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Abstract. The spatial distribution of snow water equiva-
lent (SWE) is modelled as a two parameter gamma distri-
bution. The parameters of the distribution are dynamical in
that they are functions of the number of accumulation and
melting events and the temporal correlation of accumula-
tion and melting events. The estimated spatial variability is
compared to snow course observations from the alpine catch-
ments Norefjell and Aursunden in Southern Norway. A fixed
snow course at Norefjell was measured 26 times during the
snow season and showed that the spatial coefficient of varia-
tion change during the snow season with a decreasing trend
from the start of the accumulation period and a sharp increase
in the melting period. The gamma distribution with dynami-
cal parameters reproduced the observed spatial statistical fea-
tures of SWE well both at Norefjell and Aursunden. Also
the shape of simulated spatial distribution of SWE agreed
well with the observed at Norefjell. The temporal correla-
tion tends to be positive for both accumulation and melting
events. However, at the start of melting, a better fit between
modelled and observed spatial standard deviation of SWE
is obtained by using negative correlation between SWE and
melt.

1 Introduction

A major cause of severe flooding in Norway is the combina-
tion of intense snowmelt and heavy precipitation. In order to
forecast these events, we need reliable forecasts of precipita-
tion and temperature and a good estimate of the snow reser-
voir and its coverage in the catchment at the time of the fore-
cast. The dynamics of runoff due to snowmelt, and thus the
water balance in the melting season, is very dependent on the
evolution of snow free areas, which again is closely linked
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to the spatial distribution of snow water equivalent (SWE)
(Pomeroy et al., 2004; Luce et al., 1998; Buttle and McDon-
nel, 1987). The shape of the distribution is important in order
to describe the development of snow free areas in spring. A
skewed distribution with high frequencies of small values of
SWE would produce more snow free areas in response to
uniformly distributed melt than would a more normal distri-
bution of SWE where the highest frequencies are found for
higher values of SWE. Increased production of snow free ar-
eas for skewed distributions will occur in cases where the
spatial distribution of daily melt is inversely correlated to the
distribution of SWE as reported by Faria et al. (2000).

Positively skewed distributions like the exponential (Gao
and Sorooshian, 1994) and gamma (Onof et al., 1998;
Mackay et al., 2001) have often been favoured for describ-
ing the spatial distribution of daily precipitation. As the
accumulated SWE is the sum of such positively skewed
and correlated variables, one would expect the distribution
of SWE to be subject to the central limit theorem (Feller,
1971, p. 258) and being less skewed than the distribution
of the individual snowfall events. The normal distribution
has often been found to be a good model for describing
SWE at its seasonal maximum (Marchand and Killingtveit,
1999, 2002; Alfnes et al., 2004), which indicates that the
spatial distribution of SWE evolves from a rather skewed
distribution at the beginning of the snow season towards a
less skewed, (even normal) distribution at its seasonal maxi-
mum. The Swedish HBV model (Bergstrøm, 1992; Sælthun,
1996) is used operationally for flood forecasting at the Nor-
wegian Water Resources and Energy Directorate (NVE) and
has been supplemented with a snow routine developed for
use in Norway which accounts for the development of the
snow reservoir and the snow coverage at different altitude
levels (Killingtveit and Sælthun, 1995). This routine is devel-
oped under the assumptions that precipitation as snow is log-
normally distributed in space with a fixed coefficient of vari-
ation. Donald et al. (1995) presented a snow accumulation
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model where, once the snow coverage was 100%, the spa-
tial variability of SWE remained constant. These static ways
of representing the spatial distribution of SWE are thus in
conflict with the central limit theorem, reported observations
(Alfnes et al., 2004; Pomeroy et al., 2004) and observations
presented in this paper.

