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Abstract. There are many phenomena in nature, such as
earthquakes, landslides, floods, and large-scale mineraliza-
tion that are characterized by singular functions exhibiting
scale invariant properties. A local singularity analysis based
on multifractal modeling was developed for detection of lo-
cal anomalies for mineral exploration. An iterative approach
is proposed in the current paper for improvement of param-
eter estimations involved in the local singularity analysis.
The advantage of this new approach is demonstrated with de
Wijs’s zinc data from a sphalerite-quartz vein near Pulacayo
in Bolivia. The semivariogram method was used to illustrate
the differences between the raw data and the estimated data
by the new algorithm. It has been shown that the outcome
of the local singularity analysis consists of two components:
singularity component characterized by local singularity in-
dex and the non-singular component by prefractal parameter.

1 Introduction

Singularities often carry significant information in signals
and images. Detection and characterization of singularities
form a crucial step in the analysis of various signals and im-
age processing. Hence, the available time-frequency anal-
ysis methods, such as the short-time Fourier transform, the
Wigner distribution, and the wavelet transform, are common
detection tools (Yang et al., 2006). For example, Mallet and
Hwang (1992) first introduced a method for detecting sin-
gularities in a time series signal by examining the evolu-
tion of the modulus maxima of the wavelet transform across
the scales. The decay of the line of maxima can then be
used to determine the regularity of the signal at a given time
point. The measure of this decay is the Hölder exponent, also
known as the Lipschitz exponent. Wavelet provides a power-
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ful tool for extraction of information about the regularity of a
signal. By examining the decay of the scalogram at specific
points in time across all scales (frequencies), the regularity
of the Hölder exponent can be determined. However, current
research reveals that the singularities present in engineering
signals are characterized not only by sudden modifications
of amplitude and frequency, but also by sudden changes of
the geometric shape of the signal. Here, we call the latter
a singularity in the structure of the signal that has been of-
ten ignored. Yang et al. (2006) developed a method using the
well-known singular value decomposition (SVD) method, in-
formation entropy, and principal component analysis tech-
niques to identify singularities in signals, whether they were
characterized by sudden changes in amplitude, structure, or
frequency. Besides, when a signal is a function whose sin-
gularities are not isolated, measurements with finite numeri-
cal resolution are not sufficient to distinguish individual sin-
gularities. One attempt to compute singularity spectrum of
multifractals is by taking advantage of their self-similarities
(Mallet, 2003).

Since the pioneering work of Mandelbrot (1977, 1983),
the concept of a fractal, a fast-moving research front cou-
pled with concepts of complexity, criticality, and self-
organization, has extended our usual ideas of classical ge-
ometry beyond those of points, lines, circles, and so on into
the realm of irregular, disjoint, and singular structures (Li,
2000). There are many phenomena in physics and other
fields that are characterized by complicated singular mea-
sures or singular functions exhibiting self-similar scaling
properties (Feder, 1988; Arneodo et al., 1995). More and
more complex processes, such as multiplicative cascade pro-
cesses, diffusion-limited aggregation, turbulence, and Brow-
nian motion, have been suggested as having multifractal
measures (Feder, 1988; Schertzer and Lovejoy, 1991; Ev-
ertsz and Mandelbrot, 1992). It has become a standard proce-
dure to analyze fractals via the multifractal formalism, which
was introduced to provide a statistical description of singular
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measures in terms of thermodynamic functions such as the
generalized fractal dimensionDq and the singularity spec-
trum f (α). Dq is intimately related to the spectrum of sin-
gularitiesf (α) by means of a Legendre transformation. This
connection results from a deep analogy that links the multi-
fractal and the thermodynamic formalism (Frisch and Parisi,
1985; Halsey et al., 1986). Therefore,Dq and the spectrum
of singularitiesf (α) are thermodynamic functions, i.e. sta-
tistical averages that provide only macroscopic information
about the scaling properties of fractals. Recently, some lo-
calized approaches to the characterization of fractal objects
have been proposed and developed. Arneodo et al. (1992,
1995, 1998) provided a thermodynamics of fractals based on
wavelet analysis, aimed towards a unified theory of singu-
lar distributions, including multifractal measures and multi-
fractal functions. The wavelet transform modulus maxima
(WTMM) method consists in building a partition function
from the modulus maxima of the wavelet transform. By an-
alyzing the behavior the wavelet transform of a fractal func-
tion versus the scale parameter along the WTMM lines, one
can estimate the value of the local Hölder exponent. This
method provides a natural generalization of the classical box-
counting techniques to fractal signals, the wavelets playing
the role of “generalized boxes”. Cheng (1999a) elaborated
on a local singularity analysis based on multifractal model-
ing that provides a powerful tool for characterizing the local
structural properties of spatial patterns. By analyzing the be-
havior of a singular measure versus the scale within small
spatial–temporal intervals in the multifractal formalism, one
can estimate the local Ḧolder exponent. This method pro-
vides a simple and direct strategy for detecting and character-
izing singularities and has been successfully applied in many
fields, such as anomaly enhancement and identification of
geochemical data (Cheng, 2001a, b, 2004, 2006a, b, c), and
texture analysis of remote-sensing images (Cheng, 1999a).

