifractal) process,while in the secondcasewe adjustedthe
SD of bothsetsof thewaveletcoefficientsto 50%of theSD
of thewaveletcoefficientsof theoriginal multifractalsignal
in the relatedscale(Fig. 3d), so that the total variancein
this scale(frequency band)doesnot excesstherelatedvari-
anceof the “clean” multifractal. Then, it is not surprising,
thatthevariance-(eigenvalues)-basedMCSSAtest,usingthe
AR(1) surrogatedata(Fig. 4a,b) clearly distinguishesthe
signalfrom themultifractalbackgroundin thefirst case(Fig.
4a) including its orthogonal“ghosts”, while in the second
casenoeigenvalueis over theAR(1) surrogaterange,but the
slow trend mode(Fig. 4b). The AR(1) processis unable
to correctlymimic the multifractal process- the slow mode
(the zero frequency bin) scoresas a significant trend over

0 0.03 0.06

0

2

4 (a)

LO
G

 P
O

W
E

R

Ë

ÌÍ
ÎÏÐ

Ñ
Ò
ÓÔ
ÕÖ�×Ø

0 0.03 0.06

0

2

4

0 0.03 0.06

0

2

4 (b)

Ù
Ú

Û
Ü�ÝÞ

ßà�áãâäå
æç

0 0.03 0.06

0

2

4

0 0.03 0.06

0

2

4 (c)

è
é

ê
ë�ìí

îïãð�ñòó
ôõ

0 0.03 0.06

0

2

4

0 0.03 0.06
1

2

3

4 (d)

DOMINANT FREQUENCY [CYCLES per TIME-UNIT]

LO
G

 R
E

G
U

LA
R

IT
Y

ö

÷
ø
ù
ú

û

ü
ý
þ
ÿ
��

��

0 0.03 0.06
1

2

3

4

0 0.03 0.06
1

2

3

4 (e)

�

�

�
�

�	



�
�

�
�

�
�

0 0.03 0.06
1

2

3

4

0 0.03 0.06
1

2

3

4 (f)

�

�

�
�

��

�
�
�

��
�

�
�

0 0.03 0.06
1

2

3

4

Fig. 4. The low frequency partsof theMCSSAeigenspectra(a–c)
andregularity spectra(d–f) for the signalembeddedinto a multi-
fractal processwith wavelet coefficient ratio 1:2 (a,d)and0.5:0.5
(b,c,e,f).Bursts– eigenvaluesor regularity indicesfor theanalysed
data;bars– 95% of the surrogateeigenvaluesor regularity index
distribution obtainedfrom theAR(1) (a,b,d,e)andthe multifractal
(c,f) surrogatedata.

theAR(1) surrogaterange,while thevarianceon subsequent
frequenciesis overestimated(Fig. 4a,b).On theotherhand,
even the AR(1) surrogatemodel is ableto detectthe added
signalin thefirst case(Fig. 4a). If we userealizationsof the
samemultifractal processas the surrogatedata, the signal
is detectedin the first case(not presented,just comparethe
burstson frequency 0.02in Fig. 4aandtherelatedsurrogate
bar in Fig. 4c), while in the secondcase,the eigenvalues-
basedMCSSA neglectsthe signal embeddedinto the mul-
tifractal “noise” – all the datamixture eigenvalues(bursts)
are inside the multifractal surrogatebars(Fig. 4c). In the
MCSSA testsusingthe regularity index, the embeddedsig-
nal is safelydetectedtogetherwith its orthogonal“ghosts”
and higher harmonicsnot only in the first case(Fig. 4d),
but alsoin the secondcase,eitherusingAR(1) (Fig. 4e)or
themultifractalsurrogatedata(Fig. 4f), whenit is, from the
point of view of the covariancestructure,indistinguishably
embeddedinto themultifractalprocess.

