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Abstract. In this paper we present a parameterization of the
nitric acid effect on cloud droplet formation. The new pa-
rameterization is intended to be used in large scale models
in order to obtain regional and global estimates of the ef-
fect of nitric acid on cloud drop concentrations and the ra-
diative balance. The parameterization is based on numeri-
cal air parcel model simulations and can be applied for uni-
modal and bimodal lognormal aerosol particle size distribu-
tions in a large variety of different conditions. In addition to
the aerosol particle distribution and gas-phase HNO3 concen-
tration, the parameterization requires temperature, total pres-
sure, updraft velocity, and the number concentration of cloud
droplets formed at zero nitric acid concentration, as input pa-
rameters. The parameterization is also suitable for describing
the effect of hydrochloric acid on the cloud drop concentra-
tions, and in practice, the HNO3 and HCl concentrations can
be summed up to yield the total effect. The comparison be-
tween the parameterization and the results from numerical
air parcel model simulations show good consistency.

1 Introduction

Previous cloud model studies have shown that water-soluble
trace gases such as nitric acid (HNO3) and ammonia
(NH3) can increase the cloud droplet number concentration
(CDNC) significantly (Kulmala et al., 1993; Korhonen et al.,
1996; Hegg, 2000). The increase in the cloud droplet number
concentration will reduce the mean cloud droplet size which
in turn increases cloud albedo (Twomey, 1974). Increased
CDNC and decreased cloud droplet size can also decrease
the precipitation formation efficiency prolonging the cloud
lifetime and increasing the cloud coverage (Albrecht, 1989).
Thus, the soluble gases can induce similar effects on clouds
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as the first and the second indirect aerosol effects. Overall,
the increase in CDNC will lead to the cooling of the lower
troposphere and so the effect is opposite in sign to the warm-
ing effect of the greenhouse gases.

The magnitude of the effect of water-soluble trace gases
on cloud condensation nucleus (CCN) activation can be cal-
culated using a cloud parcel model, but to estimate the global
albedo effect reliably, large scale models such as GCM’s
need to be used. Because the numerical calculation of the
trace gas effect is computationally demanding and there is
no analytical solution for deriving the CDNC directly from
the properties of aerosol size distribution and environmental
variables, the results obtained from parcel model simulations
have to be parameterized into a form that can be used in the
large scale models. In this study, we are developing a param-
eterization for the HNO3 effect on aerosol activation.

In the recent years, many parameterizations for cloud
droplet formation have been developed. The most straight-
forward parameterizations are based on direct measurements
relating the number of condensation nuclei to the number of
cloud droplets (Gultepe and Isaac, 1999) or relating the non-
sea-salt sulfate concentration to the number of cloud droplets
(Boucher and Lohmann, 1995; Lowenthal et al., 2004). Such
parameterizations do not take into account any variation in
the shape of aerosol population or cloud forming dynamics.
Twomey(1959) proposed a power law relation (CDNC=cSk)
to determine CDNC as a function of cloud supersaturationS.
This relation has later been refined to obtain more accurate
results (Cohard et al., 1998, 2000). Some other parameter-
izations include theoretical calculations combined with de-
tailed numerical parcel model simulations (Nenes and Sein-
feld, 2003; Abdul-Razzak and Ghan, 2002). The basic idea
in these parameterizations is to estimate the maximum water
supersaturationSmax in the cloud parcel.Smax is compared
to the critical supersaturation spectra of the aerosol particle
distribution, which can be calculated from Köhler theory as a
function of dry particle diameterSc(Dp) and, in a simplified
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Fig. 1. Fx as a function ofF0 for three different HNO3 concentra-
tions and lines are calculated with fitted Eq. (2).

manner, every aerosol particle withSc<Smax is then sup-
posed to activate to a cloud droplet. These parameterizations
take into account the dynamics and the size distribution of
the aerosol population, but still the role of condensing gases
other than water is undetermined.

2 Parameterization

Condensed hygroscopic compounds lower the particles’Sc,
enhancing the ability of an individual aerosol particle to acti-
vate to a cloud droplet and thereby increasing CDNC. At the
same time, the total mass of the aerosol particle population
increases, leading to decrease inSmax . This will tend to de-
crease the CDNC, but in most situations this effect is smaller
than the increasing effect of the lower critical supersatura-
tions. In general, the number of activated droplets depends
on how the condensed gases are distributed among the parti-
cles with different diameters. When the condensation of the
trace gases takes place rapidly – i.e. the system is strongly
out of equilibrium – small particles collect relatively more of
the gases than larger ones, which favors increased activation
of cloud drops.