Cheng’s local singularity analysis is briefly introduced in
Sect. 2. In Sect. 3, we develop an iterative approach to
improve the estimation of the local Hölder exponent. Sec-
tion 4 is a case study. The usefulness of the new approach is
demonstrated by application to the well-studied data on zinc
concentration from a sphalerite-quartz vein near Pulacayo in
Bolivia reported by de Wijs (1951), who also formulated the
well-known de Wijsian model, which provides an early ex-
ample of a multifractal (Mandelbrot, 1983; Agterberg, 2001).
This zinc data set has been widely used in geostatistical and
multifractal modeling (Matheron, 1962; Cheng and Agter-
berg, 1996; Cheng, 1994, 1997, 2000).

2 Local singularities of multifractal measures

The local singularity analysis based on multifractal model-
ing provided by Cheng (1999a) adopts the microcanonical
method of determining the singularity spectrum directly from
the data. More information about the principal of the method

is referred to Cheng (2006c, 2007). We denote the mass by
µ(Bx(ε)) with sizeε centered atx; the average densityρ can
then be expressed asρ(Bx(ε))=µ(Bx(ε))/εE , whereE is the
Euclidean dimension (E=1 for a one-dimensional problem
and 2 for a two-dimensional problem). In general, however,
fractal measures display multifractal properties in the sense
that they scale differently from location to location. One
is then led to consider a local scaling behavior following a
power-law relationship, where

ρ(Bx(ε)) = µ(Bx(ε))/ε
E

= c(x)εα(x)−E (1)

Hereα(x) is the Ḧolder exponent, also termed the local sin-
gularity exponent in this paper;α(x) represents the singu-
larity strength of the measure, whilec(x) determines the
background magnitude. The smaller the local singularity
exponent, the more singular the measure aroundx and the
“stronger” the singularity.

Keep in mind that the previous and further discussions are
under an assumption that the local singularity convergence in
average sense in a small area which is different from point-
wise singularity. More discussions about the localization of
singularity can be found in Cheng (2007). The local singular-
ity exponent in Eq. (1) has the following properties (Cheng,
2001a, 2007):

(1) α(x)=E if and only if (“iff” for short) ρ(Bx(ε)) is a
constant, independent of the sizeε; the measure is pro-
portional to the area.

(2) α(x)<E iff ρ(Bx(ε)) is a decreasing function ofε,
ρ(Bx(ε)) becomes very large whenε becomes small,
which implies a “convex” property and positive singu-
larity of ρ(Bx(ε)) in a small area centered around the
given location.

(3) α(x)>E iff ρ(Bx(ε)) is an increasing function ofε,
ρ(Bx(ε)) becomes very small whenε becomes small,
which implies a “concave” property and negative singu-
larity of ρ(Bx(ε)) in a small area centered around the
given location.

