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ABSTRACT 

In order to reduce wind energy costs, prognostics and health 
management (PHM) of wind turbine is needed to reduce 
operations and maintenance cost of wind turbines.   The 
major cost on wind turbine repairs is due to gearbox failure.  
Therefore, developing effective gearbox fault detection tools 
is important in the PHM of wind turbine.  PHM system 
allows less costly maintenance because it can inform 
operators of needed repairs before a fault causes collateral 
damage happens to the gearbox.  In this paper, a new 
acoustic emission (AE) sensor based gear fault detection 
approach is presented.  This approach combines a 
heterodyne based frequency reduction technique with time 
synchronous average (TSA) and spectral kurtosis (SK) to 
process AE sensor signals and extract features as condition 
indictors for gear fault detection.  Heterodyne techniques 
commonly used in communication are used to preprocess 
the AE signals before sampling.  By heterodyning, the AE 
signal frequency is down shifted from MHz to below 50 
kHz. This reduced AE signal sampling rate is comparable to 
that of vibration signals.  The presented approach is 
validated using seeded gear tooth crack fault tests on a 
notational split torque gearbox.  The approach presented in 
this paper is physics based and the validation results have 
showed that it could effectively detect the gear faults. 

1. INTRODUCTION 

The largest variable cost to owners and operators of wind 
turbines is unscheduled maintenance. PHM has been shown 
to be technique that can successfully reduce both scheduled 
and unscheduled maintenance. PHM system allows better 
maintenance practices as well as less costly maintenance 
because it can give indications and warnings prior to 

collateral damage occurring.  In wind turbines, this might be 
the difference between an up tower maintenance effect or a 
down tower event, which requires a crane (a large fixed 
expense). Or, it could be the difference between 
refurbishing a gearbox instead of replacing it.  Therefore the 
development of effective gearbox fault detection tools is 
important to the PHM of wind turbine.  Currently, vibration 
is the most widely used tool in diagnosis of machine fault, 
such as: shaft, gears, and bearings. Common vibration 
sensors include accelerometer, displacement and velocity 
sensors.  However, vibration signals have some drawbacks 
when it comes to detecting the incipient machine faults at 
low frequency.  Accelerometers measure the second 
derivative of the displacement. For low frequency 
components, such as the carrier or planets, which operate 
below 2 Hz, even damage components may develop 
acceleration below the noise floor of the sensor.  AE, on the 
other hand, does not measure acceleration and is not a 
function of displacement: it is independent of shaft rate.  
This has been observed in (Al-Ghamd & Mba, 2006), where 
early fault signatures were not present in vibration data, but 
was detected by AE. If these faults could be detected at an 
early stage, significant maintenance costs could be saved.  
In this paper, the development of a new AE sensor based 
gear fault detection approach is presented. 

AE is commonly defined as transient elastic waves within a 
material, caused by the release of localized stress energy.  It 
is produced by the sudden internal stress redistribution of 
material because of the changes in the internal structure of 
the material.  Possible causes of these changes are crack 
initiation and growth, crack opening and closure, or pitting 
in various monolithic materials (gear, bearing material) or 
composite materials (concrete, fiberglass).  Thus the ability 
to detect AE can be used to give diagnostics indications of 
component health.  The challenges of using AE sensor 
include: the frequency of the output signals from AE sensor 
is generally high, even as high as several MHz. Thus a high 
sampling rate between 2MHz and 10MHz is normally 
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needed for AE data collection. Other challenges include the 
high data volume, complicated feature of AE signals, which 
make the data processing highly difficult.  

A number of methods have been developed for AE signal 
analysis, but few techniques have been successful in 
application. Most of the research into AE for machine 
condition monitoring focuses on time domain features, such 
as: peak, total energy, standard deviation, median, AE 
counts, root mean square (RMS) voltage and duration (Mba, 
2003).  These features all relate to the absolute energy levels 
of the measured signals.  As the absolute energy could vary 
from one machine to another, or vary at different locations 
on the same machine, the effectiveness of these features 
may be compromised.  Consequently, these features are not 
ideal for fault detection purpose. 

Gao et al. (2011) proposed a wavelet transform based 
method to analyze AE signals, which could act as a 
supplement redundant method for vibration test.  He and Li 
(2011) developed a data mining based method to classify the 
condition indicators derived from different AE data to detect 
fault.  Later, Li and He (2012) introduced an EMD-based 
AE feature quantification method.  In their work, successful 
detection of gear fault was achieved on AE data sampled at 
a rate as low as 500 kHz.  Artificial neural networks (ANN) 
have also been adopted for AE signal classification.  In 
(Pandya et al., 2013), a supervised learning process was 
developed after EMD decomposition for bearing fault 
detection using AE signals.  