Parameterizing the HNO3 effect on CCN activation is not
a straightforward task to do. If the amount of HNO3 in
the droplets of different sizes could be estimated at the time
of activation, theSc(Dp) could be calculated from K̈ohler
theory andSmax could be estimated with methods given by
Nenes and Seinfeld(2003) or by Abdul-Razzak and Ghan
(2002). The amount of condensed semivolatile matter in
droplets with different sizes can be calculated with a size re-
solved numerical model that solves the differential equations
describing the condensation. Condensation depends on the
concentration difference between the ambient air and the sur-
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Fig. 2. Activated fraction as a function of temperature for three dif-
ferent HNO3 concentrations as modeled by parcel model and cor-
responding predictions by new parameterization.

face of droplet, and to estimate the condensation rate into a
droplet, the surface concentration must be known. However,
it turns out that during the activation process, there can be
an order of magnitude difference in surface concentrations
between small and big droplets and therefore it is difficult
to get an analytical solution for partitioning of nitric acid to
droplets of different sizes.

Instead of very approximate analytical calculations, we
choose to use a more straightforward method. Our new
parameterization is based on numerical simulations, which
are done with an air parcel model including detailed liquid
phase thermodynamics and differential equations for adia-
batic expansion and condensation growth of liquid particles
(for more information about the model, seeKokkola, 2003).
Our strategy is to develop a parameterization which can be
used to calculate the activated fractionFx with x ppb of
HNO3 in the gas phase, when the activated fraction without
other condensing gases than water,F0, is known. The basic
form of the parameterization is similar to a parameterization
previously presented byLaaksonen et al.(1998)

Fx = 1 + (F0 − 1) exp(f (C, T , F0, V , dist)) , (1)

wheref (C, T , F0, V , dist) is a function of HNO3 concen-
trationC, temperatureT , F0, updraft velocityV , and prop-
erties of the aerosol distribution (denoted withdist).

The origin of the mathematical form is in notion that the
Fx vs.F0-curves qualitatively resemble vapor-liquid equilib-
rium curves in some binary systems. That can be seen in
Fig. 1, whereFx is presented as a function ofF0 for some
simple distribution at typical conditions. DifferentF0 values
have been obtained at different updraft velocities and in this
case the fitted equation is as simple as

Fx = 1 + (F0 − 1) exp
(
−1.8x0.8F 1.5

0

)
. (2)
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Fig. 3. Activated fraction as a function of geometric mean radius
as modeled by parcel model and corresponding predictions by new
parameterization whenV =0.5 m/s,N=1000 cm−3 andσ=1.8.

We can see, that the correspondence between Van Laar type
Eq. (2) andFx vs.F0 data, is good. Beyond that, this form is
physically reasonable because it is limited to unity. However,
in this simple example only the updraft velocity is varied and
to take the other variables also into account, the Eq. (2) must
be modified. The final form of the parameterization is pre-
sented in Table1.

With this set of equations, the effect of HNO3 on aerosol
activation to cloud droplets can be calculated for a wide vari-
ety of conditions. The parameterization can be used to study
liquid phase clouds with the following limitations. The min-
imum values forT andP are 253 K and 300 mbar, respec-
tively. V has to be positive and higher than 0 m/s. The new
parameterization is valid for bimodal lognormal aerosol size
distributions. The modes can have different chemical com-
position, and the single modes can be internally mixed. The
particle composition is divided to insoluble and soluble parts
based on mass fractions. Inorganic substances are described
by ammoniated sulfates with 0:1, 1:1 and 2:1 ammonium-
to-sulfate ratios. Also, a sodium chloride mode is possible.
Water-insoluble organics can be represented using the insol-
uble fraction. Water soluble organics are not included in the
parameterization. Properties of the different modes are lim-
ited in such a way that the geometric standard deviation of
both modes need to be higher than 1.2,r?

gi need to be higher
than 5 nm andr?

g2≥r?
g1. The functional form of the parame-

terization (Eqs. 3 to 11) is such, thatN1 can not be zero.