Skaugen et al. (2004) put forward a formulation for the
spatial distribution of snow, using the fact that when individ-
ual snowfall events are gamma distributed, the distribution
of accumulated snowfall events is also gamma distributed
with parameters derived from the parameterisation of indi-
vidual snowfall events and the number of accumulations.
This model is constrained by assumptions of independence
in time, but takes into account that the statistical features of
the spatial distribution of SWE change during the season, as
demonstrated from observations. The dynamical aspect of
the shape of the spatial distribution of SWE is a feature that
has to be included in the modelling of SWE in order to sim-
ulate realistic snow distributions

Observed differences for spatial distributions of SWE at
the peak of accumulations has been addressed to landscape
and meteorological features such as vegetation type, to-
pography and wind (Erickson et al., 2005; Bruland et al.,
2004; Alfnes et al., 2004; Marchand and Killingtveit, 2004;
Erxleben et al., 2002; Shook and Gray, 1997). According to
Liston (2004), three mechanisms effective on different spa-
tial scales influence the snowdepth. Snow-canopy interac-
tions in forested regions are important at one to hundreds of
meters, snow redistribution by wind on tens to hundreds of
metres and orographic influences of precipitation being ac-
tive on one to a few kilometres. The latter spatial scale is the
relevant scale for this study and for describing the spatial dis-
tribution of SWE in lumped hydrological models such as the
operational HBV model. It is the objective of this study to
demonstrate that the spatial distribution of SWE can be ad-
equately modelled as the summation of correlated (in time)
daily precipitation (snowfall) fields. The sources of variabil-
ity at smaller scales, like snow-canopy interactions and wind
drift are, in this study, not taken into account.

We want to develop dynamical expressions for the spatial
variability of SWE both for the accumulation and the melting
season. We further want to use this information to assign an-
alytical expressions for the spatial distribution of SWE. The
proposed methodology will be validated against time series
of the spatial distribution of SWE measured at alpine loca-
tions in Southern-Norway.

The next section presents the derivation of expressions for
the spatial moments of SWE, where temporal correlation is
taken into account. The moments are then used for esti-
mating the parameters of the spatial distribution of SWE.
The third section presents a snow monitoring campaign spe-
cially designed for studying the spatial distribution of SWE
throughout the snow season. In the fourth section the mod-
elled moments and distributions are tested against observed

data and discussed, whereas conclusions are found in the fi-
nal section.

2 Modelling accumulation and melt of snow as sums of
correlated gamma distributed stochastic fields

When modelling the spatial distribution of SWE, we have
to take into account the history of accumulation and melting
events up to the time of interest. In Skaugen et al. (2004)
this was carried out by modelling the spatial distribution of
SWE as sums of independent, identically distributed stochas-
tic fields of the two parameter gamma distribution. Here,
the spatial distribution of SWE is also modelled within the
framework of the two parameter gamma distribution, but,
through a simple procedure, the effect of temporal correla-
tion is introduced.

Let us assume that every snow fall event can be described
as a collection of gamma distributed stochastic unit fields
of snowfall, y. The stochastic unit fields of snowfally is
distributed in space according to a two-parameter gamma
distribution,y=G(ν0, α0), with probability density function
(PDF):

fα0,ν0(y) =
1

0(ν0)
α

ν0
0 yν0−1e−α0y α0, ν0, y > 0 (1)

where α0 and ν0 are parameters. The mean equals
E(y)=ν0/α0 and the variance equals Var(y)=ν0/α

2
0. The

stochastic unit fields are hereafter, for practical purposes, de-
noted units. The choice of distribution is motivated partly
from studies reporting the gamma distribution as a suit-
able choice of spatial distribution for precipitation (Onof et
al., 1998; Mackay et al., 2001) and SWE (Kutchment and
Gelfan, 1996) and partly because of the practical mathemat-
ical features of the gamma distribution and the flexibility
needed for representing the observed changes in the shape
of the spatial distribution during the snow season. We want
to describe the moments of the accumulated snow reservoir

z(t), accumulated at timet , z(t)=
n(t)∑
i=1

yi , wheren is the num-

ber of unitsy accumulated up to the timet . The mean of
z(t)is

E(z(t)) =

n∑
i=1

E(yi) = n
ν0

α0
, (2)

whereas for the variance ofz(t) we have to take into account
the temporal correlation ofy and we have to consider the
covariance matrix ofz(t) (see Haan, 1977, p. 56):

Var(z(t)) =

n(t)∑
i=1

Var(yi) + 2
∑
i<j

Cov(yi, yj ) (3)

In the following, we assume that the covariance between the
units can be described as a constant fractionc of the variance,
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Var(y), of the individual y’s, Cov(yi, yj )=cVar(y)=c
ν0
α2

0
.