In (Kilundu et al., 2011), cyclostationarity analysis was 
compared with traditional envelope spectrum. It was 
proposed that the cyclic spectral correlation, a tool for 
characterizing cyclostationarity, was more efficient 
compared with envelope spectrum for bearing fault 
diagnosis.    A comparison study between vibration and AE 
based on spectral kurtosis was reported in (Eftekharnejad et 
al. 2011).  The conclusion was that by using AE features 
with spectral kurtosis, the fault could be detected at an 
earlier stage.  Al-Balushi et al. (2002) developed an energy 
based feature, named energy index.  By calculating the 
cumulative of the square root of the energy index, the tooth 
fault could be identified as high peak values.   

There are still a number of issues in the reviewed methods.  
First, the AE data was collected at very high sampling 
frequency, typically 2~5MHz.  Second, these methods tried 
to detect the gear faults using data driven approach rather 
than physics based approach.  Data driven approaches 
normally rely on complicated computation algorithms such 
as EMD and wavelet analysis to compute the AE features.  

This research is aimed to address the AE sensor based gear 
fault detection problem using physics based methods, 
similar to those techniques applied to vibration signal to 
analyze the AE data.  For gear fault detection, it is common 
to use time synchronous average (TSA) to extract the gear 

signals from the raw signals.  Generally, the signals 
collected from a gearbox contain broadband and non-
synchronous noise, such as other shaft/gear pairs, or bearing 
tones. TSA is able to reduce the random and non-
synchronized noise from other sources while enhancing the 
synchronous signals from the gear of interest.  In order to 
perform TSA on the AE signals, high sampling frequency 
and large data volume need to be addressed. This requires a 
frequency demodulation/decimation technique be applied 
prior to data sampling and signal analysis.  The heterodyne 
technique is proposed to demodulate the signals and down 
shift the signals to a low frequency range.  After the 
heterodyne is applied, the AE signal can be sampled at 
frequencies comparable to that of vibration analysis. If a 
phase reference is available, the TSA could be generated.   

The remainder of the paper is organized as follows.  Section 
2 illustrates in details the methodology.  In Section 3, the 
setup of the experiments for the validation of the 
methodology is explained.  Section 4 presents the analysis 
results of the experiments and illustrates how a fault is 
identified.  Finally, Section 5 concludes the paper.  

2. THE METHODOLOGY 

The methodology will be illustrated in 4 parts.  The first part 
discusses the heterodyne technique.  TSA will be briefly 
reviewed in the second part.  The third part explains how the 
kurtogram could be applied and idea of designing an 
optimal band pass filter from spectral kurtosis.  Then, 
condition indicators for gearboxes diagnosis are discussed. 

2.1. The Heterodyne Technique 

Current AE signal processing steps are given in Figure 1. 

Figure 1. Traditional AE signal acquisition and 
preprocessing procedure 

In a traditional AE signal processing procedure, all of the 
data is collected and stored to computer without any signal 
processing.  There are two disadvantages associated with 
this procedure.  First, it increases the data acquisition cost.  
Second, it relies on the computer to process the resulting 
large data set.   

When taking a further look at an AE signal, one will find 
that the AE signal is virtually a carrier signal for the fault 
signal.   The information of interest is related to the load 
signal, not the high frequency AE carrier signal.  In order to 
get the load signal, demodulation process is required before 
sampling.  As for rotational machine fault detection, the 
faults are mostly related to the rotational speed, which is 
generally in the low frequency range.  Thus, the information 
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of interest is related to the low frequency load signals, not 
the high frequency AE carrier signal.  This low frequency 
load information is recovered through a demodulation 
process. The demodulation process is similar to information 
retrieval in an amplitude/phase modulated radio frequency 
signal.  The carrier signal of a typical AM radio signal is 
several MHz, while the information modulated onto that 
signal is audio signal of a couple of kHz. After 
demodulating the carrier using an analog signal conditioning 
circuit, the acquisition system can then be sampled at audio 
frequency (10s of kHz).  This signal processing can then be 
performed at lower cost with an analog circuit rather than a 
high speed analog to digital converter and the associated 
computation power required to process the large data set 
resulting from the high sample rate. 

The AE signal demodulator implemented in this paper work 
similarly to a radio quadrature demodulator: shifting the 
carrier frequency to baseband, followed by low pass 
filtering.  The technique applied here is called heterodyne.   
Mathematically, heterodyning is based on the trigonometric 
identity. For two signals with frequency  and   , 
respectively, it could be written as 

 

2 ∗ ∗ ∗ 2 ∗ ∗ 	

1
2

	2
1
2

	2  
(1) 

where,  is the carrier frequency,  is the demodulator’s 
reference input signal frequency.  This process could be 
explained with a simple example.   