Fig. 4. The low frequency parts of the MCSSA eigenspectra(a)–(c)
and regularity spectra(d)–(f) for the signal embedded into a multi-
fractal process with wavelet coefficient ratio 1:2 (a), (d) and 0.5:0.5
(b), (c), (e), (f). Bursts – eigenvalues or regularity indices for the
analysed data; bars – 95% of the surrogate eigenvalues or regularity
index distribution obtained from the AR(1) (a), (b), (d), (e) and the
multifractal (c), (f) surrogate data.

this scale (frequency band) does not excess the related vari-
ance of the “clean” multifractal. Then, it is not surprising,
that the variance-(eigenvalues)-based MCSSA test, using the
AR(1) surrogate data (Figs. 4a and 4b) clearly distinguishes
the signal from the multifractal background in the first case
(Fig. 4a) including its orthogonal “ghosts”, while in the sec-
ond case no eigenvalue is over the AR(1) surrogate range, but
the slow trend mode (Fig. 4b). The AR(1) process is unable
to correctly mimic the multifractal process – the slow mode
(the zero frequency bin) scores as a significant trend over
the AR(1) surrogate range, while the variance on subsequent
frequencies is overestimated (Figs. 4a and 4b). On the other
hand, even the AR(1) surrogate model is able to detect the
added signal in the first case (Fig. 4a). If we use realizations
of the same multifractal process as the surrogate data, the sig-
nal is detected in the first case (not presented, just compare
the bursts on frequency 0.02 in Fig. 4a and the related surro-
gate bar in Fig. 4c), while in the second case, the eigenvalues-
based MCSSA neglects the signal embedded into the multi-
fractal “noise” – all the data mixture eigenvalues (bursts) are
inside the multifractal surrogate bars (Fig. 4c). In the MC-
SSA tests using the regularity index, the embedded signal
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Fig. 5. EnhancedMCSSA analysisof the Berlin (a,c)andPrague
(b,d) near-surface air temperatureseries. Low-frequency parts
of eigenspectra(a,b) and regularity index spectra(c,d). For the
burst/barskey seethecaptionof Fig. 2.

5 Application of the enhancedMCSSA to temperature
records

The above numerical examples demonstratedthe power
of the enhancementof the MCSSA in which we test also
the dynamical propertiesof the SSA modes, namely its
regularity, againstthedynamicalpropertiesof the surrogate
SSAmodes.In the following we apply this approachto the
monthlyaveragenear-surfaceair temperatureseriesfrom ten
Europeanstations(Stockholm,De Bilt, Paris– Le Bourget,
Geneve– Cointrin,Berlin – Tempelhof,Munich– Riem,Vi-
enna– HoheWarte,Budaors,Wroclaw II, obtainedfrom the
CarbonDioxide InformationAnalysisCenterInternetserver
(ftp://cdiac.esd.ornl.gov/pub/ndp041 ) and
to a seriesfrom Prague- Klementinum station from the
period 1781 – 1988. The long-term monthly averages
weresubtractedfrom the data,so that the annualcycle was
effectively filtered-out.

TheenhancedMCSSAanalysesof theBerlin andPrague
temperatureseries,using the embeddingwindow of length»¼§ ½ ©®© (months),arepresentedin Fig. 5. In the classical
MCSSAtestbasedon eigenvalues(Figs.5a,b) theonly sig-
nificancehasbeenfound for the zerofrequency mode,i.e.,
there is a significant long-term trend present,inconsistent
with the hypothesisof the AR(1) noise,however, no oscil-
lationsor otherdynamicalphenomenaexceedingtheAR(1)
model,have beendetected.The situationis differentusing
the test basedon the regularity index (Figs. 5c, d), when,
in addition to the significantlong-termtrend, also another
mode,relatedto oscillatory dynamicswith a periodof 7.8
years(approx. 0.01cyclesper month,Fig. 5c,d),hasbeen
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Fig. 6. EnhancedMCSSA analysisof the Praguenear-surfaceair
temperatureseries(a,c)andthe NAO index (b,d). Low-frequency
partsof eigenspectra(a,b) andregularity index spectra(c,d). For
theburst/barskey seethecaptionof Fig. 2. Both datasetsspanthe
period1824–2002,theembeddingdimension,.-0/2143 monthswas
used.

foundsignificantlydifferentfrom theAR(1) null hypothesis.
Similar resulthasbeenfound in theanalysisof theseries

from Wroclaw andDe Bilt. In the datafrom the othersix
stationsonly thelong-termtrendhasbeenfoundsignificant,
but no oscillations. This result could lead to the question
of simultaneousstatisticalinference,namely to the proba-
bility of randomlyoccurringsignificancesin a part of the
dataset. Consideringgeographicallocationsof thestations,
however, we canseea nonrandompatternin theoccurrence
of thesignificantresults,sincetheperiod7.8 yearcycle has
beenfoundin thestationslocatedslightly over50degreesof
northernlatitude.