The variance ofz(t) becomes:

Var(z(t)) = n
ν0

α2
0

+ n(n − 1)c
ν0

α2
0

= n
ν0

α2
0

(1 + (n − 1)c) (4)

We note thatc=
Cov(yi ,yj )

Var(y)
is the correlation coefficient, given

that yi and yj are identically distributed. This correlation
function should be a decreasing function with time, but is
here represented with its temporal average over all then

units.
We want the spatial distribution of accumulated snowz(t)

at all times to be simple mathematically tractable distribu-
tion function, with which we easily can simulate and per-
form other exploratory analyses. We thus state thatz(t) is
distributed as a gamma distribution with parametersnνn and
αn. In order to formulate the moments of the sum of the
gamma distributed variables in this manner, then elements
of the sum have to be independent, and identically gamma
distributed variables with parametersνn andαn (see Feller,
1971, p. 47). Let us denote these independent variables as
Yi . The mean and variance ofz(t) modelled as a sum of in-
dependent variables,Y are:

E(z(t)) = n
νn

αn

(5)

and

Var(z(t)) = n
νn

α2
n

(6)

From the mean and variance ofz(t) modelled as a sum of
dependent variables,y, we can determine expressions forνn

andαn by the mean and variance ofz(t) modelled as a sum of
independent variables,Y . From the equating of Eqs. (2) and
(5), n

ν0
α0

=n νn

αn
and Eqs. (4) and (6),n ν0

α2
0
(1+(n−1)c)=n νn

α2
n

we can solve forνn andαn and get:

αn =
α0

1 + (n − 1)c
(7)

and

νn =
ν0

1 + (n − 1)c
(8)

We note that the ratiosνn

αn
and ν0

α0
are equal, which mean that

the mean of the process is unaffected by the correlation.

2.1 Adding correlated variables to a sum of independent
variables

Let us say at timet ′ an additional snowfall ofu units of y,
have fallen onz(t) giving us the snow reservoirz(t ′),

z(t ′) = Y1 + Y2 + .. + Yn + y1 + y2 + .. + yu (9)

The mean can be estimated straightforwardly as the sum of
the individual means:

E(z(t ′)) =

n∑
i=1

E(Yi) +

u∑
i=1

E(yi) = n
νn

αn

+ u
ν0

α0
(10)

For the variance ofz(t ′) we must again consider the covari-
ance matrix of Var(z(t ′)) andV ar(z(t ′)) is the sum of all the
elements of the covariance matrix. Given that theY ’s are un-
correlated, the covariance elements describing the covariance
between theY ’s are zero and we get the following expression
for the variancez(t ′):

Var(z(t ′)) =

n∑
j=1

Var(Yj )+2
n∑

j=1

u∑
i=1

Cov(Yj , yi)

+

u∑
i=1

Var(yi)+2
u−1∑
i=1

u∑
k=i+1

Cov(yi, yk) (11)

We assume also here that Cov(Y, y) can be approximated by
Cov(Y, y)=cVar(y)=c

ν0
α2

0
, and Eq. (11) can be written as:

Var(z(t ′)) = n
νn

α2
n

+ u
ν0

α2
0

+ 2nuc
ν0

α2
0

+ u(u − 1)c
ν0

α2
0

(12)

From Eqs. (10) and (12), we can develop expressions for the
parameters of the distributions ofz(t ′) modelled as a sum of
n+u independent gamma distributed events with moments
E(z(t ′))=n

νn+u

αn+u
and Var(z(t ′))=n

νn+u

α2
n+u

:

αn+u =
(n + u) νn

αn

n νn

α2
n

+
ν0
α2

0
(u + 2nuc + u(u − 1)c)

(13)

and

νn+u =
(n + u)( νn

αn
)2

n νn

α2
n

+
ν0
α2

0
(u + 2nuc + u(u − 1)c)

(14)

2.2 Melting events

We can, in a similar way as above, develop the moments
for the accumulated SWE after a melting event. Let us say
at time t ′ a melting event takes place andu units of y, are
melted fromz(t) giving us the snow reservoirz(t ′),

z(t ′) = Y1 + Y2 + .. + Yn − y1 − y2 − .. − yu (15)

We make here the assumption that the spatial distribution of
a unit melt is identical to that of a unit snowfall. It is diffi-
cult to have strong assumptions on the spatial distribution of
snow melt, other than that the ultimate melting event is nec-
essarily identically distributed as the ultimate SWE. Essery
and Pomeroy (2004) assumed a log-normal distribution of
snowmelt from log-normally distributed SWE, a distribution
of melt which is similar in shape to the gamma distribution.
This issue is further discussed in Sect. 4.