For example, let 4	Hz  and 5	Hz , note 
2 ∗ 4 ∗  and 2 ∗ 5 ∗ .   Take their 

multiplication as .∗ , as shown in Figure 2. 

 

Figure 2. The multiplication of two sinusoid signals 

The modulated signal is then low pass filtered to reject the 
high frequency image at frequency ( ), as shown in 
Figure 3. 

A detailed discussion of the heterodyne technique applied 
on the raw AE signal is given in the following.  In general, 
amplitude modulation is the major modulation form for AE 
signal.  Although, frequency modulation and phase 
modulation could present in the AE signal potentially, they 
are considered trivial and will not be discussed here. The 
amplitude modulation function is given in Eq. (2). 

 

Figure 3. The extraction of the heterodyned signal by 
frequency domain filtering 

 

	 (2) 

where,  is the carrier signal amplitude,   is the carrier 
signal frequency,  is the modulation coefficient.    is the 
modulated signal, note as  

Ω 	 (3) 

Then, with heterodyne technique, the modulated signal will 
be multiplied with a unit amplitude reference signal 
cos	 .  The result is given in the following. 

For the amplitude modulation signal, 

 1
2

1
2

2
(4) 

Then substitute Eq. (3) in into Eq. (4), it gives: 

 

1
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1
2

Ω
1
2

2

1
4

2 Ω 2 Ω  

(5) 

Since  does not contain any useful information related 
with the modulated signal, it could be set as 0, or removed 
by de-trending.  From Eq. (5), it can be seen that only the 
modulated signal will be left after low pass filtering, where 
the high frequency components around frequency 2  will 
be removed. 

The diagram of the proposed down sampling system using 
heterodyne is shown in Figure 4. 
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Figure 4. Proposed AE signal acquisition and preprocessing 
procedure 

By adding a demodulation step, it could achieve the purpose 
of reducing the signal frequency to 10s of kHz.  This is 
close to the frequency range of general vibration signals.  
Any data acquisition board with a low sampling rate could 
be able to sample the pre-processed AE data. 

2.2. AE Signal TSA 

TSA has been widely used in processing the vibration 
signals for rotating machine fault diagnosis (McFadden & 
Toozhy, 2000; Bonnardot et al., 2005).  The idea of TSA is 
to use the ensemble average of a raw signal over certain 
number of revolutions in order to enhanced signal of interest 
with less noise from other sources. For a function x(t), 
digitized at a sampling interval nT, resulting in sampling in 
samples x(nT). Denoting the averaged period by mT, TSA is 
given as (Braun, 1975): 

 
1

 (6) 

More details about TSA could be found in (McFadden, 
1987). 

The successful application of TSA on vibration signal 
analysis provides the possibility of using it to process AE 
signals.  Basically, two types of TSA algorithms are 
available in literature, i.e., TSA with tachometer, and 
tachometer less TSA.  In comparison with TSA with 
tachometer, tachometer less TSA needs to estimate the 
angular information from the vibration data.  For slow speed 
variation cases, time domain feature like gear meshing 
information could be used.  However, tachometer less TSA 
will introduce more phase reference errors and thus have 
less accuracy than TSA with tachometer.  In this work, TSA 
with tachometer is applied. 

Despite of the popular application of TSA to vibration 
signal analysis, application of TSA to AE signal processing 
for gear fault diagnosis has not been reported in the 
literature.  The complicated feature and large data volume of 
AE signals make it unrealistic to perform TSA algorithm 
directly on AE data with an on-line condition monitoring 
system.  In this paper, the authors explore the application of 
TSA to AE signal analysis.  

TSA enables the direct comparison of the acoustic signals 
produced by each tooth on the same gear over one 

revolution.  TSA for gear diagnosis generally computes the 
acoustic signals of a single shaft revolution.  After TSA is 
calculated, basically all kind of fault detection condition 
indicators can be evaluated on the TSA signal.  

2.3. Spectral kurtosis (SK) and optimal band pass filter 

The spectral kurtosis was proposed by Dwyer (1983), as a 
statistical tool that can be used to identify the non-Gaussian 
components in a signal as well as their location in the 
frequency domain.  A more formal definition of SK was 
provided in (Capdevielle, 1996) from the perspective of 
higher-order statistics.  By Capdevielle's  definition, SK is 
the normalised fourth-order cumulant of the Fourier 
transform and can be used as a measure of distance of a 
process from Gaussianity.  Therefore, it can act as a 
measure of the peakiness of the probability density function 
of the process at a frequency of . However, SK did not 
draw much attention from the researchers until it was 
revisited and further developed by Antoni (2006).  The SK 
of a signal  is defined as the energy-normalized fourth-
order spectral cumulant as: 

 2 (7) 

where 〈| , | 〉 , 〈∙〉  stands for the time 
averaging operator, ,  is the complex envelop of signal 

.  

