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Abstract. Past limnological conditions of Lake Mbalang
(7◦19′ N, 13◦44′ E, altitude: 1130 m) and vegetation type
were reconstructed from diatoms and sedimentary stable car-
bon isotope records (δ13C) since 7200 cal yr BP. The data
showed that before 3600 cal yr BP, the water column was
dominantly stable except around 5000–5300 cal yr BP where
diatoms evidenced a mixed upper water layer andδ13C data
suggest more forested vegetation in the landscape. These sta-
ble conditions can be explained by a strong monsoon flux and
relatively northern position of the ITCZ that entailed high or
low rainfall well distributed over the year, allowing the de-
velopment of mountainous forest taxa. The decreasing trend
of the monsoon flux towards the mid-Holocene was affected
by several abrupt centennial to millennial-scale weakening
at 6700, 5800–6000, 5000–5300, 4500 and 3600 cal yr BP.
However, their impact on the vegetation is not visible, prob-
ably because rainfall distribution was favourable to forest
maintenance or extension. After 3600 cal yr BP, the water
column became very mixed as a result of more intense NE
trade winds (Harmattan) that led at∼3000 cal yr BP to the
establishment of savannah in the vegetation landscape. At
that time, rainfall was probably reduced following the south-
ward shift of the ITCZ, and the distribution of yearly rainfall
was not favourable anymore to forest development. A strong
seasonality with a marked dry season was established, con-
ditions that maintained the savannah vegetation until today.

Correspondence to:V. F. Nguetsop
(vfnguetsop@yahoo.fr)

Diatom data suggest the lake did not dry up during the last
7200 cal yr BP; however, a low lake level observed at 2400–
2100 cal yr BP is contemporaneous to a climatic event evi-
denced in several areas of tropical Africa and could corre-
spond to the southernmost position of the ITCZ. Other low
lake levels are observed at 1800 and 1400 cal yr BP, after
which the lake rose to its present level.

1 Introduction

Climatic changes during the Holocene in Western Africa
have been mostly studied in the subequatorial forest and Sa-
helian/arid regions. The two regions are submitted to the
atmospheric monsoon flux from the tropical Atlantic that
reaches its northern maximum extension during the northern
summer (July–August) in the present. It is present over the
year in the northern subequatorial regions except during a 3-
month dry season centered in January. At these latitudes, this
monsoon flux is characterised by a deep atmospheric convec-
tion; however, a relative stability of the atmosphere at low
levels at the base of the monsoon flux is observed in July–
August when the Intertropical Convergence Zone (ITCZ) is
farthest north. Convective rainfalls are almost suppressed
during this period of the year at the northern border of the
Guinean Gulf.

During the Holocene, the monsoon flux penetrated more
or less deeply inside the Saharan region, entailing an al-
ternation of wet and dry phases (e.g. Servant and Servant-
Vildary, 1980; Gasse, 2000) superimposed on a general trend
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of monsoon weakening in response to decreasing summer in-
solation of the Northern Hemisphere (Kutzbach and Street-
Perrot, 1985). Modifications in the intensity of the monsoon
were also suggested by changes of precipitationminusevap-
oration balance at subequatorial latitudes (Talbot and Delib-
rias, 1980; Nguetsop et al., 2004).

Concordant data from low and high altitudes in western
Cameroon (Maley and Brenac, 1998; Reynaud-Farrera et al.,
1996; Nguetsop et al., 1998; Stager and Anfang-Sutter, 1999;
Vincens et al., 1999; Ngomanda et al., 2007, 2009b; Kos-
soni and Giresse, 2009) suggest that climatic changes were
also controlled by modifications in the vertical structure of
the atmosphere (Nguetsop et al., 2004). The present stable
air layer situated at the base of the monsoon flux in July–
August could have extended on the western Cameroon low-
lands and mid altitude areas during the greatest part of the
year, entailing the almost suppression of convective rains be-
fore 3000 cal yr BP. After that date, the influence of the stable
air layer was strongly reduced and convective rainfall reap-
peared. If this is true, one can expect different climate evolu-
tions between lowlands south of the Adamawa plateau, mid
altitude regions such as Adamawa (1000–1100 m), and west-
ern Cameroon highlands (>2000 m).

Available paleoclimatic records of the last 3000 yr in the
tropical zones of Africa, close to the Atlantic coast of Gabon,
West-Cameroon and South-Congo (Ngomanda et al., 2009a;
Nguetsop et al., 2004; Vincens et al., 1999), suggest signifi-
cant modifications in abundance and/or seasonal distribution
of rainfall in response to north south shift of the Intertropical
Convergence zone (ITCZ). Thus, climatic changes affected
in the past water resources that impacted on human popula-
tion and vegetation landscape of central and north tropical
Africa. Paleoenvironmental studies showed that the rain for-
est belt was reduced and persisted only in refuge zones dur-
ing the Last Glacial maximum (e.g. Maley, 1987). Between
∼2500–2000 cal yr BP, the rain forest was strongly disturbed
or was replaced by savannas, depending on the sensibility to
climate change of each site in central Atlantic Africa (Vin-
cens et al., 1999). The present day “hot spots” of biodiversity
(Tchouto et al., 2006) and the spatial heterogeneity of the rain
forest are probably inherited from past climate changes. The
question is how the Adamawa plateau located between the
dry zones in the north and wet areas in the south responded
to theses major climatic changes.