Case (1) means nonsingular, and cases (2) and (3) correspond
to a singular situation whereρ(Bx(ε)) depends on the sizeε.
Therefore, theα-value can be used to characterize the spa-
tial structural properties of the density or measure function
within small vicinity.

A window-based method for mapping local singularity can
be used as follows (Cheng, 2006c). Given a location on a
map, define a set of windowsA(r) (square, circular, rectan-
gular, and elliptical) with variable window sizesrmin=r1<r2
. . .<ri<. . .<rn=rmax (i=1, 2, . . . ,n). Let εi=ri /rmax, since
normalization is a geometrically invariant transformation and
does not alter the measure. For each window size, calculate
the mass valueµ(A(εi)) orρ(Bx(ε))εE . The valuesµ(A(εi))

will show a linear trend with the linear sizeεi on log-log pa-
per, or log(µ(A(εi)))=c+α log((εi)). Similar treatment with
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a sliding window at all locations on the map can create a
singularity distribution map. The uncertainty related to the
estimation of the singularity index can also be recorded and
mapped. The use of different ranges of [rmin, rmax] to ensure
distinct power-law functions may yield singularities on dif-
ferent scales; for example, small-scale singularities may re-
flect local anomalies, whereas large-scale singularities may
represent regional background variability.

3 The iterative approach to local singularity analysis

It is natural and simple to scan the support ofµ by mea-
suringα(x) at each locationx estimated by the slope of the
curve of ln(µ(Bx(ε))) as a function of lnε. However, such a
method would lead to some errors since, for any small area
with linear sizeε, µ(Bx(ε)) is the average values of many
points which may have different singularity exponents. In
Cheng’s algorithm, it calculates the standard error and cor-
relation coefficient involved in the estimation of singularity
index. These statistics can be used to evaluate how good the
estimation and only the results with statistical significance
are used.

The difference between theα-value and the object’s Eu-
clidean dimension is used to identify the local singularity in
the above method. So, under conditions of finite numeri-
cal resolution, the key issue in the local singularity analysis
is that how to improve the estimation of theα-value whose
bias may yield an incorrect interpretation. We notice that the
model (1) involves the local coefficients (c-values) accom-
panying theα-values and c-value should be a nonsingular
value (Cheng, 2005). However, if c-value is not completely
nonsingular due to the calculation process, then the expected
α-value may be affected accordingly. This leads to the new
idea of iterative approach. The goal is to improve the re-
sults so that the c-value does not contain singular component
and therefore a-value reaches optimal. Therefore, we define
α∗(x) andc∗(x) as the optimal local singularity index and
local coefficient, respectively, such that

ρ(x) = c∗(x)εα∗(x)−E (2)

whereρ(x) is the average density of a ballBx(ε) centered at
x. We then have the following cases:

(1) c∗(x)=ρ(x) asρ is nonsingular atx with α∗(x)=E.

(2) c∗(x)<ρ(x) as ρ is positive singular atx with
α∗(x)<E.

(3) c∗(x)>ρ(x) as ρ is negative singular atx with
α∗(x)>E.

So thec-values vary with location, and form a new data set
whose fluctuation is smaller than that of the data set ofρ-
values. Thec-values can be taken as a coarse-scale approx-
imation of theρ-values, whose finest-scale information is

characterized by theα-values.c-value should be nonsingu-
lar component in theory, sinceα∗ gives a characterization of
the singularity (Cheng, 2005). The current paper takes the
regularity of thec-values into account and provides a new
approach to estimateα∗ and c∗ by employing an iterative
procedure. The model is expressed as

c(k−1)(x) = c(k)(x)εα(k)(x)−E (3)

wherek=0, 1, 2, 3, . . . . Letc(−1)=ρ whenn=0, and letc(0)be
an ordinaryc-value calculated in the first iterative equivalent
to the results obtained by the ordinary non-iterative approach.
The iteration function in Eq. (3) represents an iterative de-
composition process producing a seriesc(k) and a seriesα(k),
and it also represents a reconstruction process which can be
applied to the fractal interpolation problem.