6 Period 7.8yearscycledetectedin the NAO index

The North Atlantic Oscillation is a dominantpatternof at-
mosphericcirculationvariability in the extratropicalNorth-
ernHemisphereandit is a major controlling factorof basic
meteorologicalvariablesincluding the temperature(Hurrell
et al., 2001). The NAO index is traditionallydefinedasthe
normalizedpressuredifferencebetweentheAzoresandIce-
land. The NAO data,usedhere,and their descriptionare
availableat http://www.cru.uea.ac.uk/cru/data/nao.htm.

Gámiz-Fortiset al. (2002)have appliedthestandardMC-
SSAmethodon thewinter NAO index, i.e., yearly sampled
valuesobtainedby averagingDecember, JanuaryandFebru-
ary index values,and,usinganembeddingwindow of length» §65 © yearswereableto identify anoscillatorymodewith a
periodabout7.7 years.Accordingto otherauthors(Fernan-

Fig. 5. Enhanced MCSSA analysis of the Berlin(a), (c)and Prague
(b), (d) near-surface air temperature series. Low-frequency parts of
eigenspectra (a), (b) and regularity index spectra (c), (d). For the
burst/bars key see the caption of Fig. 2.

is safely detected together with its orthogonal “ghosts” and
higher harmonics not only in the first case (Fig. 4d), but also
in the second case, either using AR(1) (Fig. 4e) or the multi-
fractal surrogate data (Fig. 4f), when it is, from the point of
view of the covariance structure, indistinguishably embedded
into the multifractal process.

5 Application of the enhanced MCSSA to temperature
records

The above numerical examples demonstrated the power of
the enhancement of the MCSSA in which we test also the
dynamical properties of the SSA modes, namely its regular-
ity, against the dynamical properties of the surrogate SSA
modes. In the following we apply this approach to the
monthly average near-surface air temperature series from ten
European stations (Stockholm, De Bilt, Paris – Le Bourget,
Geneve – Cointrin, Berlin – Tempelhof, Munich – Riem, Vi-
enna – Hohe Warte, Budaors, Wroclaw II, obtained from
the Carbon Dioxide Information Analysis Center Internet
server (ftp://cdiac.esd.ornl.gov/pub/ndp041) and to a series
from Prague – Klementinum station from the period 1781–
1988. The long-term monthly averages were subtracted from
the data, so that the annual cycle was effectively filtered-out.

The enhanced MCSSA analyses of the Berlin and Prague
temperature series, using the embedding window of length
n=100 (months), are presented in Fig. 5. In the classical
MCSSA test based on eigenvalues (Figs. 5a and 5b) the only
significance has been found for the zero frequency mode, i.e.
there is a significant long-term trend present, inconsistent
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Fig. 5. EnhancedMCSSA analysisof the Berlin (a,c)andPrague
(b,d) near-surface air temperatureseries. Low-frequency parts
of eigenspectra(a,b) and regularity index spectra(c,d). For the
burst/barskey seethecaptionof Fig. 2.

5 Application of the enhancedMCSSA to temperature
records

The above numerical examples demonstratedthe power
of the enhancementof the MCSSA in which we test also
the dynamical propertiesof the SSA modes, namely its
regularity, againstthedynamicalpropertiesof the surrogate
SSAmodes.In the following we apply this approachto the
monthlyaveragenear-surfaceair temperatureseriesfrom ten
Europeanstations(Stockholm,De Bilt, Paris– Le Bourget,
Geneve– Cointrin,Berlin – Tempelhof,Munich– Riem,Vi-
enna– HoheWarte,Budaors,Wroclaw II, obtainedfrom the
CarbonDioxide InformationAnalysisCenterInternetserver
(ftp://cdiac.esd.ornl.gov/pub/ndp041 ) and
to a seriesfrom Prague- Klementinum station from the
period 1781 – 1988. The long-term monthly averages
weresubtractedfrom the data,so that the annualcycle was
effectively filtered-out.

TheenhancedMCSSAanalysesof theBerlin andPrague
temperatureseries,using the embeddingwindow of length»¼§ ½ ©®© (months),arepresentedin Fig. 5. In the classical
MCSSAtestbasedon eigenvalues(Figs.5a,b) theonly sig-
nificancehasbeenfound for the zerofrequency mode,i.e.,
there is a significant long-term trend present,inconsistent
with the hypothesisof the AR(1) noise,however, no oscil-
lationsor otherdynamicalphenomenaexceedingtheAR(1)
model,have beendetected.The situationis differentusing
the test basedon the regularity index (Figs. 5c, d), when,
in addition to the significantlong-termtrend, also another
mode,relatedto oscillatory dynamicswith a periodof 7.8
years(approx. 0.01cyclesper month,Fig. 5c,d),hasbeen