Organic components in lake sediments are supplied by
allochtonous organisms and riverine, terrestrial and atmo-
spheric inputs. They are biomarkers of biological produc-
tion, source organisms, and paleolimnological changes in the
drainage basin. Here we study paleolimnological changes in-
ferred from a multi-proxy data set of microfossils and car-
bon stable isotope ratios of sediment of the core M4 re-
trieved from Lake Mbalang in the Adamaoua in Cameroon,
along with sedimentary facies (Ngos and Giresse, 2011) and
AMS carbon-14 datings (Tandetron Accelerator Mass Spec-
trometry). Specifically, past limnological conditions will be

accessed through the analysis of diatom ecological groups;
variations in trade wind (Harmattan and monsoon) inten-
sity will be reconstructed from allochtonous diatom taxa or
species that characterise stable water table. The evolution of
sedimentaryδ13C will be compared to published palynolog-
ical data, showing that Lake Mbalang area was only made
up of patches of forest surrounded by savannas (with fluctu-
ations of their respective areas) and from ca. 2500 cal yr BP,
the region was completely covered by savannas (Vincens et
al., 2010). These phenomena are discussed in relation to the
Monsoon African System and environmental changes for the
last 7000 yr.

2 The site

2.1 Location and general characteristics of the studied
lake

Lake Mbalang (7◦19′ N, 13◦44′ E, altitude: 1130 m) lies on
the Adamawa plateau that belongs to the Cameroonian vol-
canic line (Fig. 1). This high topographic unit (850–1200 m)
extends between latitudes 6◦ and 8◦ north and between lon-
gitudes 11◦30′ to 15◦45′ E. The plateau is limited in the
north by the relatively lowlands of the Benue plain (800–
300 m) and in the south by the sub-Cameroonian plateau
(800–500 m). Crystalline and foliated metamorphic rocks
make up the substratum of this unit which is largely covered
today by ancient volcanic basaltic flows differently altered
from one region to another (Humbel, 1967). According to
Gèze (1943), in the Adamawa as well as in the whole vol-
canic line of Cameroon, three volcanic series can be encoun-
tered: the lower black series to which Mbalang region be-
longs dated from upper Cretaceous to upper Eocene (Bache-
lier, 1957), the medium white series (end of Neogene) and
the upper black series (Quaternary). These series are re-
spectively composed of basalts and andesites conserved as
yellowish clays, trachyte and phonolithe lavas, and basaltic
volcanic deposits. Volcanic and ferralitic materials in form
of dome and outcrops are encountered at the vicinity of the
lake. Soils are mostly ferralitic, rich in aluminium and iron
oxides with frequent neoformation of halloysite and kaolin-
ite. Other clay minerals present include gibbsite and siderite.

The lake, with a surface area of 50 ha and a narrow water-
shed (∼90 ha), is a volcanic maar described as an asymmet-
ric bowl with steep slopes. Lake Mbalang water maximum
depth is about 52 m and is characterized by the absence of
a present day river inlet. The euphotic zone is 3.45 m deep
(Kling, 1987). According to Kling (1987), Lake Mbalang is
“moderately stable”; however a relatively cool epilimnion is
subjected to period of surface warming in times of low wind
stress. The water column is then affected by yearly modifi-
cations of mixing depth that could be attributed primarily to
higher temperatures as well as intensity of storms or maxi-
mum wind speed. The lake is fed only by rainfall and runoff
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Fig. 1. Location of Lake Mbalang in the Adamawa plateau; morphometric features and area of the lake. The location of the lake is shown
with a black star in(b).

from the catchments, water losses occur through evaporation;
however a surface outlet is present at the southeastern part
of the lake but functions only during very high lake levels
over the year. The210Pb profiles along the first 80 cm of the
sediment in the lake suggested regular sediment supply from
smooth erosion of the surrounding catchments, hence fossil
sediments of the lake can be presumably suitable for pale-
oenvironmental studies (Pourchet et al., 1987).

2.2 Vegetation

The Adamawa region is occupied by tree or shrub savan-
nas characterized byDaniellia oliveri (Caesalpiniaceae) and
Lophira lanceolata(Ochnaceae); these savannas are strongly
altered in some areas due to their permanent use as graz-
ing land. Highest altitudes areas are occupied by soudano-
guinean vegetation dominated byHymenodyction floribun-
dum (Letouzey, 1968, 1985). The edges of the lake are

more forested with taxa such asCroton macrostachyus,
Sterculia tragacantha, Polyscias fulva, Rauvolfia vomito-
ria, Pittosporum mannii, Ficus capensis, etc. . . Typical
savanna trees encountered wereAnnona senegalensis, Al-
lophilus africanus, Cussonia barteri, Piliostigma thonningi,
Terminalia glaucescensandHarungana madagascariensis.

2.3 Climate

The region is under the influence of the altitudinal tropi-
cal climate that shows two distinct seasons: the dry season
that last from November to March and the rainy season from
April to October with rainfall maxima in July–September.
The mean annual rainfall is 1500 mm; mean annual temper-
ature varies from 23 to 26◦C (Suchel, 1988). In a classic
picture, seasonal changes are explained by the displacement
during the year of the intertropical convergence zone (ITCZ)
in direction of the most heated hemisphere. During the dry
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Fig. 2. Map showing the(a) modern positions of Intertropical Convergence Zone (ITCZ) during the northern summer (ITCZ July) and
northern winter (ITCZ January). The solid arrows represent the monsoon flux while dotted arrows represent the NE trade winds (Harmattan)
(Leroux, 2001). Orange full lines represent isohyetal lines 1500 mm and 100 mm (New et al., 2000). Colored dots correspond to sites were
paleorecords (green dots) are available: 1 – Bosumtwi, 2 – Sele, 3 – Tilla, 4 – Djupi, 5 – Shum Laka, 6 – Bambili, 7 – Barombi Mbo, 8
– Ossa, 9 – Nyabessan (Ntem River), 10 – Nguène, 11 – Sinnda, 12 – Kitina and Mbalang (red dot).(b) Possible position of ITCZ before
3600 cal yr BP inferred from diatom andδ13C isotopic data. Rivers of the Gulf of Guinea: Ntem(a), Nyong(b), Sanaga(c), Benoúe (d) and
Niger (e).

season (boreal winter), the ITCZ is located south of the
Adamawa plateau, the zone is then under the influence of the
dry north-eastern trade winds (Harmattan). It moves north-
wards during the rainy season (boreal summer), the zone is
then under the influence of humid south-western air masses
(monsoon flux) that bring precipitation (Fig. 2). However,
the African easterly waves may strongly modulate the spatial
organisation of rainfall over West Africa (Nicholson, 2009).

