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Abstract. There are many phenomena in nature, such adul tool for extraction of information about the regularity of a
earthquakes, landslides, floods, and large-scale mineralizasignal. By examining the decay of the scalogram at specific
tion that are characterized by singular functions exhibitingpoints in time across all scales (frequencies), the regularity
scale invariant properties. A local singularity analysis basedof the Holder exponent can be determined. However, current
on multifractal modeling was developed for detection of lo- research reveals that the singularities present in engineering
cal anomalies for mineral exploration. An iterative approachsignals are characterized not only by sudden modifications
is proposed in the current paper for improvement of param-of amplitude and frequency, but also by sudden changes of
eter estimations involved in the local singularity analysis.the geometric shape of the signal. Here, we call the latter
The advantage of this new approach is demonstrated with da singularity in the structure of the signal that has been of-
Wijs’s zinc data from a sphalerite-quartz vein near Pulacayaten ignored. Yang et al. (2006) developed a method using the
in Bolivia. The semivariogram method was used to illustratewell-known singular value decomposition (SVD) method, in-
the differences between the raw data and the estimated dafarmation entropy, and principal component analysis tech-
by the new algorithm. It has been shown that the outcomeniques to identify singularities in signals, whether they were
of the local singularity analysis consists of two components:characterized by sudden changes in amplitude, structure, or
singularity component characterized by local singularity in- frequency. Besides, when a signal is a function whose sin-
dex and the non-singular component by prefractal parametegularities are not isolated, measurements with finite numeri-
cal resolution are not sufficient to distinguish individual sin-
gularities. One attempt to compute singularity spectrum of
multifractals is by taking advantage of their self-similarities
(Mallet, 2003).

Singularities often carry significant information in signals  Since the pioneering work of Mandelbrot (1977, 1983),
and images. Detection and characterization of singularitieghe concept of a fractal, a fast-moving research front cou-
form a crucial step in the analysis of various signals and im-Pled with concepts of complexity, criticality, and self-
age processing. Hence, the available time-frequency anaRrganization, has extended our usual ideas of classical ge-
ysis methods, such as the short-time Fourier transform, th@metry beyond those of points, lines, circles, and so on into
Wigner distribution, and the wavelet transform, are commonthe realm of irregular, disjoint, and singular structures (Li,
detection tools (Yang et al., 2006). For example, Mallet ang2000). There are many phenomena in physics and other
Hwang (1992) first introduced a method for detecting sin-fields that are charactepzed by _C(.)fnpllcated_s[ngular mea-
gularities in a time series signal by examining the evolu-Sures or singular functions exhibiting self-similar scaling
tion of the modulus maxima of the wavelet transform acrossProperties (Feder, 1988; Arneodo et al., 1995). More and
the scales. The decay of the line of maxima can then bdnOre complex processes, such as multiplicative cascade pro-
used to determine the regularity of the signal at a given timec€SSes, diffusion-limited aggregation, turbulence, and Brow-
point. The measure of this decay is théldier exponent, also  Mian motion, have been suggested as having multifractal

known as the Lipschitz exponent. Wavelet provides a powermeéasures (Feder, 1988; Schertzer and Lovejoy, 1991; Ev-
ertsz and Mandelbrot, 1992). It has become a standard proce-

Correspondence taQiuming Cheng dure to analyze fractals via the multifractal formalism, which
(giuming@yoku.ca) was introduced to provide a statistical description of singular
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measures in terms of thermodynamic functions such as thés referred to Cheng (2006c¢, 2007). We denote the mass by
generalized fractal dimensioB, and the singularity spec- u(Bx(¢)) with sizee centered at; the average densify can
trum f(«). D, is intimately related to the spectrum of sin- then be expressed @a$B. (¢))=/(Bx(¢))/eE, whereE is the
gularities f (o) by means of a Legendre transformation. This Euclidean dimensionA=1 for a one-dimensional problem
connection results from a deep analogy that links the multi-and 2 for a two-dimensional problem). In general, however,
fractal and the thermodynamic formalism (Frisch and Parisi,fractal measures display multifractal properties in the sense
1985; Halsey et al., 1986). Therefo®, and the spectrum that they scale differently from location to location. One
of singularities f («) are thermodynamic functions, i.e. sta- is then led to consider a local scaling behavior following a
tistical averages that provide only macroscopic informationpower-law relationship, where