0 0.02 0.04

-1

0

1

2
(a): PRAGUE

LO
G

 P
O

W
E

R

u

v w
x
y

z{

|}~

��

��
���
� �� ��

��
�
�
�
���
��
��

���
�
��

��

0 0.02 0.04

-1

0

1

2

0 0.02 0.04

-1

0

1

2
(b): NAO

� 
¡ ¢ £¤

¥¦
§¨

©ª
«¬ ®¯

°±
²´³µ¶

·¸ ¹º
»¼½

¾
¿
À

ÁÂÃ

Ä ÅÆ´Ç
ÈÉ

ÊËÌ
ÍÎ

0 0.02 0.04

-1

0

1

2

0 0.02 0.04

2

4

(c): PRAGUE

DOMINANT FREQUENCY [CYCLES per MONTH]

LO
G

 R
E

G
U

LA
R

IT
Y

Ï

Ð
Ñ
Ò
Ó

Ô

Õ

Ö

×

Ø

Ù
Ú

ÛÜÞÝ

ßà áãâä åæ

ç
è

é

êãë ì
íî

ï
ð

ñò

ó
ô
õ
ö
÷ø

ùú

0 0.02 0.04

2

4

0 0.02 0.04

1

2

3

4 (d): NAO

û

ü

ý þ ÿ

�
�
�
��

��
�
�
	

�
�

� � ��
�
��

�
�
�

�
���
�

�
��
 

!
"
#
$ %&
'()
*
+

0 0.02 0.04

1

2

3

4

Fig. 6. EnhancedMCSSA analysisof the Praguenear-surfaceair
temperatureseries(a,c)andthe NAO index (b,d). Low-frequency
partsof eigenspectra(a,b) andregularity index spectra(c,d). For
theburst/barskey seethecaptionof Fig. 2. Both datasetsspanthe
period1824–2002,theembeddingdimension,.-0/2143 monthswas
used.

foundsignificantlydifferentfrom theAR(1) null hypothesis.
Similar resulthasbeenfound in theanalysisof theseries

from Wroclaw andDe Bilt. In the datafrom the othersix
stationsonly thelong-termtrendhasbeenfoundsignificant,
but no oscillations. This result could lead to the question
of simultaneousstatisticalinference,namely to the proba-
bility of randomlyoccurringsignificancesin a part of the
dataset. Consideringgeographicallocationsof thestations,
however, we canseea nonrandompatternin theoccurrence
of thesignificantresults,sincetheperiod7.8 yearcycle has
beenfoundin thestationslocatedslightly over50degreesof
northernlatitude.

6 Period 7.8yearscycledetectedin the NAO index

The North Atlantic Oscillation is a dominantpatternof at-
mosphericcirculationvariability in the extratropicalNorth-
ernHemisphereandit is a major controlling factorof basic
meteorologicalvariablesincluding the temperature(Hurrell
et al., 2001). The NAO index is traditionallydefinedasthe
normalizedpressuredifferencebetweentheAzoresandIce-
land. The NAO data,usedhere,and their descriptionare
availableat http://www.cru.uea.ac.uk/cru/data/nao.htm.

Gámiz-Fortiset al. (2002)have appliedthestandardMC-
SSAmethodon thewinter NAO index, i.e., yearly sampled
valuesobtainedby averagingDecember, JanuaryandFebru-
ary index values,and,usinganembeddingwindow of length» §65 © yearswereableto identify anoscillatorymodewith a
periodabout7.7 years.Accordingto otherauthors(Fernan-

Fig. 6. Enhanced MCSSA analysis of the Prague near-surface air
temperature series(a), (c) and the NAO index(b), (d). Low-
frequency parts of eigenspectra (a), (b) and regularity index spec-
tra (c), (d). For the burst/bars key see the caption of Fig. 2.
Both datasets span the period 1824–2002, the embedding dimen-
sionn=480 months was used.

with the hypothesis of the AR(1) noise, however, no oscil-
lations or other dynamical phenomena exceeding the AR(1)
model, have been detected. The situation is different using
the test based on the regularity index (Figs. 5c and 5d), when,
in addition to the significant long-term trend, also another
mode, related to oscillatory dynamics with a period of 7.8
years (approx. 0.01 cycles per month, Figs. 5c and 5d), has
been found significantly different from the AR(1) null hy-
pothesis.