A function should be constructed at every iterationk to
evaluate the closeness to the solution. Note that asc(k) be-
comes smoother after every iteration,α(k) approachesE, and
then c(k−1)

/
c(k)

=εα(k)
−E

→1. Thus the correlation coeffi-
cient of the data set of successive local coefficientsR(c(k−1),
c(k)) can be calculated to control the precision of the solu-
tion. It is usual practice to specify a maximum number of
iterations and a thresholdR0 for the local coefficient (e.g.
0.995 or bigger) as the stopping criteria for the procedure. At
each iteration, an update is performed ifR(c(k−1), c(k))<R0.
If this is not true whenk=n, the iteration is stopped, and the
raw data yield

ρ(x) = c(0)(x)εα(0)(x)−E

= c(1)(x)εα(0)(x) + α(1)(x) − E−E

= c(n)(x)ε
[α(0)(x)+

n∑
k=1

(α(k)(x)−E)]−E
(4)

Hence, the optimal solution forα∗ andc∗ is
c∗(x) = c(n)(x)

α∗(x) = α(0)(x) +

n∑
k=1

(α(k)(x) − E)
(5)

The iterative approach calculates not only the singularity ex-
ponents, but also coefficients which can be used for singular
kriging interpolation and identification of anomalies (Cheng,
2000, 2005).

4 Case study: de Wijs’s zinc data

The iterative approach to local singularity analysis has been
tested on pedagogical examples, for example generalized
devil’s staircases and multiplicative cascade processes (Chen
et al., 2005). This paper shows the results obtained on de
Wijs’ Zinc data from a mineral deposit. More examples
including data generated by random multiplicative cascade
processes will be given in the future papers.
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Fig. 1. Local singularity computation for the spatial series of 118
zinc percentage values sampled at 2 m intervals, from de Wijs.(a)
Plot showing the raw data.(c) and(d) Plots showing the noniter-
ative estimates of the local coefficient and local singularity index,
respectively. (i) and (b) show the optimal estimates of the local
coefficient and local singularity index, respectively, after three iter-
ations. The downward arrows indicate the decomposition process
and the iteration counter, the upward arrow starting from a diamond
indicates the calculation ofα∗, and the red triangles indicate the
location at a distance of 222 m.

4.1 Data set

A classic multifractal data set is that of de Wijs (1951), who
studied assay values from a sphalerite-quartz vein in the Pu-
lacayo Mine in Bolivia. These data were used for the purpose
of validation of the new approach. Along a drift, 118 chan-
nel samples were cut across the vein at 2 m intervals. The
massive vein filling averaged only 0.50 m in width but the
wall rocks on both sides contained disseminated sphalerite,
partly occurring in subparallel stringers. The channel sam-
ples were cut to a standard width of 1.30 m, corresponding to
the expected stopping width (Agterberg, 1974). These chan-
nel samples provided unbiased estimates of the zinc concen-
tration in 2 m-long blocks measured in the direction of the
vein. De Wijs showed that the 118 zinc values were approx-
imately log-normally distributed, whereas Cheng and Agter-

Table 1. Summary statistics for the de Wijs zinc data set, and results
obtained by local singularity analysis.

ln(Zn) ln(c(0)) α(0) ln(c∗) α∗

Max 3.6712 3.4372 1.6931 3.2501 1.6973
Min 1.3083 1.9383 0.5909 2.1399 0.6775
Mean 2.6124 2.7026 1.0385 2.7198 1.0475
Trimmed mean 2.632 2.7088 1.0298 2.7229 1.0368
Std. deviation 0.5359 0.3198 0.2014 0.2607 0.1989
Skewness −0.2438 −0.1286 0.4974 −0.1204 0.5616

berg (1996) showed that these data followed a multifractal
distribution. Local singularity analysis and multifractal inter-
polation were first applied to this data set by Cheng (2000).