3 Material and methods

3.1 Description of the core

The core was collected in March 1998 at the centre part
of the lake (44 m deep) with a Mackereth air-compressed
corer by Ecofit program team. Lithology and sedimentol-
ogy of the core M4 has been described by Ngos et al. (2008)
and Ngos and Giresse (2011). The lithology of the 6 m
long core showed globally a dark clayey organic mud with
clearer/darker laminas at certain levels (Fig. 3a). Coarser
sandy laminas (up to 10 % sand in some levels) are observed
at the base of the core between 560 and 580 cm (Ngos et
al., 2008; Ngos and Giresse, 2011). Thin-section examina-
tions and XRD analysis of Lake Mbalang core show variable
siderite quantities (Ngos et al., 2008). The siderite is ubiq-
uitous but only at small amounts. In few places, nebula-like
masses of very small (<5 µm) siderites prisms were observed
(see Ngos et al., 2008).

Preliminary observations of thin-sections showed that bio-
genic particles composed of spongiae spicules and diatoms
are present throughout the core. Phytoliths and spicules
were observed and counted during diatom counting under
the light microscope, but not identified to generic or spe-
cific levels (Fig. 3b and c). Minerals such as siderite, quartz,
feldspars and augite could also be observed in the form of
layers or scattered in the sediment (Ngos et al., 2008; Ngos
and Giresse, 2011; Fig. 3d).

Spicules were more abundant at the base of the core (587–
225 cm), the ratio spicules/diatoms (Fig. 3c) counted was rel-
atively high (>20× 10−2). The most important peaks ap-
peared at 535 cm (3664× 10−2), at 557 cm (363× 10−2),
at 508 cm (649× 102) and between 391 and 379 cm (403–
500× 10−2). At the upper part of the core, the ra-
tio was generally low (<10× 10−2), the only relatively
high values were observed at 182 cm (89× 10−2) and
67 cm (35× 10−2). The ratio phytoliths/diatoms followed
broadly the same pattern of variation as spicules/diatoms
but values are lower (Fig. 3b), peaks were evidenced at
557 cm (1208× 10−2), 535 cm (2545× 10−2) and at 508 cm
(1607× 10−2). Relatively lower ratios were observed be-
tween 587–585 cm (17–31× 10−2), at 544 cm (141× 10−2)

and at 526 (290× 10−2). A decreasing trend was observed
towards the top of the core, the ratio reaches values close to
2× 10−2 between 39–26 cm.
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3.2 Radiocarbon dates

The chronological control is based on nine AMS radiocar-
bon dates performed on total organic matter (Table 1). Four
of the nine dates (indicated by stars) were already published
and discussed in previous articles (Ngos et al., 2008; Vin-
cens et al., 2010). The other five radiocarbon dates were pro-
cessed at the “Laboratoire de Mesure du Carbone 14 (Sal-
clay, France)” with the ARTEMIS AMS facility. The cali-
bration of14C yr BP into cal yr BP was performed using the
radiocarbon calibration program Calib Rev 6.0 (Stuiver and
Reimer, 1993). Eight of the nine dates showed a good in-
ternal consistency as function of depth while one performed
at 102 cm appeared older than expected (1760± 30 yr BP).
From Ngos and Giresse (2011) recent study, we know that
the volcanic activity of Lake Mbalang was insignificant and
that of Lake Tizong located at 15 km west of Lake Mbalang
has been of small radius suggesting CO2 volcanic gases have
not affected Lake Mbalang datings. Hence we suggest that
older age at 102 cm cannot be attributed to low radiocarbon
activity of volcanic CO2. The older age at 102 cm may in-
dicates an increase in sedimentation rate as it is observed
in Lake Assom (Ngos et al., 2003) and possibly in Lake
Tizong in the southern part of Adamawa between 1300 and
2800 yr BP. The lithology of the core did not show any par-
ticular unit that could indicate the changes of sedimentation,
nevertheless the ratio quartz and plagioclase over kaolonite

and gibbsite revealed an elevation of coarse elements in the
core at 80–100 cm (Ngos et al., 2008; Ngos and Giresse,
2011) but the time resolution is not good enough to confirm
the change. Here we consider the date older as a result of
allochtonous or reworked organic material and consequently
the date was excluded in constructing the age model. As-
suming that no radiocarbon reservoir age affected the organic
carbon of Lake Mbalang the remaining eight dates allowed a
construction of a polynomial depth-age model (Fig. 4) in or-
der to calculate by extrapolation the estimated age of each
studied sample. This age model was also applied to recent
periods (between 535 yr BP and the present) because210Pb
analyses are not yet available for accurate calculation of sed-
imentation rate for that period of time. The polynomial re-
gression intercept near the surface indicates an age of ap-
proximately 150 cal yr BP suggesting that reservoir age and
volcanic CO2 have little impact on the proposed chronology.

3.3 Diatom analyses

Diatom slides were prepared from∼0.5 g of dry sediment
by gently heating in 30 % hydrogen peroxide (Battarbee,
1986) followed by several washings with distilled water. Few
drops (0.2 ml) of the resulting residue suspended in distilled
water were evaporated onto a coverslip, which was subse-
quently mounted on a glass slide with NaphraxTM . At least
600 diatom valves were counted per sample or approximately
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Table 1. Radiocarbon dates from the core M4.