about the scaling properties of fractals. Recently, some lo- £ w(x)—E

calized approaches to the characterization of fractal objecté (Bx(€)) = w(Bx(e))/e™ = c(x)e @)

have been proposed and developed. Armneodo et al. (1992gre(x) is the Holder exponent, also termed the local sin-
1995, 1998) provided a thermodynamics of fractals based ORyularity exponent in this papeti(x) represents the singu-

wavelet analysis, aimed towards a unified theory of Singu‘larity strength of the measure, whilgx) determines the

lar distributions, including multifractal measures and multi- background magnitude. The smaller the local singularity
fractal functions. The wavelet transform modulus max'maexponent, the more singular the measure aroumahd the

(WTMM) method consists in building a partition function “stronger” the singularity.

from the modulus maxima of the wavelet transform. By an-  eep in mind that the previous and further discussions are
alyzing the behavior the wavelet transform of a fractal func-nqer an assumption that the local singularity convergence in

tion versus the scale parameter along the WTMM lines, one; erage sense in a small area which is different from point-
can estimate the value of the locablder exponent. This  ise singularity. More discussions about the localization of

method provides a natural generalization of the classical box'singularity can be found in Cheng (2007). The local singular-

counting techniques to fractal signals, the wavelets playinqty exponent in Eq. (1) has the following properties (Cheng,
the role of “generalized boxes”. Cheng (1999a) elaborated,qq1 4 2007):

on a local singularity analysis based on multifractal model-
ing that provides a powerful tool for characterizing the local (1) a(x)=E if and only if (“iff” for short) p(By(¢)) is a
structural properties of spatial patterns. By analyzing the be-  constant, independent of the sigethe measure is pro-
havior of a singular measure versus the scale within small portional to the area.

spatial-temporal intervals in the multifractal formalism, one
can estimate the local dider exponent. This method pro- (2)
vides a simple and direct strategy for detecting and character- ox\&)) BS - . = !
izing singularities and has been successfully applied inmany ~ Which implies a “convex” property and positive singu-
fields, such as anomaly enhancement and identification of |2ty of p(Bx(¢)) in a small area centered around the
geochemical data (Cheng, 2001a, b, 2004, 2006a, b, c), and  9iven location.

texture analysis of remote-sensing images (Cheng, 1999a). 3)

a(x)<E iff p(By(e)) is a decreasing function of,
o(By(¢)) becomes very large when becomes small,

a(x)>E iff p(Bx(¢)) is an increasing function of,

Cheng's local singularity analysis is _briefl_y introduced in o(Bx(¢)) becomes very small when becomes small,
_Sect. 2. In Se_ct. 3 we develop an iterative approach to  \yhich implies a “concave” property and negative singu-
improve the estimation of the localdttler exponent. Sec- larity of p(By(¢)) in a small area centered around the

tion 4 is a case study. The usefulness of the new approach is given location.

demonstrated by application to the well-studied data on zinc

concentration from a sphalerite-quartz vein near Pulacayo irCase (1) means nonsingular, and cases (2) and (3) correspond

Bolivia reported by de Wijs (1951), who also formulated the to a singular situation where(B, (¢)) depends on the size

well-known de Wijsian model, which provides an early ex- Therefore, thex-value can be used to characterize the spa-

ample of a multifractal (Mandelbrot, 1983; Agterberg, 2001). tial structural properties of the density or measure function

This zinc data set has been widely used in geostatistical anaithin small vicinity.

multifractal modeling (Matheron, 1962; Cheng and Agter- A window-based method for mapping local singularity can

berg, 1996; Cheng, 1994, 1997, 2000). be used as follows (Cheng, 2006c). Given a location on a
map, define a set of window&(r) (square, circular, rectan-
gular, and elliptical) with variable window sizegin=r1<r2

2 Local singularities of multifractal measures c<Fi<...<rp=rmax (=1, 2, ... ,n). Lete;=rilrmax SiNCe
normalization is a geometrically invariant transformation and