4.2 Calculation of singularities

Figure 1a shows the spatial series of 118 zinc percentage
values sampled at 2 m intervals from de Wijs. The iter-
ative approach to local singularity analysis was applied to
achieve optimization of the patterns in this data. We set five
interval windows, whose half length ranged fromrmin=1 m
through 3, 5, and 7 m tormax=9 m, and the stop loop con-
dition wasR0=0.995. For each window, the average value
of the zinc percentage concentration was calculated by av-
eraging the values of all samples in the interval. We then
generated two sets of values: the average concentration val-
uesρi (or length-metalµi=ρiεi) and the normalized sizes
of the windowsεi=ri /rmax (i=1, 2, . . . , 5). The estimation
of theα-value andc-value was performed by a least-squares
linear regression, which gave these values as the slope and
y-intercept, respectively, of the scaling curves of ln(µi) vs.
ln(εi). In addition, the coefficientsR2 related to the linear
fitting were also calculated.

4.3 Results and discussion

Figure 1 shows the decomposition and reconstruction pro-
cesses of the local singularity analysis using the iterative ap-
proach. The optimal number of iterations was 3, and the
last successive correlation coefficientR(c(2), c(3)) reaches
0.997 (Fig. 2). The range of the singularity values1α 6= 0
(Fig. 1d) in the initial (noniterative) decomposition process
indicates that de Wijs’s zinc data (Fig. 1a) show the multi-
fractality, and the range of the singularity values1α → 0
(Fig. 1j) in the third decomposition process indicates that the
data in Fig. 1g can be regarded as a nonfractal. It is obvi-
ous that thec-value curve becomes increasingly smooth, and
the α-values approach the Euclidean dimensionE=1. Fig-
ures 1c and d show the noniterative estimates of the local co-
efficient and the local singularity exponent, respectively, and
Figs. 1i and b show the optimal estimates of these quantities
after three iterations. The frequency distributions of major-
ity values ofα∗ andα(0) both approximately follow normal
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Fig. 2. Correlation coefficients of successivec-values, trending to 1
with increasing number of iterations.
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Fig. 3. Significance validation for the least-squares linear regression
on a log-log plot of ln(µ) vs. ln(ε). (a) and(c) show the coefficients
R2 for the noniterative decomposition and the third decomposition,
respectively.(b) and(d) show the log–log plot and the linear fit for
the location at 222 m in the de Wijs data; (b) is for the noniterative
decomposition and (d) is for the third decomposition.

distributions with nearly the same mean. However, the stan-
dard deviation ofα∗is appreciably smaller than that ofα(0),
and the standard deviation of ln(Zn), ln(c(0)), and ln(c∗) also
decrease (Table 1), which implies that the iterative approach
has a tendency to make a conservative estimate ofα∗ andc∗.
c∗ has smaller extreme-high and larger extreme-low values as
compared withc(0), which means that the iterative approach
has more power to remove the effects of extreme values or
outliers in the raw data. The significance validation for the
least-squares linear regression is shown in Fig. 3. We find
that the coefficientsR2 tend to 1, which means that the fitting
is significant; in addition, the fluctuation of the coefficients
R2 becomes smaller and smaller as the number of iterations
increases.

To reveal the spatial properties of thec-values, we used
semivariogram analysis, which has been used widely to
quantify the spatial association and spatial variability of spa-
tial phenomena (Gringarten and Deutsch, 2001). The issue of
modeling the semivariogram of de Wijs’s zinc data has been
discussed by many researchers (Matheron, 1962; Agterberg,
1974; Cheng, 1994; Cheng and Agterberg, 1996). Matheron
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Fig. 4. Log-log (base 10) plot of the empirical semivariograms
against lag, and modeled linear fits for zinc andc-value data. Fit
for Zn: β=0.11,R2=0.6959. Fit forc(0): β=1.17,R2=0.9959. Fit
for c(1): β=1.70,R2=0.9980. Fit for c(2): β=1.83,R2=0.9986. Fit
for c(3): β=1.88,R2=0.9993.