3 Comparison of parameterization with parcel model

We have done simulations with and without nitric acid as
a function of one or two basic parameters while the other
variables are kept constant. These simulations are presented
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Fig. 4. Activated fraction as a function of aerosol particle and nitric
acid concentration. In these model runsrg is 26 nm,σ is 1.8,T is
273.15 K, andV is 0.5 m/s.

in Figs.2–8, where we show comparisons between the new
parameterization and parcel model simulations for different
aerosol and dynamical properties. In Figs.2–5 we present
comparisons for unimodal and in Figs.6–7 for bimodal
aerosol distributions.

Decreasing temperature increases the HNO3 solubility in
the water solutions and so the condensation takes place at
lower RH than at warm conditions. Also, the amount of wa-
ter in the air is smaller than at warm conditions and so the
condensation of water into the droplets is slower, increasing
the Smax . Overall, there is more time for HNO3 condensa-
tion at low temperatures and so the effect of HNO3 on CDNC
increases with decreasing temperature. This can be seen in
Fig. 2, where the activated fraction is presented as a func-
tion of temperature for two different HNO3 concentrations
when the updraft velocity is 0.2 m/s. In this case, the aerosol
is composed of ammonium sulfate and the size distribution
is unimodal with number concentration, geometric mean ra-
dius, and geometric standard deviation of 1000 cm−3, 30 nm,
and 1.8, respectively. The step-like behavior of the parame-
terization curve is due to the usage of model results asF0
values. In the model, the size distribution is discretized to
a reasonable number of size classes (bins). In this simula-
tion number of bins was 110 and so the fraction of droplets
in one size bin is∼1%, when the bins are equally spaced in
aerosol number. As can be seen in Fig.2, the difference be-
tween model results and predictions of the parameterization
are within the uncertainty produced by the discretization.

The strength of the HNO3 effect depends on the amount
of hygroscopic material in the pre-existing aerosol particle
distribution. Increase in the mean size or total number con-
centration of aerosol particles will decrease the HNO3 effect.
As shown in Fig.3, without nitric acid the CDNC increases
with increasing radius and approaches asymptotically some
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Table 1. Parameterization for bimodal lognormal aerosol size distribution. Variables:PT OT is total pressure (mbar),CHNO3 is nitric acid

concentration (ppb),T is temperature (K),T0=273.15 K,V is updraft velocity (ms−1), rgi is geometric number mean radius (µm) of mode

i, Xmi is water soluble mass fraction in aerosol particles in modei, r?
gi

=rgiX
0.46
mi

, N is total particle concentration (cm−3), Ni is particle
concentration in modei, σi is geometric standard deviation in modei, F0 is activated fraction without nitric acid, andF is the activated
fraction withCHNO3 ppb of nitric acid in the air.Bc is a variable that takes account the chemical composition and it is 0 for ammonium
sulfate and sodium chloride, 1 for ammonium bisulfate and 2 for sulfuric acid. With this set of equations it is supposed thatr?

g2>r?
g1.

rg =
N1r

?
g1+N2r

?
g2

N
(3)

Bc =
N1r

?
g1Bc1+N2r

?
g2Bc2

N1r
?
g1+N2r

?
g2

(4)

A = CHNO31.03(308−T ) (5)

B1 = 0.138V 0.16 (rg)−2.04
N−0.77A0.5

(
T
T0

)7.8
1.57BcV

0.2A−0.3
(6)

B2 = 2.24× 10−5
(
F0 + 8.54A

N

)1.4
(V )−1.86A0.47N1.94rg

(
T0
T

)2.36
0.87Bc (7)

B3 = 0.22

0.82(Bc1−Bc2)V
−0.6A−0.42

(
r?
g2−r?

g1
r?
g1

)1.15(
N2N1
N2

)
(F0 + 0.24)−1.71 , F0>N2/N (8)

B3 = 0.23

(
r?
g2−r?

g1
r?
g1

)1.05(
N2N1
N2

)0.13(F0N
N2

)( r?
g2−r?

g1
r?
g1

)(
N2
N1

)1.3

, F0<N2/N (9)

fN =
(

1.75N
(N1σ1+N2σ2)(1+B3)

)(18.3r0.86
g F 0.15

0 N0.2
(

T0
T

)2
)

(10)