Laboratory Level Material Conventional 14C Calibrated 14C 2-sigma calibrated 14C Relative area
codes (cm) ages (cal yr BP) dates (cal yr BP) ages range (cal yr BP) (probability)

Unknown 35 TOM 535± 35* 546 509–562 0.69859
594–635 0.30141

SacA 18586 102 TOM 1760± 30** 1664 1567–1739 0.970552
1757–1780 0.025613
1803–1806 0.003835

Unknown 185 TOM 1796± 31* 1729 1922–1671 0.174361
1688–1820 0.825639

SacA 18587 276 TOM 2835± 30 2939 2860–3007 0.949524
3012–3036 0.035758
3050–3061 0.0014719

SacA 18588 321 TOM 3440± 30 3698 3631–3780 0.826694
3787–3828 0.173306

Unknown 407 TOM 4023± 29* 4481 4421–4536 0.949341
4542–4549 0.015457
4555–4568 0.035202

SacA 18589 481 TOM 4865± 30 5605 5490–5501 0.02962
5583–5654 0.97038

SacA 18590 506 TOM 5355± 35 6139 6002–6084 0.310786
6095–6218 0.555934
6235–6274 0.13328

Beta 143097 600 TOM 6400± 70* 7333 7173–7222 0.06448
7234–7432 0.93552

* Dates already published (Ngos et al., 2008; Vincens et al., 2010). ** Date not used in the age model.

200–300 valves when the diatom concentrations were too
low. Counts were done at magnification 1000× with oil im-
mersion objective (na = 1.32) using an Olympus BHT light
microscope equipped with Nomarski optics. Diatom preser-
vation was good throughout the core.

Identification and taxonomy of diatoms were based
principally on Krammer and Lange-Bertalot (1986–1991),
Gasse (1980, 1986), Germain (1981), Schoeman (1973), Si-
monsen (1987).

Ecological interpretations were essentially based on the
modern data of Lake Ossa area (Nguetsop, 1997; Nguet-
sop et al., 2010) coupled with previously documented taxa
preferences in other regions of Africa (Gasse et al., 1995;
Servant-Vildary, 1978), for most including taxa counts and
water-chemistry characteristics at sampling sites.

3.4 Stable carbon isotope analyses

For measurement of carbon stable-isotope content and C/N
ratios, 106 samples were taken along the core at intervals
varying between 2 and 16 cm with an average interval sam-
pling of 6 cm. According to Ngos et al. (2008) inorganic
carbon (IC) in M4 core is less than 1 % and X-ray diffrac-
tion (XRD) siderite (iron carbonate FeCO3) estimates show
variable relative amount along the core. Bahrig (1988) re-
portedδ13C values of siderite ranging from∼+2 to +15 ‰
for the sideriteδ13C though more recent experimental studies
of Jimenez-Lopez and Romanek (2004) show that isotopic
fractionation of the siderite is close but lower than isotope
fractionation factors for the calcite CO2(gaz). Enrichedδ13C
of carbonates may increase the bulk sedimentaryδ13C and
preclude the interpretation ofδ13C in terms of organic bulk
material. Hence, one should remove siderite by sample pre-
treatment with acid. However acid treatment methods affect
the reliability of organic carbon (C) and nitrogen (N), and
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δ13C values (Brodie et al., 2011). Hence, we proceeded to the
analysis ofδ13C of 106 bulk sediment samples of the M4 core
without treatment (δ13CTOT.) and 63 among the 106 samples
(δ13CORG.) were sub-sampled for acid-wash treatment with
HCl (0.6N) to remove carbonates (referred as rinse method
according to Brodie et al., 2011). Following the recommen-
dations of these authors we included centrifugation steps to
minimize the loss of fine colloidal components of the sample
material (e.g. fine organic fragments and clays) and reduce
potential biasing towards coarser grained fractions. The acid
washed samples were rinsed three times with de-ionized wa-
ter and centrifuged. Bulk sediment and acid-washed samples
were dried at 50◦C for 48 h. About 1 cm3 subsamples were
ground using a mortar pilar and sieved through a 60 µm mesh.
About 0.5 mg bulk sediment powder is weighed and intro-
duced in tin capsules prior to elemental and isotope analysis.
Nitrogen content results refer only to the bulk material.

Elemental C and N contents (%) and carbon isotope val-
ues of sediment were measured by dry combustion on a
Euro Vector 3000 Elemental Analyzer coupled with a Mi-
cromass Optima Isotope Ratio Mass Spectrometer at ISEM
laboratory (Montpellier). Elemental analysis of total car-
bon (CTOT.), total organic carbon (CORG.) and total nitrogen
(NTOT.) and therefore C/N ratios were measured using the C
and N contents of the alanine standard (C %= 40, N %= 16).
The analytical precision of the N % and C % is about 1 %.
The δ13C results are expressed in delta (δ) notation where:
δ (‰) = [(Rsample/Rstandard)− 1] × 1000 whereRsample and
Rstandardrefer to the13C/12C ratios of sample and standard,
respectively. δ13C values are reported in parts per thou-
sand (‰) relative to the Vienna Pee Dee Belemnite (VPDB)
standard. Precision for isotope measurements of chemi-
cal standards (Nist-8541 graphite international standards and
alanine) within sample runs were better than 0.2 ‰.

4 Results and interpretations

A total of 98 species and varieties of diatoms were identified
in the 48 studied samples of the core M4. Figure 5 shows the
evolution of the most represented species (≥5 % in at least
one sample). The ecological preferences of diatoms allowed
the individualization of 2 major phases (with 6 sub-phases) in
the paleohydrological evolution of the lake. Planktonic and
tychoplanktonic diatoms were present throughout the core
indicating that Lake Mbalang has never dried up (Figs. 6b, c,
d and 7a). This assumption is reinforced by the fact that ben-
thic, epiphytic and aerophilic diatoms remained consistently
low along the core (Figs. 6e, f, g and 7a). Some diatoms that
were recognised to be allochtonous were excluded from the
diatom percentage calculations and sum (Fig. 5).

We measuredδ13CTOT., CTOT. and NTOT. contents and
CTOT./NTOT. ratios of 106 bulk samples andδ13CORG., CORG.

and CORG./NTOT. of 63 carbonate free samples of M4 core
(Table 2 and Fig. 3e, g and h). Both curves ofδ13CTOT
andδ13CORG show the same trend. However, between 400
and 600 cm, and 220 and 240 cm theδ13CORG show more
depleted values compare toδ13CTOT. The isotopic differ-
ence between untreated and treated samples may reach 4 ‰
(426 cm) likely due to siderite reaching 10–12 % of mineral
crystals at those depths (Fig. 3d).