Similar result has been found in the analysis of the series
from Wroclaw and De Bilt. In the data from the other six
stations only the long-term trend has been found significant,
but no oscillations. This result could lead to the question
of simultaneous statistical inference, namely to the probabil-
ity of randomly occurring significances in a part of the data
set. Considering geographical locations of the stations, how-
ever, we can see a nonrandom pattern in the occurrence of the
significant results, since the period 7.8 year cycle has been
found in the stations located slightly over 50◦ of northern
latitude.

6 Period 7.8 years cycle detected in the NAO index

The North Atlantic Oscillation is a dominant pattern of at-
mospheric circulation variability in the extratropical North-
ern Hemisphere and it is a major controlling factor of basic
meteorological variables including the temperature (Hurrell
et al., 2001). The NAO index is traditionally defined as the
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Fig. 7. The period7.8 yearsoscillatorymodeextractedfrom the
monthly NAO index (a) and the monthly Praguenear-surfaceair
temperatureseries(b).

dezet al., 2003)the NAO index canbeconsideredjust asa
pink noisewith avery little possiblepredictability. Recalling
our resultswith thetemperaturerecords,we askif we could
detectanoscillatorymodewith theperiodaround7.8 years
in the monthly NAO index. As the first stepwe updatethe
Praguetemperaturedataandremove a portion of their his-
torical part in order to have the datasetcovering the same
periodasthe availableNAO data,i.e., the periodof 1824–
2002. SinceGámiz-Fortis et al. (2002)usedtheembedding
window of 40 years,we will usethesametime window, but
in monthlysamplingwehave » §7598 © . Repeatingtheanaly-
sisfor thePraguetemperaturedataweobtainthesameresult
asabove: In the eigenvalue-basedMCSSA the only signifi-
cantmodeis relatedto slow trends(Fig. 6a),while in thetest
usingtheregularity index alsotheoscillatorymodewith the
periodof 7.8yearsis detected(Fig. 6c). AnalysingtheNAO
index, the sameoscillatorymodeis alreadyapparentin the
eigevalue-basedMCSSAtest,however, its eigenvalueslie on
theedgeof significance(Fig. 6b). Usingtheregularity index
(Fig. 6d) theperiod7.8yearsmodeis reliably detected,i.e.,
its regularityindex liesclearlyabovethesurrogatebar(while
theregularity index of its orthogonal“ghost” is againon the
edgeof significance). In Fig. 7 we illustrate the detected
modestogetherwith their orthogonaltwins. Due to theem-
beddingdimension» §:598 © months,thereis anuncertainty
of theexacttiming of themodesequalto theembeddingwin-
dow of 40 years.We adjustedthetemporalcoordinateof the
modesbymaximizingtheircorrelationwith theoriginaldata.

7 Conclusions

An extensionof theMonteCarloSSAmethodhasbeende-
scribed,basedonevaluatingandtestingregularityof dynam-
ics of theSSAmodesagainstthecolorednoisenull hypoth-
esisin additionto the testbasedon variance(eigenvalues).
It hasbeendemonstratedthat suchan approachcould en-
hancethe testsensitivity andreliability in detectionof rel-
atively more regular dynamicalmodesthan thoseobtained
by decompositionof colorednoises.The standardMCSSA

can detectonly thosesignalswhosevariancesignificantly
exceedthe varianceof backgroundnoise in the frequency
rangeof the signal to be detected.The proposedenhanced
MCSSAversioncandetectsignalswith relatively smallvari-
ance,or even signalswhich are “embedded”into the vari-
ance/frequency structureof thebackgroundnoise,if thesig-
nals have more regular dynamicsthan relatedSSA modes
obtainedby linearfiltering of themodelbackgroundnoise.