 ,  can be estimated by any time-frequency analysis 
methods, such as: short time Fourier transform (STFT), the 
filter bank method, Wigner-Ville distribution, and wavelet 
package..   

Take STFT for example, the STFT of signal  discretely 
sampled as  is defined as:  

 ,  (8) 

where,  is a positive analysis window, P is a given 
temporal step. 

As noted, the SK is suitable for identifying the peakiness of 
a signal with regard to frequency.  It is able to extract non-
stationary event in the signal.  In general, the vibration 
signals measured from rotating machinery is considered as 
stationary.  However, an AE signal is considered non-
stationary.  Gear signals can be classified as cyclostationary 
process.  As indicated in (Antoni, 2006), the signals from 
rotating machinery can be resynchronized with a phase 
reference and then form a non-stationary signal with a 
periodic statistical structure.  It is therefore conditionally 
non-stationary, which is suitable to use SK for fault 
detection. 

In order to estimate SK, the kurtogram was proposed by 
Antoni and Randall (2006).  A kurtogram is a three 
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dimension graph which gives the kurtosis value for different 
frequency and different window size.  Window size  is 
an important parameter because it directly affects the 
spectral resolution of the SK.  A short  will yield high 
SK value, but too short a  will also lose some details and 
reduce the frequency resolution.  Therefore, both the 
frequency and  should be optimized while the maximum 
SK can be identified.  Since a kurtogram can identify the 
optimal frequency range and optimal window size where the 
signal displays the maximum peakiness, it is very useful for 
filter design.  After the frequency line where the maximum 
SK is obtained, several filter methods could be applied to 
extract an enhanced SNR signal, such as Wiener filter, 
matched filter and band pass filter (Antoni & Randall 2006).   

For optimal band pass filter, the objective is to find: (1) the 
central frequency  and (2) the bandwidth  of the filter 
which maximizes peakiness on the filtered signal.  For fault 
detection problem, in order to recover the impulse 
associated with a faulty signature, a band pass filter which is 
used to maximize the kurtosis of the envelope of the filtered 
signal.  As demonstrated in (Antoni & Randall 2006), this 
problem is strictly equivalent to finding the frequency  and 
the window length  that maximises the STFT-based SK 
over all possible combinations.  The optimal central 
frequency  and bandwidth  of the band pass filter are 
determined as those values which jointly maximize the 
kurtogram.  Therefore, both the center frequency  and 
window length   could be identified by using kurtogram.  
By doing this, the best compromise between maintaining the 
highest possible signal to noise ratio and extracting the 
impulse like signature of the fault is achieved. 

2.4. Condition indicators for gearboxes diagnosis 

Many vibration based condition indicators for gear fault 
detection have been reported in literature.  Most of the 
condition indicators deal with the data distribution, such as 
peakiness, amplitude level, deviation from the mean and so 
on.  A major difference between these condition indicators 
lies in the signal from which they are calculated.  Generally 
four types of signals are used for computation, i.e., raw 
signals, time synchronous average signals, residual signasl 
and difference signals (Večeř et al. 2005; Lebold et al. 
2000).  A residual signal is generally defined as a 
synchronous averaged signal with the shaft, gear mesh, and 
their associated harmonic frequencies removed (Zakrajsek, 
1993).  The difference signal is defined by further removing 
the first order sidebands from the residual signal (e.g. the 
distinction between the residual and difference signals is the 
first order sidebands).  For this filtering process, the 
spectrum values corresponding to these features are set to 
zero and the inverse Fourier transform is performed to 
convert it back to the time domain.  However, these 
definitions are not strict.  Also in practice, different filtering 

methods of performing the above mentioned process will 
give different results.   

Other operations on the TSA include: 

Teager’s Energy Operator: Teager’s energy operator is a 
type of residual of the autocorrelation function (Kaiser, 
1990; Teager, 1992). For a nominal gear, the predominant 
vibration is gear mesh. Surface disturbances, scuffing, and 
etc., generate small higher frequency values which are not 
removed by autocorrelation. The CIs of the EO are the 
standard statistics of the EO vector.  The mathematics 
formula is as follows: 

 ∙  (9) 
   

where ψ  is the ith element in EO,  is the ith element of 
.  

Statistics are performed on the analysis, which include: 

RMS: The root mean square (RMS) for a discretize sampled 
signal is defined as: 

 
1

		 (10) 

where  is the root mean square value of data set ,  is 
the i-th element of , N is the length of data set . 