The local singularity analysis based on multifractal model- does not alter the measure. For each window size, calculate

ing provided by Cheng (1999a) adopts the microcanonicathe mass valug(A(e;)) or p(B,(e))eE. The valuesi(A(e;))

method of determining the singularity spectrum directly from will show a linear trend with the linear sizg on log-log pa-

the data. More information about the principal of the methodper, or log{(A(e;)))=c+a log((e;)). Similar treatment with
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a sliding window at all locations on the map can create acharacterized by the-values. c-value should be nonsingu-
singularity distribution map. The uncertainty related to the lar component in theory, sineg* gives a characterization of
estimation of the singularity index can also be recorded andhe singularity (Cheng, 2005). The current paper takes the
mapped. The use of different ranges miif, rmax] to ensure  regularity of thec-values into account and provides a new
distinct power-law functions may yield singularities on dif- approach to estimate* and ¢* by employing an iterative
ferent scales; for example, small-scale singularities may reprocedure. The model is expressed as

flect local anomalies, whereas large-scale singularities may

represent regional background variability. c*D () = ¢® (x)g2¥0-E ©)
o _ _ _ wherek=0, 1, 2, 3, ... . Let(-D=p whenn=0, and let©be
3 The iterative approach to local singularity analysis an ordinaryc-value calculated in the first iterative equivalent

to the results obtained by the ordinary non-iterative approach.

It is natural and simple to scan the suppori,oby mea-  The jteration function in Eq. (3) represents an iterative de-

suringe(x) at each locationr estimated by the slope of the composition process producing a et and a serieg ®,

curve of In((By (¢))) as a function of In. However, such a g it also represents a reconstruction process which can be
method would lead to some errors since, for any small aregnplied to the fractal interpolation problem.

with linear sizee, u(By(¢)) is the average values of many

points which may have different singularity exponents. In evaluate the closeness to the solution. Note thatshe-

CTetng,S algf(?_nt.hn][,_lt C?Iczlgtefhthe ?.tan(tj.ard P}rr(?r ar;d _‘tzor'comes smoother after every iteratiasf) approache#, and
relation coefficient involved in the estimation of singularity . - /e0_ga~E_, 1 Thus the correlation coeffi-

index. These statistics can be used to evaluate how good the : cigrigk—D

estimation and only the results with statistical significanceczgnt of the data set of successive local coe_ff!cm( ’

are used. ¢") can be calculated to control the precision of the solu-
The difference between thevalue and the object’s Eu- Fion. .It Is usual practice to specily a maximur_n_number of

clidean dimension is used to identify the local singularity in lterations gnd a threshollly f_or th? chal coefficient (.g.

the above method. So, under conditions of finite numeri-o'g%,or b|gger) as the stopping crltengfokr t?e prkocedure. Al

cal resolution, the key issue in the local singularity analysise"’lc.h |f[erat|on, an update is performgdi(fc( ', ) <Ro.

is that how to improve the estimation of tevalue whose If this is nqt true wherk=n, the iteration is stopped, and the

bias may yield an incorrect interpretation. We notice that the'@W data yield

model (1) involves the local coefficients-yalues) accom- p(x) = @ (x)e¥© (x)~E

panying thex-values and c-value should be a nonsingular 1)/ a(0) o

value (Cheng, 2005). However, if c-value is not completely ¢ ()e™ V) + a7 (x) —E-E

nonsingular due to the calculation process, then the expected [a<0)(x)+f (@® (x)—E)-E

«a-value may be affected accordingly. This leads to the new = ¢ (x)e k=t (4)

idea of iterative approach. The goal is to improve the re- , i i

sults so that the c-value does not contain singular componerf€Nce; the optimal solution far* andc™ is

and therefore a-value reaches optimal. Therefore, we define, frn )

a*(x) andc*(x) as the optimal local singularity index and c(x) = ‘n x)

local coefficient, respectively, such that a*(x) =aQ) + 3 @®@x) —E) )

k=1

A function should be constructed at every iteratiomo

o(x) = ¢*(x)e® W—E 2 ) ] . ]
The iterative approach calculates not only the singularity ex-

wherep(x) is the average density of a bdll (¢) centered at  ponents, but also coefficients which can be used for singular
x. We then have the following cases: kriging interpolation and identification of anomalies (Cheng,

) . . 2000, 2005).
(1) ¢*(x)=p(x) asp is nonsingular at with «*(x)=E.