(1962) operated on logarithmically transformed data and pro-
vided the well-known logarithmic model. Recent studies
have indicated that the de Wijs data follow a multifractal
distribution and that they can be modeled by a theoretical
multifractal semivariogram, derived by Cheng and Agterberg
(1996) withτ (2)=0.979±0.019:

γ (h) = 30.73+ 360.76

{
1−

1

2

[(
h

2
+ 1

)1.979

−2

(
h

2

)1.979

+

(
h

2
− 1

)1.979
]}

(6)

Empirical semivariograms of the raw data andc(k) data
(wherek=0, 1, 2, 3) were calculated with lags of 2 m, 4 m,
6 m, . . . , 118 m. The empirical semivariograms of the Zn
data fluctuate periodically while ascending without an ob-
vious sill, so that the deviations between the experimental
semivariogram and the theoretical curve are relatively large.

www.nonlin-processes-geophys.net/14/317/2007/ Nonlin. Processes Geophys., 14, 317–324, 2007



322 Zhijun Chen et al.: A novel iterative approach for mapping local singularities

(b)h

γ log10(γ)

log10(h)

(a)
0 20 40 60 80 100 1200

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

Fig. 5. Best fit of Gaussian model weighted byN(h)[γ (h;θ )]−2 to the empirical semivariogram of thec(3)data.

γ (h)=24.00
(
1− exp(− h2

26.242 )
)
. (a) linear mode;(b) log-log mode (base 10). The model is Gaussian with zero nugget effect and a

practical range of 46.14 m. The sum of the weighted square differences is 0.0108 and the Akaike information criterion is−532.6860.

The Zn data have an obvious nugget effect, which accounts
for large portions of the approximate “sill”; this means that
the regionalized variable is generally not continuous and that
microstructure with a very short range could not be revealed
with the current sampling support. Thus the behavior at the
origin is maybe very complex; probably the process is highly
random, even nonlinear and chaotic, leading to variations
without any spatial correlation structure. However, the exper-
imental semivariogram of thec-values can be fitted by a tran-
sitive semivariogram model very well, with a small nugget
effect.

By definition, a semivariogram is a measure of the av-
erage dissimilarity or roughness between observations as a
function of the separation vectorh (Goovaerts, 1999; Her-
afeld and Overbeck, 1999). Assume the existence of an au-
tocorrelation functionC(h) of a profile (a graphf : [a, b]
→R)h=|h| for a lag distance between two points without
considering the direction. There is then a constantc>0 and
1≤s≤2, such that

γ (h) = C(0) − C(h) ≈ ch4−2s
= chβ (7)

The fractal box dimensionD estimated by the variogram
method is then equal tos (Falconer, 1990). Therefore, when
γ (h) is plotted againsth on log-log paper, the fractal box
dimensionD is equal to 2–β/2. The fractal dimension can
reveal the spatial complexity of a spatial pattern. Commonly,
the more complicated the spatial pattern is, the higher is the
fractal dimension. The Hurst exponentH is an another im-
portant index for characterizing the scale-invariant correla-
tion, which often used in rescaled range (R/S) analysis.H

is related to the fractal dimensionD as follows: D=2–H
for profiles,D=3–H for surfaces,D=4–H for volumes, etc.
(Carr, 1997). For the 1-D case,H=0.5 is consistent with the
Brown noise model;H=0 (D=2) corresponds to pure white
(random) noise; andH=1 (D=1) corresponds to nonfractal,
ideal geometric behavior. The smaller the value ofH is, the
more random are the data. So we can analyze the properties
of D andH for the raw Zn data and forc(0), c(1), c(2), and
c(3).

The empirical semivariogram of the Zn data was plotted
on log-log paper and fitted by a straight line segment with
slopeβ=0.11. The Hurst dimension and fractal box counting
dimension of the Zn data were 0.055 and 1.945, respectively
(Fig. 4). However, the dots for thec(0), c(1), c(2), andc(3)

data could be divided approximately into two groups, which
means that the power law in Eq. (7) is valid within a finite
range. So only the dots near the origin (10 dots within 20 m)
were selected and fitted by line segments (Fig. 4). The result
of the fit shows that the linear behavior near the origin is sig-
nificant for all of thec(0), c(1), c(2), andc(3) data and that all
slopes of thec-value data are bigger than that of the Zn data.
What is more, the slopes tend to 2 with increasing iteration
number. The Hurst dimensions of thec(0) andc(3) data are
0.585 and 0.940, respectively, and the fractal box counting
dimensions are 1.415 and 1.060, respectively. This brings
out the fact that thec(0) data still suffer from some singu-
larity, since they has a larger fractal dimension and smaller
Hurst dimension, and it is reasonable thatc(3) should be con-
sidered asc∗ with a regularity property. The empirical semi-
variograms of thec(3)data can be best fitted by a Gaussian
model without a nugget effect (Fig. 5),