According to Ngos and Giresse (2011) the organic car-
bon content fluctuates between 15 and 20 % in the lower two
thirds portion of the sedimentary column before dropping, to
10 % in the upper part i.e. during the last 2500 cal yr BP. Our
new data of CTOT. (6.5 to 21.5 %) and CORG. (7.1 to 22.9 %)
and NTOT (0.6 to 1.4 %) confirm this change (Fig. 3g).

Lake sedimentary organic matter may results from a com-
plex combination of sources: autochtonous organisms (fresh-
water food chain) and/or allochtonous material (terrestrial
riverine and atmospheric inputs). Hence the isotopic com-
position of the lake organic matter may reflect a mixture of
these diverse sources. Generally autochtonous lacustrine or-
ganic matter is characterised by relatively low C/N ratios,
typically <10 (Meybeck, 1982) and terrestrial plants have
high C/N ratios (>20 and may be>200; Hedges et al., 1986).
Talbot et al. (1992) reported C/N ratios for plants collected
near the Lake Bosumtwi varying between 26.4 and 156.3.

The M4 core C/N ratios of untreated and acid washed
samples range from 9.7 to 17.9 and 10.5 to 18.0 respec-
tively (Table 2) showing that CORG./NTOT. ratios are slightly
higher than CTOT./NTOT. In average, the CORG. is 1.3± 06 %
higher than CTOT. taking into account the precision of 1 %,
we can assume that the difference is not significant. How-
ever, according to Brodie et al. (2011) the acid treatment
using the rinse method can artificially elevate C values due
to the loss of fine-grained materials (e.g. such as clays) and
the removal of inorganic carbon. The highest C/N values
are observed between 600 and 300 cm with a mean value of
14.0± 1.2 (untreated samples) and 15.6± 1.2 (treated sam-
ples). Between 300 cm and the top of M4 core, the mean

www.clim-past.net/7/1371/2011/ Clim. Past, 7, 1371–1393, 2011
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Fig. 5. Variation in abundances of the most dominant taxa (>5 % in at least one sample) belonging to different habitat groups and windblown
diatoms over the core. Hydrological phases corresponding to diatom zones are indicated.
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C/N value decreases (11.0± 0.8 and 12.6± 1.1 for untreated
and treated samples respectively). Do these values reflect a
change in the proportion of terrestrial versus aquatic organic
carbon inputs to Lake Mbalang? One can suggest that val-
ues of M4 core (from∼12 to ∼15) may reflect a mixture
of aquatic and terrestrial organic carbon and hence that the
aquatic contribution tend to increase from the base to the top
of M4 core. However, according to unpublished C/N data
, a different interpretation for relatively low C/N ratios can
be proposed. Modern soil of Central Africa in savanna area
have been analyzed with a multi-proxy mean approach (see
Fig. 2, Aleman et al., 2011). Measured C/N ratios vary from
10 to 19.3. These relatively low C/N ratios of terrestrial ma-
terial show intermediate values of C/N are not necessarily
linked to a mixture of aquatic and terrestrial organic car-
bon and that more study and data collection are necessary to

understand the processes behind the C/N variations in plants,
soils and lacustrine algae of Africa. Finally, erosional ex-
position and/or long distance transport of terrestrial organic
matter can also increase the C/N ratios.

The analyses ofδ13CORG. along the core show two main
phases and a transitional phase (3400 to 2500 cal yr BP): de-
pleted values varying between−32.4 and−28.7 ‰ are ob-
served between∼7200 and∼3400 cal yr BP (mean value of
−30.2± 1.1 ‰) and enrichedδ13CTOC values (∼−26.3 to
−22.3 ‰) concomitant with Poaceae pollen increase (Vin-
cens et al., 2010) for the last∼2500 cal yr BP (Figs. 6a and
7d).

According to Roberts et al. (2001), high lacustrine pri-
mary production (mostly algae) may increase the lacus-
trine isotopic carbon composition values by up 15 ‰ due
to the high CO2 biological demand during photosynthetic

www.clim-past.net/7/1371/2011/ Clim. Past, 7, 1371–1393, 2011
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Table 2. Stable carbon and elemental analysis of M4 sedimentary core taken in Lake Mbalang.Totalδ13C (δ13CTOT., ‰) and total carbon
(% CTOT.) and nitrogen (% NTOT.) refer to analysis made on the total sedimentary material (without acid treatment).δ13CORG. and CORG.

(%) refer to analysis of the organic carbon fraction (after HCl treatment). C/N ratios are calculated for both total (CTOT/NTOT) and organic
carbon (CORG./NTOT.).

Sample Depth Age δ13CTOT. CTOT. NTOT. CTOT./NTOT. δ13CORG. CORG. CORG./NTOT.

Number (cm) (Cal Yr BP) (%) (%) (%)

1 10 234 −23.1 10.2 0.9 10.9 −22.84 11.50 12.3
4 16 289 −23.4 9.4 0.9 10.4
6 20 321 −23.8 8.8 0.8 10.6
9 27 387 −24.0 9.5 0.9 10.6 −23.44 10.13 11.3