(2) c*(x)<p(x) as p is positive singular atx with 4 Case study: de Wijs's zinc data

a*(x)<E.
(3) ¢*(x)>p(x) as p is negative singular ate with The iterative approach to local singularity analysis has been
a*(x)>E. tested on pedagogical examples, for example generalized

devil’s staircases and multiplicative cascade processes (Chen
So thec-values vary with location, and form a new data set et al., 2005). This paper shows the results obtained on de
whose fluctuation is smaller than that of the data sep-of Wijs’ Zinc data from a mineral deposit. More examples
values. The:-values can be taken as a coarse-scale approxincluding data generated by random multiplicative cascade
imation of the p-values, whose finest-scale information is processes will be given in the future papers.
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Table 1. Summary statistics for the de Wijs zinc data set, and results
obtained by local singularity analysis.

% a0 w0 1m0 0 200 20 °00 a5 , e 10 10 200 240 In@Zn)  Inc©) a© In(c*®) o

(a Distance(m) £=0 (b) Distance(m)
Max 3.6712 3.4372 1.6931 3.2501 1.6973
“or (1 Min 1.3083 1.9383 0.5909 2.1399 0.6775
£ o | I TI I S T I Mean 26124 27026 1.0385 27198 1.0475
100 Trimmed mean 2.632 2.7088 1.0298 2.7229 1.0368
075 P} T Std. deviation 0.5359 0.3198 0.2014 0.2607 0.1989
0 40 80 120 160 200 240 050 20 80 120 160 200 240 Skewness —0.2438 —-0.1286 0.4974 —-0.1204 0.5616

(©) Distance(m) i=1 (d) Distance(m)

berg (1996) showed that these data followed a multifractal
distribution. Local singularity analysis and multifractal inter-
polation were first applied to this data set by Cheng (2000).

40 80 120 160 200 240 0 40 80 120 160 200 240
(e) Distance(m) ) Distance(m)

k=2
| 4.2 Calculation of singularities
150
T Figure 1la shows the spatial series of 118 zinc percentage
: o S vglues sampled at 2m interval§ from de_ Wijs. Thg iter-
@ " oisancem 2°°k=2‘;° ) Distance(m) ative approgch to local singularity qnalygs was applled.to
achieve optimization of the patterns in this data. We set five
N interval windows, whose half length ranged frofm,=1m
%125 through 3, 5, and 7 m toyx=9 m, and the stop loop con-
et o - dition was Rp=0.995. For each window, the average value
0(.) e CRET R Y oaoo(j) T of the zinc percentage concentration was calculated by av-
i Distance(m) Distance(m)

eraging the values of all samples in the interval. We then
generated two sets of values: the average concentration val-
Fig. 1. Local singularity computation for the spatial series of 118 uesp; (or length-metalu;=p;¢;) and the normalized sizes
zinc percentage values sampled at 2m intervals, from de \)s.  of the windowse;=r;/rmax (i=1, 2, ..., 5). The estimation
Plot showing the raw data(c) and(d) Plots showing the noniter-  f the ¢-value and:-value was performed by a least-squares
ative estimates of the local coefficient and local singularity index, linear regression, which gave these values as the slope and

respectively. (i) and (b) show the optimal estimates of the local | jiorcant respectively, of the scaling curves ofdn(vs.
coefficient and local singularity index, respectively, after three iter- o . 2 .

8 - " In(e;). In addition, the coefficient®< related to the linear
ations. The downward arrows indicate the decomposition proces

and the iteration counter, the upward arrow starting from a diamonc?Ittlng were also calculated.

indicates the calculation af*, and the red triangles indicate the . )
location at a distance of 222 m. 4.3 Results and discussion

Figure 1 shows the decomposition and reconstruction pro-
4.1 Data set cesses of the local singularity analysis using the iterative ap-