F = 1+ (F0 − 1) exp

(
−2.31

(
APT OT

900(1+B1)(1+B2)N
0.65r1.11

g

)1.17
F0.54

0 fN

)
(11)
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Fig. 5. Activated fraction as a function of aerosol particle number,
nitric acid concentration and aerosol particle chemical composition.
In the upper set of lines totalN=400 cm−3 and in the lower set
N=2000 cm−3.

limiting value. With HNO3 in the air this value can be
reached with smaller dry particles. In the case of Fig.3, the
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Fig. 6. Activated fraction as a function of number concentration in
the coarse mode.

particles are completely water soluble, but in general, some
of the aerosol material can of course be insoluble. The ef-
fect of insoluble aerosol material is taken into account in the
parameterization simply by multiplying therg with (Xm)0.46.
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Fig. 7. Number of activated droplets as a function of aerosol particle
number concentration in mode 2 and nitric acid concentration.

In Fig. 4, we show how higher aerosol number concen-
trations decrease the HNO3 effect. The increasing parti-
cle number concentration decreases the activated fraction,
but increases the number of activating particles. Natu-
rally, when the aerosol mass increases, the nitric acid ef-
fect decreases. WhenN=200 cm−3, CDNC increases from
100 cm−3 to 160 cm−3 as the HNO3 concentration increases
from 0 to 1 ppb and only 0.2 ppb is needed to increase it to
130 cm−3. WhenN=6000 cm−3, the corresponding CDNC’s
are 900 cm−3, 1180 cm−3, and 950 cm−3. Based on these
numbers it is clear that the HNO3 effect is more important
when the total aerosol number concentration is low. How-
ever, with low updraft velocities and narrow size distribution,
the HNO3 effect can be remarkable even when particle num-
ber concentrations are thousands per cubic centimeter.

The strength of the HNO3 effect depends on the acidity of
aerosol particles (Hegg, 2000). To take this into account, we
have included the variableBc into parameterization.Bc is re-
lated to the number of hydrogen ions released from salt to so-
lution and so it represents the acidity of pre-existing aerosol
particles. In the case of acidic particles at low concentration,
the uptake of HNO3 occurs at high relative humidity and so
there is not enough time for all HNO3 to condense before ac-
tivation occurs. At high aerosol concentration, the total par-
ticle mass is higher, allowing faster depletion of HNO3 and
decreasing the importance of particle acidity in regulating the
nitric acid effect on the CDNC. Also, the overall effect of
nitric acid is lower at high aerosol concentrations, so the ef-
fect of aerosol acidity is more difficult to see. In Fig.5 we
show examples of the effect of chemical composition (induc-
ing different acidities) for the same distribution as in Fig.4,
but only for two different values of aerosol particle number
concentrations.

The effect of chemical composition is especially impor-
tant in situations, where the aerosol are externally mixed so

Table 2. Initial values for cloud model runs for the marine and
continental cases examined.

Marine case Continental case

Composition
mode 1 NH4HSO4 (NH4)2SO4
mode 2 NaCl (NH4)2SO4

mode 1 mode 2 mode 1 mode 2
N [cm−3] 141 variable 1000 variable
rg [nm] 26 230 10 30

σ 1.75 2.10 1.70 2.10

that different modes have different compositions. In marine
areas, the aerosol are composed of alkaline (sea salt) haze
mode and more acidic nucleation and accumulation modes.
Due to their large mass, sea salt particles decrease the num-
ber concentrations of cloud droplets. HNO3 tends to con-
dense into aqueous sodium chloride droplets at lower RH
than to more acidic aerosols. The NaCl particles are big
enough so that all of them will activate even without the pres-
ence of HNO3, thus decreasing the effect of HNO3 on the
CDNC. This is demonstrated in Fig.6 where the activated
fraction is presented as a function of coarse mode particle
concentration for three different HNO3 concentrations. The
aerosol size distribution is the same as used byHegg(2000)
in his study and it is presented in Table2. The updraft veloc-
ity and temperature are 0.1 m/s and 273.15 K, respectively.

Continental conditions differ clearly from marine condi-
tions. Both the total number of particles and the shape of the
particle size distribution are typically totally different. The
number of coarse mode particles in the marine environment
is crucial when estimating CDNC but at continental condi-
tions, the fraction of coarse mode particles is almost negligi-
ble and it can be excluded from the parameterization. Also,
the effect of nucleation mode particles on the CDNC is neg-
ligible, thus those particles can also be excluded.