From the definition of RMS, it is easy to understand that the 
RMS may not increase greatly with isolated peaks in the 
signal, and consequently it is not sensitive to incipient tooth 
crack or initial failure.  Its value will increase as the speed 
and load increase. 

Crest factor: Before crest factor could be defined, peak 
value must be understood.  Peak value generally refers to 
the maximum value in the collected data.  The crest factor 
then could be given in Eq. (11) 

 
| |

		 (11) 

where CF is the crest factor, | |  is the peak amplitude 
in data ,  is the RMS. 

This parameter is more sensitive to initial gear fault, such as 
one tooth crack.  Since the RMS will not change in incipient 
fault, but the crest factor should see an increase. 

Kurtosis: kurtosis describe how peaky or how smooth of 
the amplitude of data set .  If a signal contains sharp peaks 
with high values generated by a fault in the gearbox, it is 
expected that its distribution function will be sharper.  Thus, 
the kurtosis of the fault signal should be higher than that of 
the healthy signal.  The function of kurtosis is given below, 
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where Kurt is the kurtosis of data set ,  is the i-th element 
of , N is the length of data set . 

It is worth to mention that for any normal distribution, the 
kurtosis value is 3.  This could be easily verified by the 
moment generating function.   

Some other gear fault algorithms are functions of 
operations, such as: 

FM4:  The FM4 parameter is simply the kurtosis of the 
difference signal.  It is assumed that a healthy gearbox 
difference signal should display a Gaussian amplitude 
distribution, while a damaged gearbox will produce some 
high peak value which does not conform to Gaussian 
distribution. 
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where  is the i-th element of the difference signal, N is the 
length of difference signal. 

NA4: NA4 is an improved version of FM4.  NA4 is based 
on the argument that sideband signal contains the fault 
related information.  So, the NA is calculated based on the 
residual signal which keeps the sideband while removing 
other meshing components.  Also, NA4 takes an average 
value of the variance.  The NA4 formula is given as: 
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where  is the i-th data point in the residual signal,  is the 
i-th data point of the j-th group of residual signal, M is 
number of the data group of TSA residual signal, N is the 
number of data point in one TSA residual signal. 

Figure 5 shows the overall process of computing the 
condition indictors using the presented approach. 

 

 

 

Figure 5. The overall process of computing the condition indicators 
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3. EXPERIMENTAL SETUP 

In this section, the experiment setup for validating the AE 
sensor based gear fault detection approach is explained.  In 
Figure 6, the demodulation board (Analog devices - 
AD8339) and sampling devices (NI-DAQ 6211) are shown.  
The demodulation board performed the multiplication of 
sensor signals and reference signals.  It is an analog device 
and much more affordable than a high sampling rate board.  
It takes two inputs, one from the AE sensor, and the other 
from function generator as reference signal.   The basic 
principle of AD8339 could be explained by Gilbert cell 
mixers.  In electronics, the Gilbert cell is commonly used as 
an analog multiplier and frequency mixer.  The output 
current of this circuit is an accurate multiplication of the 
base currents of the both inputs.   According to Eq. (1) it 
could convert the signal to baseband and twice the carrier 
frequency.  The output of the demodulation board goes to 
the sampling board and the high frequency component is 
filtered out.  NI-DAQ 6211 is a low frequency data 
acquisition device, with a sample frequency up to 250kS/s.   
Before data acquisition, another task was to determine the 
frequency of the reference signal for demodulation.  The 
objective was to down shift the AE signal frequency as low 
as possible.  In order to remove the carrier frequency, the 
reference signal frequency needs to be as close to the AE 
carrier frequency as possible.  Thus, the next step was to 
identify the AE sensor response frequency.   
 

 

Figure 6. Demodulation device and data sampling board 

Each AE sensor has its specific frequency response range, 
which further depends on the system being sensed and the 
sensor itself.  With reference to the AE sensor user manual, 
a coarse range of the sensor response frequency is given.  In 
order to identify a more accurate AE sensor response 
frequency, a function generator with sweep function was 
used to test the system and record the output.  With a wide 
range of sweep frequency signal as the reference signal to 
demodulation board, the demodulation result varies 
accordingly.  As mentioned before, the energy impact 
information of AE sensor is carried by a high frequency 
modulated signal.  If the AE signal is successfully 

demodulated, most of the energy related signal will be 
shifted to below 50kHz, and thus it will be captured by the 
low frequency sampling board, which is set at 100kHz 
sampling rate.  Otherwise most energy related information 
will still dwell in high frequency and therefore would be lost 
after low pass filtering.  Using swept frequency input, one 
can analyze the energy envelope of the signal at different 
frequencies.  Then the AE sensor response frequency is 
identified in the demodulated AE signal having the largest 
energy level.  By this method, the accurate frequency range 
of the sensor output could be found.  In the conducted 
experiment, 400 kHz was identified as the AE carrier signal 
center frequency.  This frequency was then used as the 
demodulation reference frequency.  