proach. The optimal number of iterations was 3, and the
A classic multifractal data set is that of de Wijs (1951), who last successive correlation coefficieRtc®, ¢®) reaches
studied assay values from a sphalerite-quartz vein in the Pud.997 (Fig. 2). The range of the singularity values # 0
lacayo Mine in Bolivia. These data were used for the purposgFig. 1d) in the initial (noniterative) decomposition process
of validation of the new approach. Along a drift, 118 chan- indicates that de Wijs’s zinc data (Fig. 1a) show the multi-
nel samples were cut across the vein at 2 m intervals. Théractality, and the range of the singularity valuag — 0
massive vein filling averaged only 0.50m in width but the (Fig. 1)) in the third decomposition process indicates that the
wall rocks on both sides contained disseminated sphaleritedata in Fig. 1g can be regarded as a nonfractal. It is obvi-
partly occurring in subparallel stringers. The channel sam-ous that the-value curve becomes increasingly smooth, and
ples were cut to a standard width of 1.30 m, corresponding tdhe «-values approach the Euclidean dimensionl. Fig-
the expected stopping width (Agterberg, 1974). These chanures 1c and d show the noniterative estimates of the local co-
nel samples provided unbiased estimates of the zinc concerefficient and the local singularity exponent, respectively, and
tration in 2 m-long blocks measured in the direction of the Figs. 1i and b show the optimal estimates of these quantities
vein. De Wijs showed that the 118 zinc values were approx-after three iterations. The frequency distributions of major-
imately log-normally distributed, whereas Cheng and Agter-ity values ofa* anda@ both approximately follow normal
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Fig. 2. Correlation coefficients of successialues, trending to 1
with increasing number of iterations. {
1.0000 3 05
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0.9625 » =0.5909x + 2.5139
¢ R2=0.9859
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1.000000 Jm.ww.m 3
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& 0999750 { ) ‘:f(@ 05F ¢ °®
0.999625 R2=1.0000[ =
0.999500 »=1.0142 x +2.7833( )
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Fig. 3. Significance validation for the least-squares linear regression =~ o 05 1.0 ) )
on alog-log plot of Int) vs. In(e). (a) and(c) show the coefficients log10(%)

R? for the noniterative decomposition and the third decomposition,
respectively(b) and(d) show the log—log plot and the linear fit for
the location at 222 m in the de Wijs data; (b) is for the noniterative
decomposition and (d) is for the third decomposition.

Fig. 4. Log-log (base 10) plot of the empirical semivariograms
against lag, and modeled linear fits for zinc andalue data. Fit
for Zn: f=0.11, R2=0.6959. Fit forc@: g=1.17, R%2=0.9959. Fit
for ¢cM: B=1.70,R2=0.9980. Fit for £&): =1.83,R?=0.9986. Fit

3. g= 2_
distributions with nearly the same mean. However, the stanlcor ¢ p=1.88,R"=0.9993.

dard deviation ofr*is appreciably smaller than that @f?,
and the standard deviation of In(zn), #f0), and In¢*) also

S . ) (1962) operated on logarithmically transformed data and pro-
decrease (Table 1), which implies that the iterative approac

: X " Nided the well-known logarithmic model. Recent studies
has a tendency to make a conservative estimai€ ahdc™.  haye indicated that the de Wijs data follow a multifractal

¢* has smaller extreme-high and larger extreme-low values ajistripution and that they can be modeled by a theoretical

. O . . .
compared witht®, which means that the iterative approach m jifractal semivariogram, derived by Cheng and Agterberg
has more power to remove the effects of extreme values 0[1996) withz(2)=0.979:0.019:

outliers in the raw data. The significance validation for the

least-squares linear regression is shown in Fig. 3. We find 1| /n 1979
that the coefficient®2 tend to 1, which means that the fitting ¥ (#) = 30.73+ 360.76 { 1-5 [(E + 1)

is significant; in addition, the fluctuation of the coefficients

R? becomes smaller and smaller as the number of iterations 5 (h)1'979+ (h )1'979} ]

. ®)

increases. 2 !
To reveal the spatial properties of thevalues, we used

semivariogram analysis, which has been used widely toEmpirical semivariograms of the raw data an® data
quantify the spatial association and spatial variability of spa-(wherek=0, 1, 2, 3) were calculated with lags of 2m, 4 m,
tial phenomena (Gringarten and Deutsch, 2001). Theissuedm, ..., 118 m. The empirical semivariograms of the Zn
modeling the semivariogram of de Wijs’s zinc data has beerdata fluctuate periodically while ascending without an ob-
discussed by many researchers (Matheron, 1962; Agterbergjous sill, so that the deviations between the experimental
1974; Cheng, 1994; Cheng and Agterberg, 1996). Matherorsemivariogram and the theoretical curve are relatively large.

www.nonlin-processes-geophys.net/14/317/2007/ Nonlin. Processes Geophys., 32432067
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Fig. 5. Best fit of Gaussian model weighted byN(h)[y(h;é')]*2 to the empirical semivariogram of the®data.
y(h):24.00(1— exp(— 0 )). (a) linear mode;(b) log-log mode (base 10). The model is Gaussian with zero nugget effect and a

26.24
practical range of 46.14 m. The sum of the weighted square differences is 0.0108 and the Akaike information crit&3@,6860.