The mean can, as above, be estimated straightforwardly as
the sum of the individual means:

E(z(t ′)) =

n∑
i=1

E(Yi) −

u∑
i=1

E(yi) =n
νn

αn

− u
ν0

α0
(16)
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Fig. 1. Locations of snow monitoring campaigns at Norefjell and
Aursunden, Southern Norway.

and we have the following expression for the variance of
z(t ′):

Var(z(t ′)) =

n∑
j=1

Var(Yj ) − 2
n∑

j=1

u∑
i=1

Cov(Yj , yi)

+

u∑
i=1

Var(yi) + 2
u−1∑
i=1

u∑
k=i+1

Cov(yi, yk) (17)

We get negative and positive covariance contributions from
the melting event. The negative contributions come from
when the melting event is correlated to the snow reser-
voir prior to the melting. A melting unit correlated with
a melting unit gives a positive contribution. Also here we
make the assumption that Cov(Y, y)can be approximated by
Cov(Y, y)=cVar(y)=c

ν0
α2

0
, and Eq. (17) can be written as:

Var(z(t ′)) = n
ν

α2
+ u

ν0

α2
0

− 2nuc
ν0

α2
0

+ u(u − 1)c
ν0

α2
0

(18)

From Eqs. (16) and (18), we can develop expressions for the
parameters of the distributions ofz(t ′) modelled asn−u in-
dependent gamma distributed events:

αn−u =
(n − u) νn

αn

n νn

α2
n

+
ν0
α2

0
(u − 2nuc + u(u − 1)c)

(19)

and

νn−u =
(n − u)( νn

αn
)2

n νn

α2
n

+
ν0
α2

0
(u − 2nuc + u(u − 1)c)

(20)
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Fig. 2. Observed spatial mean (solid line), spatial standard deviation
(long dashed line) and CV (short dashed line) of SWE at Norefjell.

3 Snow course data from Norefjell – Southern Norway

During the EU project Envisnow, montoring of the spatial
distribution of SWE during the snow season was performed
at Norefjell (60◦15′ N, 9◦30′ E) located in southern Norway
110 km north-east of Oslo (see Fig. 1). The motivation for
the monitoring campaign was to study the possible change in
features of the spatial distribution of SWE trough the snow
season. The snow monitoring campaign was carried out do-
ing snow surveys every second week in the accumulation sea-
son and every week during the melting season. The route
was fixed (by GPS) for the 2 km long snow course and snow
depth was measured every 10 m. Snow density was measured
twice during the snow course at locations of the mean snow
depth. The snow course route is located at 1100 m a.s.l. and is
above the tree line. 17 one-day campaigns between Novem-
ber 2002 and June 2003, and 9 campaigns between October
2003 and February 2004 were carried out. The latter part
of the monitoring period also includes the start of the accu-
mulation period, whereas the former started when there were
already 200 mm of SWE present.

Figure 2 shows the time series of the mean, standard devi-
ation and coefficient of variation (CV) of SWE for the snow
course data. We can note that the CV (see October 2003) is
relatively high at the start of the accumulation season, de-
creases during the accumulation season, and rises sharply
during the melting season. As the mean SWE and the stan-
dard deviation both decrease during the melting season, the
increasing CV implies that the rate of change (decrease) of
the mean is much higher than for the standard deviation. This
feature of the spatial standard deviation of SWE was also
noted by Pomeroy et al. (2004), who found that the other-
wise strong association between mean SWE and standard de-
viation was not evident during melt. During melt, the mean
SWE declined whereas the standard deviation increased or
remained constant.
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Fig. 3. Spatial analysis of precipitation from five gauges in the
Norefjell area. Spatial mean of precipitation versus the spatial stan-
dard deviation. The spatial standard deviation can be modelled as a
linear function of the spatial mean.