Seeded gear tooth crack fault tests were conducted on a 
notational two-stage split torque gearbox. The gearbox and 
the AE sensor location on the gearbox are shown in Figure 
7.  

 

Figure 7. The notational split torque gearbox and the AE 
sensor location 

As shown in Figure 8, the notational split torque gearbox 
has an intermediate stage which could split the torque and 
change the transmission ratio between input and output 
shaft.  

 

Figure 8. The structure of the notational split torque gearbox 

For the faulty gearbox, one of the intermediate gears with 48 
teeth was damaged by cutting the root of a gear tooth with a 
depth equal to half width of the gear tooth by EDM (electric 
discharge machining) with a wire of 0.5 mm diameter, to 
simulate the root crack damage in real applications.  The 
seeded tooth crack is shown in Figure 9. 

AE sensor
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Figure 9. Seeded tooth root crack 

Since this is a speed reduction gearbox, the input side and 
the output side have a 2.4 times speed reduction ratio.  The 
corresponding output shaft speed and intermediate shaft 
(faulty gear shaft) speed are provided in Table 1. 

Table 1. Output shaft speed corresponding to input shaft 
speed 

Input shaft 
speed (Hz) 10 20 30 40 50 60 

Faulty gear 
shaft 

frequency 
5.56 11.1 16.7 22.2 27.8 33.3 

Output 
shaft speed 4.17 8.33 12.5 16.7 20.8 25 

 
For signal acquisition, Labview signal express software was 
used.  During the experiments, continuous AE signals were 
collected.  The data sampling rate was set to 100 kHz for all 
the tests.  There was no torque load during the test. The 
gearbox input shaft speed is running from 10Hz-60Hz with 
10Hz interval.  For each speed, 5 data sets are collected.  It 
should be noted that with a load, the faulty gear feature will 
be larger due to the increased impact on the gear. It is 
hypothesized that with a higher load, the faulty feature in 
AE could be more easily detected.  In zero loading 
experiments, the identification of gear fault is more 
challenging than loaded cases. 

4. RESULTS 

The AE data after heterodyning were collected by a low 
sampling rate device, with the sampling rate fixed at 100 
kHz.  Additionally, the tachometer signals were collected 
together with the AE data from the main input shaft, which 
were used to perform the TSA calculation.  Two collected 
examples of faulty AE data and healthy AE data are shown 
in Figure 10. For simplicity, the tachometer signals are not 
shown in the figure. 

 

Figure 10. Healthy (upper) and faulty AE signals (lower) 
collected with heterodyne 

Before performing TSA, the data was first analyzed using 
kurtogram.  Figure 11 shows an example of kurtogram for a 
faulty signal at 30Hz.  Based on the kurtogram, the center 
frequency and bandwidth where the spectral kurtosis is 
maximized could be identified.  An optimal band pass filter 
was designed to filter the signal with regard to the 
corresponding frequency range.   

 

Figure 11. The kurtogram of spectral kurtosis for a faulty 
signal at 30Hz input shaft speed (The center frequency 
identified from this kurtogram is 37500Hz, with a band 

width of 25000Hz) 

After the band pass filter, the TSA was computed using the 
filtered data.  Since the raw signal was filtered before TSA, 
to maintain the phase unchanged, a zero-phase filter was 
used.  About 260 averages were taken for each group of 
data.  The TSA signal at 30Hz is shown in Figure 12.   

Tooth root crack 
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Figure 12. Healthy signal TSA (upper) and faulty signal 

TSA (lower) 
 

In order to test the effectiveness and sensitiveness of 
different condition indicators, the following groups of 
condition indicators were compared: 

(a) RMS, P2P, kurtosis and crest factor of the raw data. 

(b) RMS, P2P, kurtosis and crest factor of the TSA 
data. In addition, condition indicators FM4 and 
NA4 were also computed using the TSA data. 

(c) RMS, P2P, kurtosis and crest factor for the 
Teager’s energy operator of the TSA. 