In Fig. 7, we show how the number of particles in mode
2 affects the CDNC and modifies the HNO3 effect when the
aerosol distribution is the continental case from Table2. In
this set of model runs, updraft velocity is 0.5 m/s and temper-
ature is 273.15 K. It turns out that when the number of par-
ticles in mode 2 increases, the mode 1 can also be excluded
from the parameterization if the updraft velocity is not high
enough to activate those particles also. This can be done in
situations in which the modes do not overlap. In the case
presented in Fig.7, this can be done only when N2 is over
1000 cm−3. At lower concentrations, some of the aerosol
particles in mode 1 also activate to cloud droplets. In cases,
where the modes are clearly distinct and it is known that par-
ticles from mode 1 can not activate, it is better to exclude
the smaller mode from the parameterization. This is because

www.atmos-chem-phys.org/acp/5/879/ Atmos. Chem. Phys., 5, 879–885, 2005
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Fig. 8. Activated fraction as predicted by new parameterization and
by cloud parcel model.

in the parameterization the activated fraction is defined as
the CDNC divided by the total number of aerosol particles
represented in the parcel model. Appearance of small parti-
cles changesF0 values and affects therefore theFx values. It
is possible, that the parameterization gives slightly different
values for the number of cloud droplets ifN is increased by
increasing the number of small droplets. However, the de-
viations due to differentF0 values are of the same order as
the deviations shown in the previous figures. Overall, the pa-
rameterization is slightly more accurate if a mode with small
particles is excluded, but inclusion of small particles does by
no means render it useless.

In Figs.2 to 7, we show examples of the correspondence
between the parameterization and cloud parcel model re-
sults. The Figures show excellent agreement between the
numerical parcel model simulations and the parameteriza-
tion. In Fig. 8, we compare the prediction of the parame-
terization with the fraction of aerosol particles that activate
with 0.05–3 ppb of HNO3 in the air. The comparison con-
sists of more than 4000 box model simulations in a wide va-
riety of conditions. In the simulations, the temperature, to-
tal pressure and updraft velocity range from 253 K to 293 K,
from 500 mbar to 1000 mbar, and from 0.05 m/s to 3 m/s,
respectively. The aerosol distribution is lognormal and uni-
modal or bimodal, total number densities varying between
50 cm−3 and 6000 cm−3, geometric mean radius varying be-
tween 5 nm and 150 nm (250 nm in the coarse mode), and
geometric standard deviation varying between 1.3 and 2.5.
In all model runs we have equilibrated both water and nitric
acid in the beginning of model run. In doing so we have sup-
posed the system to be closed. The initial RH is chosen to
be 95% in all model runs. From Fig.8 we can see that all
data points are very close to the one-to-one line, which cor-
responds to a perfect match. The highestF to F0 ratios in
the simulations are close to 6 and the median is 1.2.

In order to use our new parameterization, the activated
fraction without HNO3 must be calculated with some param-
eterization developed for the purpose. We have also tested,
that the calculation ofF0 with some other method than the
one we have used in deriving the parameterization, will not
produce significant errors. It turns out that underestimation
of F0 always increases the relative effect ((F−F0)/F0) but
decreases the absolute effect (F−F0). However, the error
produced by the new parameterization to the relative HNO3
effect is smaller than the relative error due to the inaccurate
F0 value. The new parameterization can also be used to-
gether with simple parameterizations like the one presented
by Gultepe and Isaac(1999). To do that, the typical aerosol
size distribution and updraft velocity to produce the correla-
tion between CDNC and aerosol number concentration has
to be derived.

The new parameterization can also be used to calculate
the effect of hydrogen chloride (HCl) on cloud drop number
concentrations simply by replacing HNO3 concentration by
HCl concentration in the formulae. According toKokkola
et al. (2003) the effect of HCl on cloud droplet formation
is very similar to the effect of HNO3 and, in practice, the
concentrations of HCl and HNO3 can be summed up to yield
the total effect.

4 Conclusions

A new parameterization for calculation of the HNO3 effect
on cloud drop activation has been developed. The param-
eterization is based on an extensive set of adiabatic cloud
parcel model simulations and assumes a unimodal or a bi-
modal lognormal aerosol size distribution. Predictions of the
parameterization have been compared to results obtained by
a cloud parcel model for a wide variety of conditions and the
comparison shows very good consistency. The parameteriza-
tion does not include any differential equations or iterations,
so it is computationally efficient and easy to use.
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