The Zn data have an obvious nugget effect, which accounts The empirical semivariogram of the Zn data was plotted
for large portions of the approximate “sill”; this means that on log-log paper and fitted by a straight line segment with
the regionalized variable is generally not continuous and thaslopes=0.11. The Hurst dimension and fractal box counting
microstructure with a very short range could not be revealeddimension of the Zn data were 0.055 and 1.945, respectively
with the current sampling support. Thus the behavior at the(Fig. 4). However, the dots for th€?, ¢V, ¢@, andc®
origin is maybe very complex; probably the process is highlydata could be divided approximately into two groups, which
random, even nonlinear and chaotic, leading to variationameans that the power law in Eq. (7) is valid within a finite
without any spatial correlation structure. However, the exper-range. So only the dots near the origin (10 dots within 20 m)
imental semivariogram of thevalues can be fitted by a tran- were selected and fitted by line segments (Fig. 4). The result
sitive semivariogram model very well, with a small nugget of the fit shows that the linear behavior near the origin is sig-
effect. nificant for all of thec©@, ¢, @ andc® data and that all

By definition, a semivariogram is a measure of the av-slopes of the-value data are bigger than that of the Zn data.
erage dissimilarity or roughness between observations as What is more, the slopes tend to 2 with increasing iteration
function of the separation vectdr (Goovaerts, 1999; Her- number. The Hurst dimensions of th€® andc® data are
afeld and Overbeck, 1999). Assume the existence of an aud.585 and 0.940, respectively, and the fractal box counting
tocorrelation functionC (k) of a profile (a graphf: [a, b] dimensions are 1.415 and 1.060, respectively. This brings
— R)h=|h| for a lag distance between two points without out the fact that the©@ data still suffer from some singu-
considering the direction. There is then a constasfd and  larity, since they has a larger fractal dimension and smaller

1<s<2, such that Hurst dimension, and it is reasonable th& should be con-
sidered ag™* with a regularity property. The empirical semi-
y(h) = C(0) — C(h) ~ ch** = ch? (7)  variograms of the:®data can be best fitted by a Gaussian

) ) ) _ model without a nugget effect (Fig. 5),
The fractal box dimensiorD estimated by the variogram

method is then equal to(Falconer, 1990). Therefore, when 2

y(h) is plotted against on log-log paper, the fractal box v (h) = 24.00 <1_ exp(—m)> ®)
dimensionD is equal to 24/2. The fractal dimension can '

reveal the spatial complexity of a spatial pattern. Commonly,A Gaussian model has a parabolic form near the origin.
the more complicated the spatial pattern is, the higher is thén theory, this model is associated with an infinitely differ-
fractal dimension. The Hurst exponekitis an another im-  entiable stationary random function (SRF) and thus is ex-
portant index for characterizing the scale-invariant correla-tremely regular (Chéds and Delfiner, 1999). The regularity
tion, which often used in rescaled range (R/S) analyéls. gives the SRF a deterministic character, in that knowledge of
is related to the fractal dimensiob as follows: D=2—-H the value of the SRF at 0 and the values of its partial deriva-
for profiles, D=3-H for surfaces D=4—H for volumes, etc. tives of all orders determines the value of the SRF at any
(Carr, 1997). For the 1-D cas#,=0.5 is consistent with the locationx (Chiles and Delfiner, 1999). Such regularity is
Brown noise modelH=0 (D=2) corresponds to pure white hardly ever encountered in the earth sciences; however, this
(random) noise; and/=1 (D=1) corresponds to nonfractal, type of data will probably be available when the raw data are
ideal geometric behavior. The smaller the valugHofs, the ~ processed by the iterative approach that we have provided.
more random are the data. So we can analyze the properties The coefficient* is so regular that the interpolation prob-
of D and H for the raw Zn data and far@, ¢, ¢@ and  lem for it is easy to solve by using kriging or other inter-
c®, polation methods such as inverse distance weighted (IDW)
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interpolation. Suppose that is a result of interpolation of Further study will be devoted to a practical algorithm for

¢*, Therefore the raw data can be interpolated by the estimation of local singularity exponents which will take
R v G edge effects, local anisotropic scaling invariance at arbitrary
plx) =c"e (9) locations, etc. into consideration.
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