The condition indicators calculated on the raw data without 
band pass filter or TSA are shown in Figure 13 through 
Figure 16.   Note that in the experiment, 5 sets of data were 
collected for each input shaft speed: a total of 30 data 
samples were collected.  They are aligned from low speed to 
high speed.  It can be seen from Figure 13 that the raw RMS 
cannot separate the faulty gear from the healthy one.  As the 
speed of the gearbox increases, the RMS increase gradually. 
From Figure 14, one can see that health signals have slightly 
larger P2P values than the faulty signals.  This could be 
caused by the random noises, either from the misalignment 
of the gearbox or from the sensors.  In Figure 15, it shows 
that the healthy signals have larger kurtosis values than the 
faulty signals.  Based on the raw kurtosis, it is possible to 
separate the faulty signals from the healthy ones when the 
input speed is lower than 40 Hz.  However at a speed higher 
than 40 Hz, it is impossible to distinguish healthy signals 
from faulty signals.  Similarly in Figure 16, the healthy crest 
factors have larger amplitudes than faulty ones.   

Based on the results of the raw data condition indicators, it 
is impossible to separate the health signals from the faulty 
ones.  Also, the fact that the condition indicators of raw 
healthy signals have larger amplitude than the faulty 

condition indicators makes it impractical to set fault alarm 
threshold in real application.   

 

Figure 13. Raw data RMS 

 

Figure 14. Raw data P2P

  

Figure 15. Raw data kurtosis 
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Figure 16. Raw data crest factor 

In order to minimize the random noises and enhance the 
faulty features hidden in the raw signals, SK based filter 
followed by TSA was  performed on the raw data.  

The plots of the condition indicators computed using TSA 
are provided in Figure 17 through Figure 22.   

 

Figure 17. TSA RMS of the healthy data and faulty data 

From Figure 17, one can see that the behavior of the TSA 
RMS is similar to that of the raw RMS in Figure 13.  As the 
input shaft speed increases, the RMS increases for both 
health and faulty gears.  Since both the RMS of the health 
signals and the RMS of the faulty signals overlap over the 
entire testing conditions, it is impossible to separate the gear 
fault using TSA RMS.   

 

Figure 18. TSA P2P of the healthy data and faulty data 

In comparison with P2P of the raw signals, one can see that 
the P2P of the faulty TSA signals are all larger than that of 
the healthy TSA signals under each individual shaft input 
speed, as shown in Figure 18.   This confirms that the 
random noise is removed by TSA while the faulty features 
in the tooth crack condition are significantly enhanced.   

 

Figure 19. TSA kurtosis of the health data and tooth crack 
data 

From Figure 19, it can be seen that the TSA kurtosis values 
of the health data remain almost constant around 3.  As 
mentioned before, for any Gaussian distribution, the 
kurtosis is exactly calculated as 3.  This concludes that the 
health gear TSA satisfied the Gaussian distribution.  It 
means the amplitude of the AE impact waves generated by 
each tooth meshing complies with Gaussian distribution as 
expected.  On the other hand, the TSA kurtosis of the faulty 
data is all above 3.6.  This simply illustrates behavior of the 
faulty signal patterns.   
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Since kurtosis is non-quantitative value, it does not depend 
on the absolute amplitude.  Kurtosis can serve as a reliable 
condition indicator for gearbox fault detection under 
variable loads and speeds. 

 

Figure 20. TSA crest factor of the healthy data and faulty 
data 

The crest factor shows the statistics of the peak and the 
mean amplitude ratio.  As show in Figure 20, all of the 
faulty TSA crest factors are larger than their health 
counterparts.   Even though the differences of the crest 
factors between the healthy and faulty signals shown in 
Figure 20 are not as significant as those shown in Figure 19, 
the TSA crest factor still can be used as an effective 
condition indicator for detecting the gear fault. 

 

Figure 21. TSA FM4 of the health data and tooth crack data 

 

Figure 22. TSA NA4 of health and tooth crack data 

Figure 21 and Figure 22 show the plots of the FM4 and 
NA4 condition indicators, respectively.   FM4 is the 
difference signal kurtosis while NA4 is the residual signal 
kurtosis.   From Figure 21, the healthy data FM4 identified 
itself as near Gaussian distribution.  The faulty FM4 is 
larger which indicates fault feature.  For NA4 in Figure 22, 
the condition indicator has more fluctuation because the 
variance was averaged across each 5 sets of data at each 
operational speed.    

 

Figure 23. Energy operator RMS of healthy and tooth crack 
TSA data 

From the above shown results of the condition indicators 
computed on the raw signals and TSA signals, RMS cannot 
separate the healthy signals from the faulty signals.   
Surprisingly, when taking the energy operator, one could 
actually see that faulty signal RMS values clearly separate 
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themselves from the healthy signal RMS values as the speed 
increases, as shown in Figure 23.   

 

Figure 24. Energy operator P2P of healthy and tooth crack 
TSA data 

Figure 24 shows the P2P values of the TSA energy 
operators.  The P2P condition indicator could roughly 
separate the faulty signals from the healthy signals. 