4 Results and discussion

The dynamical parametersα and ν of the two parameter
gamma distribution was calculated for each point of obser-
vation of mean SWE, taking into account accumulation and
melting events by using the Eqs. (13) and (14), or (19) and
(20), respectively. The mean areal SWE acts as input and,
after the parametersc, α0 and ν0 have been assigned esti-
mated values, the proposed method estimates the parameters
of the spatial distribution of SWE modelled as a two param-
eter gamma distribution.

In order to estimate the parameters of the distribution of a
stochastic unit field of snow fall,α0 andν0, an analysis of the
spatial statistics of precipitation in the area was carried out
using the daily rainfall fields measured for a year from four
nearby stations (the snow course site is situated in the centre
of a square defined by the four stations). The events anal-
ysed where screened so that at least one station (of the four)
measured zero precipitation. This strategy was chosen so we
could be sure of that the spatial distributions analysed were
not bounded to the left by values higher than zero, which
would not be consistent with our definition of a stochastic
unit field as distributed as a two parameter gamma distribu-
tion. Figure 3 shows the scatter plot of observed spatial mean
and spatial standard deviation (R2

=0.93), indicating a more
or less a constant spatial coefficient of variation, CV=1.35.
This feature is also observed by Barancourt et al. (1992) for
spatial precipitation events in France. The very high ob-
served correlation between spatial mean and standard devi-
ation suggests that we can estimate the spatial standard devi-
ation of the unit stochastic field to be 1.35 times the mean.
Let us say that the spatial unit of snow fall has a spatial mean
equal to the daily mean of positive precipitation (exclud-
ing zero events) of the closest precipitation station located
18 km south of the snow course site and 367 m a.s.l. This is
equivalent to the procedure used when using point observa-
tion(s) to estimate the spatial mean as input in rainfall runoff
models. For Norefjell this procedure gives us the estimates
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Fig. 4. Observed (solid line) and estimated spatial standard devia-
tion at Norefjell. Long dashed line represents estimates by the new
model and short dashed line represents estimates by the snow rou-
tine of the HBV-model.

of spatial mean and standard deviation asm=5.86 mm and
s=7.91 mm, respectively. The parameters were estimated
trough the relationsα0=m/s2 andν0=m2/s2.

It can be argued that the estimate for the spatial variability
of precipitation used here for estimating the parameters of
the stochastic unit fields (α0 andν0) is too large and cannot
be representative for such a small spatial scale as that of the
snow course (2 km). If such an overestimation was substan-
tial, we would probably overestimate the spatial variance, as
the covariance, in the accumulation phase, represents a pos-
itive contribution to the spatial variance (see Eq. 3). It is
possible that the correlation coefficientc (which is a tuned
parameter and not estimated from data) compensates for this,
and that it should, in reality, be higher.

The correlation coefficientc was tuned in order to get an
optimal fit of estimated spatial standard deviation of SWE.
The optimality of the fit is measured by the Nash and Sut-
cliffe coefficient of efficiency R2 (Nash and Sutcliffe, 1970).
The estimated time series of standard deviation and CV of
SWE is also compared to that estimated by the traditional
snow routine of the HBV models which uses a lognormal
distribution with a fixed CV (optimized by the R2 criterion).
Figure 4 shows observed and estimated (by the proposed
model and by HBV) values of the spatial standard deviation
of SWE and Fig. 5 shows observed and estimated CV. The R2
value for the estimate of the spatial standard deviation was
R2=0.87 for the new model, and R2=0.32 for the snow rou-
tine of the HBV model. The new model is thus a considerable
improvement to the lognormal distribution with a fixed CV.
The observed values do indeed show that the spatial distribu-
tion of SWE changes through the season, and the proposed
model capture these changes well. Figure 6 shows the agree-
ment between the gamma CDFs (1000 values are simulated)
based on the estimated values ofα andν and the empirical
CDFs from the observations for the dates 18 March 2003 and
28 May 2003, confirming that a representative model for the
spatial distribution of SWE is developed.
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Fig. 5. Observed (black triangles) and estimated CV at Norefjell.
Open circles represent estimates by the new model and black circles
represent estimates by the snow routine of the HBV-model (fixed
CV value).
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Fig. 6. Observed and simulated spatial CDF of SWE at near snow
maximum (18 March, and late spring (28 May) at Norefjell. Solid
lines are observed values (thick line at 18 March), and dashed lines
are simulated (long dashed lines at 18 March).