12 34 440 −23.3 8.9 0.9 10.4
15 40 495 −23.1 8.2 0.8 10.0 −22.80 9.98 12.2
18 46 552 −23.5 8.8 0.9 10.2
21 56 644 −23.7 9.6 1.0 10.1
23 60 679 −23.6
24 62 700 −23.7 10.2 1.0 10.6 −23.28 11.82 12.3
27 68 755 −23.0 9.5 0.9 11.0
30 74 811 −22.8 7.7 0.8 10.2 −22.29 9.02 11.9
34 81 873 −23.3 7.5 0.7 10.2
37 86 921 −23.4 7.4 0.7 10.5
40 93 988 −24.3 7.4 0.7 10.5 −23.91 8.26 11.7
45 106 1110 −23.7 7.5 0.7 10.7 −23.40 8.36 11.9
47 110 1155 −23.1 7.4 0.7 10.8 −23.18 8.40 12.2
50 116 1214 −23.3 6.9 0.7 10.2 −23.65 8.07 12.0
53 124 1287 −23.0 6.5 0.6 10.1 −23.39 7.35 11.4
56 130 1346 −23.5 8.6 0.8 11.2 −23.53 9.72 12.7
59 136 1413 −24.1 9.1 0.8 11.1 −24.64 10.27 12.5
62 144 1489 −23.5 8.6 0.8 11.4 −23.90 9.82 13.0
65 150 1557 −23.1 7.6 0.7 10.7 −23.91 8.83 12.4
68 157 1622 −22.5 6.6 0.7 10.1 −23.13 7.08 10.8
71 163 1688 −22.8 6.8 0.7 10.1 −22.31 8.04 11.9
73 167 1730 −24.4 8.0 0.8 9.7 −23.48 8.71 10.5
75 172 1780 −24.2 −23.89 11.18
76 175 1811 −25.1 9.5 0.8 11.3
78 183 1901 −24.7 −25.27 10.61
80 187 1944 −24.0 9.2 0.8 11.4 −24.78 10.25 12.7
83 195 2027 −23.7 8.2 0.7 11.0 −24.36 9.24 12.4
86 201 2093 −22.8 7.4 0.7 10.6 −23.65 8.28 11.8
89 207 2159 −24.2 8.1 0.7 11.0 −24.91 9.07 12.3
92 213 2227 −25.5 8.6 0.8 11.2 −24.93 11.09 14.4
95 220 2301 −24.4 8.9 0.7 12.1 −25.45 9.87 13.4
98 227 2374 −24.4 8.9 0.8 11.5 −25.52 10.08 13.1

101 236 2482 −23.4 8.5 0.7 11.5 −25.13 9.17 12.4
104 243 2560 −23.4 8.0 0.7 11.8 −26.33 9.02 13.3
106 247 2611 −23.5 7.8 0.7 11.5 −26.47 8.71 12.9
108 252 2663 −25.6 −26.79 10.63
109 254 2686 −26.8 8.4 0.7 12.0 −27.45 10.05 14.4
112 263 2793 −27.5 9.7 0.8 12.5 −28.56 11.18 13.9
115 271 2878 −28.0 10.6 0.9 12.4 −28.90 11.67 13.7
119 279 2982 −28.6 −29.19 13.07
120 286 3056 −28.6 10.1 0.8 12.7 −28.94 12.20 15.5
123 299 3219 −29.5 11.7 0.9 13.2
126 306 3297 −29.4 11.8 0.9 13.0
129 312 3375 −29.6 11.7 0.9 14.0 −30.51 13.47 15.5
132 318 3451 −31.9 12.8 0.9 14.3 −29.96 14.64 15.8
135 324 3527 −29.5 12.3 0.9 14.2
138 331 3607 −29.1 11.5 0.9 12.5 −30.15 12.93 14.1
141 337 3681 −29.1 11.2 0.9 13.0
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Table 2. Continued.

Sample Depth Age δ13CTOT. CTOT. NTOT. CTOT./NTOT. δ13CORG. CORG. CORG./NTOT.

Number (cm) (Cal Yr BP) (%) (%) (%)

144 343 3764 −28.8 10.6 0.8 12.9 −29.99 11.29 13.7
146 348 3824 −28.2 9.2 0.7 12.8
149 358 3954 −27.7 10.7 0.8 13.5 −30.20 11.67 14.7
152 365 4047 −29.9 11.3 1.0 11.6
155 372 4135 −30.4 13.0 0.9 14.9 −30.82
158 378 4215 −30.2 13.5 1.0 14.9 −30.69 14.66 15.3
162 392 4394 −26.9 10.2 0.7 15.9 −29.82 12.03 18.0
163 395 4432 −24.9 10.2 0.7 15.3 −28.67 10.65 16.4
165 399 4490 −29.1 10.6 0.8 14.8
168 406 4574 −29.2 11.1 0.8 13.5
171 412 4654 −29.3 11.0 0.8 13.5 −30.19 11.44 14.0
174 418 4745 −28.4 11.6 0.8 13.7
176 423 4810 −26.5 10 0.6 17.9 −29.44 10.42 17.8
177 426 4845 −24.6 9.3 0.6 17.2 −28.66 9.84 17.0
180 432 4930 −28.9 12.1 0.9 13.5 −29.75 13.00 14.6
183 438 5015 −26.9 10.9 0.8 13.9 −29.08 11.95 15.2
184 440 5047 −25.6 −28.68 11.14
186 444 5101 −27.6 11.7 0.8 13.8 −29.72 13.29 15.7
189 451 5192 −28.3 10.9 0.8 13.4 −29.67 11.67 14.3
192 457 5282 −28.1 10.1 0.7 13.7
193 459 5310 −27.6 −29.19 7.71
195 464 5372 −28.2 13.07 1.1 12.3 −29.56 14.66 13.8
198 470 5466 −30.6 17.11 1.3 13.0 −30.81 18.86 14.3
200 475 5530 −30.3 17 −30.66 18.46
201 477 5559 −30.5 15.74 1.2 12.7
204 483 5647 −30.1 16.33 1.3 12.6
206 487 5705 −28.9
207 489 5733 −27.5 13.97 1.1 12.9 −29.18 15.05 13.9
208 493 5791 −28.1
210 497 5849 −30.5 17.04 1.3 13.5
211 500 5885 −30.4
215 509 6024 −29.7 14.85 1.1 13.3 −31.24 17.44 15.6
217 514 6090 −30.5
218 516 6132 −32.2 17.13 1.2 13.8
221 522 6221 −31.2 17.96 1.3 13.9 −32.20 21.06 16.3
223 527 6292 −30.7
224 529 6323 −31.3
226 534 6386 −31.5 17.93 1.3 13.6 −32.45 21.42 16.2
227 536 6424 −25.1
228 539 6467 −31.1 17.69 1.3 13.8
230 545 6565 −31.0
231 547 6594 −30.9 17.82 1.2 14.5
232 550 6627 −30.4
234 554 6694 −31.0 16.1 1.1 15.3
236 558 6757 −31.5
237 560 6790 −30.8 10.61 0.8 14.1
239 564 6851 −31.4 16.7 1.1 15.2
242 571 6949 −29.0 13.19 0.9 14.3
244 575 7009 −29.4 17.1 1.1 15.3
245 576 7035 −27.0 16.4 −30.94 17.49
246 578 7068 −27.1
247 581 7102 −29.6 17.2 1.2 14.7 −31.07 19.11 16.3
250 586 7190 −32.0 21.5 1.4 15.3 −32.14 22.88 16.3
251 588 7221 −31.7
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Fig. 7. Variations of habitat(a), trophic status(b) and pH(c) groups over the core. Habitat: Planktonics, Tychoplanktonics, Epiphytics,
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processes leading to isotopic disequilibrium of the lacus-
trine carbonate system. However, the organic carbon content
shift observed by Ngos and Giresse (2011) and our CORG
and CTOT data do not support the hypothesis of a greater la-
custrine productivity though eutrophic and planktonic algae
show and increase. According to the analysis of literature re-
sults examining the complete range ofδ13C of benthic and