The enhancedMCSSA has beenapplied to recordsof
monthly averagenear-surfaceair temperaturefrom ten Eu-
ropeanlocations. In the part of the latter, locatedover 50
degreesof northernlatitude,an oscillatorymodewith a pe-
riod of 7.8 yearshasbeendetected.Thenthe sameoscilla-
tory modehasbeendetectedin themonthlyNAO index. Can
theexistenceof thesameoscillatorymodein theNAO index
and in the temperaturerecordsbe regardedas an evidence
that theNAO influencestheEuropeantemperature(also)on
this temporalscale?Beforeansweringthis question,possi-
blerelationsbetweentheseoscillatorymodesshouldbecare-
fully studied. Analysesof possiblephasesynchronization
(Rosenblumet al., 1996; Paluš, 1997b)and causalityrela-
tions (Rosenblum& Pikovsky, 2001;Paluš & Stefanovska,
2003)arethe next stepplannedin this project. The present
result, however, is alreadyimportant,sincethe discovered
period7.8 yearsoscillatorymodesin theNAO index andin
the temperaturerecordscan play an importantrole in pre-
dictionsandevaluationof climatechangeson near-decadal
scalesat themid- andhigherlatitudesin Europeanregions.
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Fig. 7. The period 7.8 years oscillatory mode extracted from the
monthly NAO index(a) and the monthly Prague near-surface air
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normalized pressure difference between the Azores and Ice-
land. The NAO data, used here, and their description are
available at http://www.cru.uea.ac.uk/cru/data/nao.htm.

Gámiz-Fortis et al. (2002) have applied the standard MC-
SSA method on the winter NAO index, i.e. yearly sampled
values obtained by averaging December, January and Febru-
ary index values, and, using an embedding window of length
n=40 years were able to identify an oscillatory mode with a
period about 7.7 years. According to other authors (Fernan-
dez et al., 2003) the NAO index can be considered just as a
pink noise with a very little possible predictability. Recalling
our results with the temperature records, we ask if we could
detect an oscillatory mode with the period around 7.8 years
in the monthly NAO index. As the first step we update the
Prague temperature data and remove a portion of their his-
torical part in order to have the data set covering the same
period as the available NAO data, i.e. the period of 1824–
2002. Since Ǵamiz-Fortis et al. (2002) used the embedding
window of 40 years, we will use the same time window, but
in monthly sampling we haven=480. Repeating the analy-
sis for the Prague temperature data we obtain the same result
as above: In the eigenvalue-based MCSSA the only signifi-
cant mode is related to slow trends (Fig. 6a), while in the test
using the regularity index also the oscillatory mode with the
period of 7.8 years is detected (Fig. 6c). Analysing the NAO
index, the same oscillatory mode is already apparent in the
eigevalue-based MCSSA test, however, its eigenvalues lie on
the edge of significance (Fig. 6b). Using the regularity in-
dex (Fig. 6d) the period 7.8 years mode is reliably detected,
i.e. its regularity index lies clearly above the surrogate bar
(while the regularity index of its orthogonal “ghost” is again
on the edge of significance). In Fig. 7 we illustrate the de-
tected modes together with their orthogonal twins. Due to the
embedding dimensionn=480 months, there is an uncertainty
of the exact timing of the modes equal to the embedding win-
dow of 40 years. We adjusted the temporal coordinate of the
modes by maximizing their correlation with the original data.

7 Conclusions

An extension of the Monte Carlo SSA method has been de-
scribed, based on evaluating and testing regularity of dynam-
ics of the SSA modes against the colored noise null hypoth-
esis in addition to the test based on variance (eigenvalues).
It has been demonstrated that such an approach could en-
hance the test sensitivity and reliability in detection of rel-
atively more regular dynamical modes than those obtained
by decomposition of colored noises. The standard MCSSA
can detect only those signals whose variance significantly
exceed the variance of background noise in the frequency
range of the signal to be detected. The proposed enhanced
MCSSA version can detect signals with relatively small vari-
ance, or even signals which are “embedded” into the vari-
ance/frequency structure of the background noise, if the sig-
nals have more regular dynamics than related SSA modes
obtained by linear filtering of the model background noise.

The enhanced MCSSA has been applied to records of
monthly average near-surface air temperature from ten Eu-
ropean locations. In the part of the latter, located over 50◦

of northern latitude, an oscillatory mode with a period of 7.8
years has been detected. Then the same oscillatory mode has
been detected in the monthly NAO index. Can the existence
of the same oscillatory mode in the NAO index and in the
temperature records be regarded as an evidence that the NAO
influences the European temperature (also) on this tempo-
ral scale? Before answering this question, possible relations
between these oscillatory modes should be carefully stud-
ied. Analyses of possible phase synchronization (Rosenblum
et al., 1996; Palǔs, 1997b) and causality relations (Rosen-
blum and Pikovsky, 2001; Paluš and Stefanovska, 2003) are
the next step planned in this project. The present result, how-
ever, is already important, since the discovered period 7.8
years oscillatory modes in the NAO index and in the temper-
ature records can play an important role in predictions and
evaluation of climate changes on near-decadal scales at the
mid- and higher latitudes in European regions.
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