Unfortunately no validation data from this site is avail-
able. However, when the sample of SWE was split and the
method was calibrated for the 2002–2003 data and validated
for the 2003–2004 data, very good results were obtained with
R2=0.86 for the calibration period and R2=0.90 for the val-
idation period.

In this study we have assumed identical distributions of
stochastic unit fields of accumulation and of melt. Observed
spatial fields of snowmelt are scarce but from a research site
near Trondheim in central Norway, 4 snow pillows is located
within 25 m2. For the month of April 2007 we could observe
17 daily melting events measured at the 4 snow pillows. It is,
obviously, difficult to make inferences on the spatial distri-
bution from four values covering such a tiny area, but Fig. 7
shows how the spatial CV decreases as the spatial mean in-
creases. This behaviour of CV versus spatial mean is sim-
ilar to what can be seen for the accumulation of SWE (see
Fig. 2) and consistent with modelling melt as summations of
temporally correlated spatial fields, of which each can well
be gamma distributed. The spatial distribution of daily melt,
measured on fixed time intervals is obviously non-stationary.
The proposed method takes the non-stationarity of melt into
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Fig. 7. Spatial CV of daily melt versus spatial mean of melt. The
data are from four snowpillows covering an area of 25 in the Trond-
heim area during April 2007.

account in the way that different number of units (typically
increasing in spring) give different spatial distributions of
melt, thus mimicking a non-stationary process. The good
agreement between simulated and observed CDF (Fig. 6), in
late spring (28 May) shows that the assumption of identical
distributions of the units of melt and accumulation is not crit-
ical in respect to the performance of the model.

The optimal values forc in the Norefjell data was
c=0.019. Using different values ofc for accumulation and
melting events were tried and, for this location, improve-
ments of R2 were found. When usingc=0.016 for accu-
mulation events andc=0.01 for melt events, we obtained a
R2=0.90. Studies of temporal correlation of precipitation,
both for a fixed coordinate system and from a coordinate sys-
tem that moves with the storm, show a rapidly declining cor-
relation function which approaches zero after approximately
two hours (Zawadski, 1973). As the parameterc represents
a temporal average over the total number of events, it is thus
not strange that the values obtained in this study are small.
The effect of correlation, however, is significant, in that we
would otherwise have a steadily increasing spatial variance
as both summation and subtraction increases the variance
(Haan, 1977).

It is also interesting to note that the correlation between
melting events and SWE turns out to be positive. Pomeroy
et al. (2004) found positive correlation between SWE and
melt on the catchment scale (>10 km2) and negative corre-
lation for smaller scales. Positive correlation was explained
by the presence of landscape classes (shrub tundra) receiving
more snow due to redistribution processes and the possibility
of increased melt rate for areas with exposed shrub due to
reduced albedo and enhanced aerodynamic roughness. We
investigated the effects of varying the sign of the correlation
coefficientc in Eq. (17) for melting and for different phases
of the melting process. A negative correlation between melt
and pre-melt SWE resulted in a steadily increasing standard
deviation during the melting period and was thus not con-
sistent with the observations. Negative correlation at the be-
ginning of the melting period and positive towards the end
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Fig. 8. Observed and estimated spatial standard deviation of SWE
at Norefjell. The standard deviation is modelled with negative cor-
relation at the start of the melting period, and positive towards the
end of the melting period.

improved the fit between modelled and observed standard de-
viation of SWE (R2=0.92) (see Fig. 8) and we note that the
increase in standard deviation seen at the start of the melting
season (see Fig. 8 when the mean SWE starts to decrease) is
now well estimated due to negative correlation. A possible
reason for an initial negative correlation can be the smaller
demand of energy needed by shallow snow packs to reach an
isothermal state and the maximum amount of retainable melt
water in the snow pack. Melting will thus take place ear-
lier for these shallow snow packs. The positive correlation
is harder to explain if one does not take into account domi-
nating landscape classes that favour both accumulation and
increased melt rate. Such landscape classes are not present
at the Norefjell snow course, where there are some 30–40 m
of low-growing willow thicket (<60 cm) and otherwise no
vegetation besides grass. Maybe the positive correlation be-
comes appropriate only towards the end of the melting sea-
son, when the entire snow pack is mature and producing melt.
At this stage, SWE starts to be a limiting factor and more
melt water is generated from larger snow packs simply be-
cause more SWE is available for melting.