γ (h) = 24.00

(
1− exp(−

h2

26.242
)

)
(8)

A Gaussian model has a parabolic form near the origin.
In theory, this model is associated with an infinitely differ-
entiable stationary random function (SRF) and thus is ex-
tremely regular (Chil̀es and Delfiner, 1999). The regularity
gives the SRF a deterministic character, in that knowledge of
the value of the SRF at 0 and the values of its partial deriva-
tives of all orders determines the value of the SRF at any
location x (Chilès and Delfiner, 1999). Such regularity is
hardly ever encountered in the earth sciences; however, this
type of data will probably be available when the raw data are
processed by the iterative approach that we have provided.

The coefficientc∗ is so regular that the interpolation prob-
lem for it is easy to solve by using kriging or other inter-
polation methods such as inverse distance weighted (IDW)
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interpolation. Suppose thatĉ∗ is a result of interpolation of
c∗, Therefore the raw data can be interpolated by

ρ̂(x) = ĉ∗εα̂∗−E (9)

whereα̂∗ is the local singularity exponent corresponding to
ĉ∗. The interpolation function in Eq. (9) takes the scale and
the local singularity into consideration, whereas the conven-
tional interpolation methods have a smoothing effect. A sin-
gular kriging interpolation technique based on geostatistics
and local singularity analysis has been proposed and dis-
cussed by Cheng (1999b, 2000, 2005).

5 Conclusions

There are many good characteristics of the local singularity
exponent, and so in general it can be used in many fields,
but it is especially useful in the detection of singularities
in signals, identification of anomalies in geochemical data,
and the singular interpolation technique. Local singularity
analysis based on multifractal modeling exhibits more con-
venience and feasibility in practical applications in geochem-
istry than do the available time-frequency analysis tools, such
as wavelet transforms. It is essential to note that the key to
the application of singularity analysis is the improvement of
the estimation of the local singularity exponents. The local
value of the coefficientc, as well as theα-value, plays a cen-
tral role in local singularity analysis.

The iterative approach to local singularity analysis pro-
posed in this paper focuses on investigation of the regularity
of c-values to improve the estimation ofα-values. It has been
demonstrated by the case study of the de Wijs’s zinc data
that this approach is superior to the noniterative approach.
The latter can be considered as a special case of the former.
We have explored the differences between the raw data and
the local coefficients in terms of the spatial association and
regularity properties using semivariogram analysis. Ideally,
thec∗ obtained by the iterative approach is nonfractal, with-
out a nugget effect and withD=1 andH=2, whereas the raw
data will have a bigger nugget effect, a biggerD-value, and a
smallerH -value if it follows a multifractal distribution. The
c∗ data are so regular that they can be best fitted by a Gaus-
sian model. It is not unreasonable to expect that combining
spatial variability with singularity analysis will improve in-
terpolation results significantly, especially for observed data
with singularities.

The iterative approach has the shortcomings that it is time-
consuming and that the spread of edge effects is unavoidable
with the iterations. Also, the current procedure for local sin-
gularity analysis does not consider the shape of the windows
used; monotonic windows are arbitrarily slid to any location
to calculate theα-value andc-value in the above procedure.
However, it is a crucial issue to specify suitable windows (in
terms of size and shape) with different locations, since the
object of study is usually anisotropic and inhomogeneous.

Further study will be devoted to a practical algorithm for
the estimation of local singularity exponents which will take
edge effects, local anisotropic scaling invariance at arbitrary
locations, etc. into consideration.
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