 

Figure 25. Energy operator kurtosis of healthy and tooth 
crack TSA data 

Figure 25 shows the energy operator for both cases.  Energy 
operator by definition is another kurtosis based condition 
indicator.  From the plot, it is easy to see that energy 
operator can basically separate the healthy gear from the 
faulty gear.   

 

Figure 26. Energy operator crest factor of healthy and tooth 
crack TSA data 

Figure 26 plots the TSA energy operator crest factor.  It 
could be seen from the plot that the faulty signal crest 
factors are roughly larger than the healthy ones.  However, 
there are some overlaps in a few samples.   Based on the 
experiment results, crest factors are less reliable than 
kurtosis in term of tooth crack detection. 

It was observed that as the gearbox speed increase, the 
kurtosis based condition indicators generally decrease.  Two 
reasons might count for these behaviors.  The first reason is 
that when the gearbox input shaft speed increases, the 
variance value in the denominator of Eq. (12) – Eq. (14) 
increases rapidly, which results in a decrease of the kurtosis 
based condition indicators.  The second reason is that when 
an incipient fault is presented, the fault features are 
relatively small.  When the gearbox is operating at a high 
speed, the normal gear meshing has similar impact 
amplitude as the fault feature, which overwhelms the fault 
feature.   As noted, an AE signal tends to display more 
Gaussian type characteristics.  For gear fault detection using 
AE signals, this might be a shortcoming at high shaft rates 
because AE signal amplitudes increase significantly with 
speed.  The high amplitude of the normal gear meshing 
impact signals might overwhelm the incipient fault features.   

Conversely, in the high shaft speed conditions, the RMS and 
P2P of the energy operator give clear indication for the 
faulty signals.  The energy operator RMS and P2P of the 
fault signals increase much faster than the healthy signals. 
So it is possible to use these condition indicators to 
compensate the performance degradation of kurtosis based 
condition indicators. 

One solution to this problem is to substitute the denominator 
with the variance of a gearbox in good condition, which 
then leads to the condition indicator NA4* (Lebold et al., 
2000).  NA4* is more suitable for continuous monitoring.  
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In the case of naturally grown fault, it is convenient to use 
the variance when the gearbox is new and under good 
condition.  The evolution of the fault growth will be easily 
observed.  On the other hand, while this phenomenon is not 
exactly as desired in a high speed operational condition 
(1000 RPM or higher), it may benefit the detection of 
gearbox fault operated at lower speed (within 1000 RPM).   

In summary, the condition indicators on the raw AE data did 
not convey much useful information for fault detection.  The 
SK filter and TSA greatly enhanced the fault features.  Most 
of the condition indicators on the TSA could clearly 
separate the faulty condition signals and healthy signals:  the 
TSA kurtosis and FM4 worked the best in this tooth crack 
fault detection experiment.  Furthermore, the Teager’s 
energy operator based condition indicators could 
successfully separate the faulty signals from the healthy 
gear signals.  Teager’s energy operator had significant 
improvement on the RMS condition indicator.  In addition, 
Teager’s energy operator improved the separation between 
healthy TSA kurtosis and faulty TSA kurtosis.  

5. CONCLUSIONS 

In order to reduce wind energy costs, PHM of wind turbine 
is needed to reduce the operations and maintenance costs 
associated with running a wind farm.   One of the major 
costs on wind turbine repairs is due to gearbox failure.  
Therefore, developing effective gearbox fault detection tools 
is important to the PHM of wind turbine.   

In this paper, a new AE sensor based gear fault detection 
approach was presented.  This new approach combines a 
heterodyne based frequency reduction technique with TSA 
and spectral kurtosis to process AE sensor signals and 
extract features as condition indictors for gear fault 
detection.  Heterodyne technique commonly used in 
communication is first employed to preprocess the AE 
signals before sampling.  By heterodyning, the AE signal 
frequency is down shifted from several hundred kHz to 
below 50 kHz. This reduced AE signal sampling rate is 
comparable to that of vibration signals.   

The approach presented in this paper is physics based.  The 
presented approach was validated using seeded gear tooth 
crack fault tests on a notational split torque gearbox.  
Condition indicators, such as RMS, P2P, kurtosis, and crest 
factor, were computed from the raw signals, TSA signals, 
and Teager’s energy operator signals, separately.  The 
results showed that the condition indicators computed on the 
TSA signals and Teager’s energy operators could effectively 
separate the faulty signals from the healthy signals.   Among 
all the condition indicators tested, kurtosis related condition 
indicators, like, TSA kurtosis, FM4, and Teager’s energy 
operator kurtosis, have showed the best performance of 
detecting the gear tooth crack for all the testing conditions. 
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