planktonic algae on a global basis, France (1995) shows that
freshwater benthic algae exhibitδ13C values of−26± 3 ‰
and phytoplankton of−32± 3 ‰, an average difference of
about 6 ‰. Thus assuming that this is true for diatoms of
Lake Mbalang we compared the peaks of abundance of ben-
thic and planktonic diatoms (Fig. 6g and b) of M4 core to the
δ13CORG. We did not find covariations with benthic diatoms.
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The two main peaks of benthic diatom abundances (>30 %
at 557 cm and 498 cm) observed at the base of M4 core are
not correlated to enriched carbon isotope ratios (<−28 ‰,
Table 2) and along the M4 core planktonic diatoms increase
(decrease) whenδ13CORG increases (decreases). These in-
verse covariations suggest that planktonic and benthic di-
atoms are not the main sedimentary carbon source.

We cannot exclude that enriched values from
3400 cal yr BP onwards may also reflect a mixture of
terrestrial and freshwater organic matter. However we
suggest that CORG./NTOT ratios and carbon stable isotope
ratios of M4 core may well be indicators of vegetation
cover of the Lake Mbalang watershed. Abundance of the
tychoplanktonic diatoms showed also an inverse covariation
with the δ13CORG (Fig. 6a and c) though the two proxies
show differences when compared in details. CORG./NTOT
and δ13CORG are negatively correlated along the M4 core
(Fig. 3h). This covariation is not a sign of post depositional
changes of the original isotopic characteristics of the primary
organic matter but we will show thanks to this multi-proxy
study that the concomitant increase of theδ13CORG and
Poaceae pollen evolution (Vincens et al., 2010) together
with a decrease of the CORG./NTOT ratios can be interpreted
in terms of paleolimnological and paleovegetation variations
forced by climatic changes.

4.1 Phase I: between 7200 and 3500 cal yr BP

The diatom flora of the lake was dominated by the olig-
otrophic, acidophilous tychoplanktonic diatoms represented
essentially byAulacoseira distansvar.humilisandA. distans
var. Africana. These taxa were reported in several tropical
swamps and swampy lakes from East Africa as Lake Kioga
(Uganda) and in the swamps of Bangweulu (Zambia). In
Lake Kioga (altitude 1036 m) they can represent up to 75 %
of the plankton samples (Gasse, 1986). From the study of the
modern diatom and associated water characteristics of Sa-
haran/Sahelian waterbodies, they were encountered in cold
stratified water conditions (Gasse, 1987) although they gen-
erally prefer warm water conditions (Gasse, 1986). High
percentages (40–80 %) of these taxa are encountered in the
modern data set of Adamawa in bottom mud of lake borders
occupied by aquatic vegetation. In swampy locations, domi-
nated by sedges and Poaceae, their abundance was relatively
high (28 %) (Kom, 2010). We thus inferred that these species
are characteristics of low to high water depth and stable wa-
ter table that can be occupied by aquatic vegetation or not.
They also indicate oligotrophic and acidophilous waters.

From 7200 to 5500 cal yr BP (subphase Ia): high abun-
dance of tychoplanktonic speciesAulacoseira distansvar.
humilis and A. distans var. africana (41–91 %) suggest a
generally acidic, oligotrophic and relatively stable or less
mixed water table. Alkaliphilous tychoplanktonic taxa (Cy-
clotella ocellata and C. meneghiniana) remained consis-
tently low except at the end of the subphase. Planktonic