In order to investigate whether the method could be ap-
plied also to other locations than Norefjell, we tested if the
spatial variability of SWE could be reproduced at an alpine
catchments at Aursunden in the northern part of Southern
Norway (see Fig. 1). Snow course measurements was carried
out at Aursunden (930 m a.s.l.) three times during April and
May in 2002 (see Alfnes et al., 2004). Again, the route was
fixed by GPS for the 1 km long snow course and snow depth
was measured every 10 m. The parametersα0 andν0 were es-
timated in the same manner as above from a spatial analysis
of precipitation measured at five nearby gauges (spatial daily
mean,m=3.31 mm, and standard deviation,s=4.15 mm). The
correlation coefficient was tuned to the values of observed
spatial standard deviation. Also here the best fit was ob-
tained with using different values ofc for melting (c=0.11)
and accumulation (c=0.13) events. Figure 9 shows the good
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Fig. 9. Observed and estimated values of standard deviation and
CV at Aursunden for the weeks 15, 18 21 in 2002. Observed val-
ues of standard deviation and CV are represented by solid line and
black triangles. Estimated values of standard deviation and CV are
represented by long dashed line and open circles.

agreement between observed and modelled spatial standard
deviation and CV. The correlation coefficient and the spatial
standard deviation of precipitation take on quite different val-
ues at Norefjell and Aursunden. Although the observations
points are too few to make strong inferences it does seem rea-
sonable that we find high temporal correlation together with
relatively low spatial variability of precipitation.

5 Conclusions

A model for the spatial distribution of SWE has been put for-
ward. At all times the spatial distribution of SWE can be
expressed as a two parameter gamma distribution where the
parameters are functions of the mean and variability of ob-
served precipitation, the number of accumulation and melt-
ing events and of temporal correlation.

The observed time series of SWE confirms that the spatial
distribution of SWE do change trough the snow season with
initially high CV, which decreases during the accumulation
season and increases in the melting season. These features,
as well as the shape of spatial distributions of SWE, are well
reproduced by the proposed model.

The new model clearly represents the spatial distribution
of SWE more realistically than the log-normal distribution
with a fixed CV which is traditionally used in the HBV model
in the Nordic countries. The model provides good estimates
of the spatial variability of SWE at two alpine locations in
Southern Norway.

Analysis of the correlations between pre melt SWE and
melt suggests that correlation is negative in the early stages
of the melting process and positive at later stages. Positive
correlation between SWE and melt at the end of the melting
proved, within the model framework, to be necessary in order
to model the decrease in spatial variability observed in the
snow course data.

www.hydrol-earth-syst-sci.net/11/1543/2007/ Hydrol. Earth Syst. Sci., 11, 1543–1550, 2007



1550 T. Skaugen: Spat-var-SWE

Acknowledgements.The efforts of my colleagues E. Alfnes,
L. Andersen, H. C. Udnæs, L. E. Petterson and S. Beldring for
collecting the validation data are gratefully acknowledged. Also
the comments of the two anonymous referees and the editor are
highly appreciated.

Edited by: A. Gelfan

References

Alfnes, E., Andreassen, L. M., Engeset, R. V., Skaugen, T., and
Udnæs, H.-C.: Temporal variability in snow distribution, Ann.
Glaciol., 38, 101–105, 2004.

Barancourt, C., Creutin, J. D., and Rivoirard, J.: A method for delin-
eating and estimating rainfall fields, Water Resour. Res., 28(4),
1133–1144, 1992.

Bergstr̈om, S.: The HBV model – its structure and applications,
SMHI Hydrology, RH no.4, Norrk̈oping, 35 pp., 1992.

Bruland, O., Liston, G. E., Vonk, J., Sand, K., and Killingtveit,
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