diatoms represented mainly byA. muzzanensiswere also
present but exhibit relatively low abundance; their highest
abundance in this sub-phase is observed between 7200 and
6300 cal yr BP (18–23 %).A muzzanensisis considered as
an eutrophic (Hustedt, 1927–1966; Cholnoky, 1968), plank-
tonic taxa (Shoeman, 1973), encountered in the plankton of
lakes and great rivers (Hustedt, 1930; Krammer and Lange-
Bertalot, 1991) but it can also occur in some lakes in shal-
low turbid waters. Their presence can thus be interpreted
in this sub-phase as a result of relatively high water depth
and more mixed eutrophic water table, conditions that can be
observed during the dry season when the north-eastern dry
winds are preponderant. Hence, we can infer from the two
previous groups during this subphase, a generally moderate
to high lake level that can be mixed episodically. Benthic
diatoms represented mainly byStauroneis phoenicenteron,
S. ancepsvar.gracilis andPinnularia viridiformiswere more
important in this subphase, they peaked between 6900 and
6600 cal yr BP (up to 38 %) and at 6300–5900 cal yr BP (up
to 29 %); their high abundance suggests periods of clearer
water column or at least episodic lowering of lake level. The
hypothesis of lake level lowering is also suggested by the
presence of sand in the lowermost part of the core along with
abundant phytoliths and spicules but the low abundance of
epiphytic diatom taxa excluded a very low lake level where
the lake basin could have been occupied by dense macro-
phytic vegetation. δ13CORG. values are low with a mean
value of−31.2± 1.1 ‰ consistent with a C3-dominated ter-
restrial flora. Some very lowδ13CORG. values (−32.5 ‰)
may also be due to the presence of plant material influ-
enced by the isotopic effects of a dense, closed canopy for-
est that developed at that time. This phase is also charac-
terized byδ13CTOT shifts towards higher values: One peak
(−27.1‰) covaries with one of the major sand layer evi-
dence described at 580–560 cm and the two other peaks at
508 and 534–535 cm (∼ −25 ‰ and−27 ‰, respectively)
covarying with the Phytoliths/Diatoms and Spicules/Diatoms
ratios (Fig. 3). After acid treatment, the peaks disappeared
suggesting siderite influences the total sedimentary carbon
isotopic ratios. These results and the absence of covaria-
tion with the benthic diatoms reinforced the hypothesis of
episodic lowering of lake level and the presence or the vicin-
ity of the aquatic vegetation and important terrestrial organic
matter input as supported by Ngos et al. (2008) and Ngos and
Giresse (2011). Though epiphytic diatom abundance (Am-
phora ovalis, Cocconeis placentulaand varieties andGom-
phonema gracile) remained consistently low, the hypothesis
is nevertheless supported also by high values of total organic
carbon (Ngos et al., 2008). The mean CORG./NTOT. ratio is
15.8± 1.0.

From 5500 to 4800 cal yr BP (subphase Ib): planktonic
diatoms represented mainly byA. muzzanensisincreased
markedly and reached 63–76 % abundance while tycho-
planktonic diatoms decreased. This suggests an increase
of lake level and/or a well mixed water table. Benthic and
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Table 3. C/N ratios andδ13C of modern soils sampled in the
Ombella-Mpoko and Lobaye provinces of Central African Republic
(see the sampling field design in Aleman et al., 2011). These data
were obtained in the frame of the ANR - ERA Net BIODIVERSA
COFORCHANGE Project. The region is a rainforest progressively
giving way to savannas, on ferralsols under a typical tropical cli-
mate consisting in an alternation of a dry season from November
to February followed by a 8-months long wet season, with about
1500 mm annual precipitation (Bangui weather station, FAOCLIM,
2005).

Sample δ13CBulk CTot./NTot.
Number

1 −18.1 16.0
2 −18.2 16.6
3 −17.7 15.7
4 −18.6 15.2
5 −15.8 14.7
6 −17.8 17.5
7 −18.1 17.0
8 −18.6 18.1
9 −25.7 14.2
10 −24.7 14.0
11 −19.0 19.3
12 −18.1
13 −16.8
14 −23.0 15.3
15 −26.7 12.1
16 −27.2 12.2
17 −27.6 10.1
18 −28.3

epiphytic diatoms nearly disappeared; aerophilous taxa (Eu-
notia incisaandE. pectinalis) exhibit very low abundance
(∼3 %). Theδ13CORG. values vary from−30.8 to−28.7 ‰
between 470 cm and 423 cm. The meanδ13CORG value for
this period is−29.5± 0.7 ‰ and the mean CORG./NTOT. ra-
tio is 15.3± 1.4. At those levels, we also noticed the ef-
fect of carbonate siderite on the stable isotopic composi-
tion of the total carbon. This episode of slight increase of
δ13CORG. compared with the previous period may be related
to a slightly higher photosynthetic activity of eutrophic algae
(Hollander and McKenzie, 1991; Law et al., 1995) and/or
Poaceae taxa (Vincens et al., 2010). We suggest that dur-
ing this time, the lake level was generally high, nevertheless,
episodes of wind stress comparable to present day’s dry sea-
son were longer or more severe than before. Consequently
the lake experienced low level episodically, but benthic and
epiphytic taxa could not develop due probably to a mixed,
turbid water column. The high lake level can be explained
by high and probably well distributed rainfall over the year
that allowed the maintenance of forest vegetation as shown
by δ13CORG. data and the presence of savanna patches.

From 4800 to 3500 cal yr BP (subphase Ic): planktonic di-
atoms decreased significantly, tychoplanktonic species rose
(up to 75–81 %) then showed a decreasing trend with short
(centennial) spells of very low abundance towards the end
of the sub-phase. This may indicate a slight lowering of
lake level and probably a clearer, less turbid water column
also evidenced here by the increase of both benthic, epi-
phytic taxa (12 %) at 4500 cal yr BP and aerophilous taxa
(7–13 %) at 4800–4500 cal yr BP. This is also attested by a
slight increase of spicules and phytoliths in samples which
confirm the development of aquatic vegetation closer to the
coring site. During this period,δ13CORG. background
signature remained consistently low (−30.8 to −28.7 ‰).
Meanδ13CORG and CORG./NTOT. ratios are−30.1± 0.7 ‰
and 15.2± 1.5 respectively suggesting similar environmental
conditions as during the previous period. However, this sub-
phase is also characterized by the appearance ofA. granulata
var. valida, A. granulatavar. tubulosaand Stephanodiscus
astraea.Although these taxa are typical planktonic species,
they should be interpreted with caution because in Lake Ossa
area in southern Cameroon (3◦50′ N, 9◦36′ E), it was shown
based on their bad state of conservation, their distribution and
their abundance in the lake modern sediment samples and in
the uppermost layer of soils under the forest surrounding the
lake, that they are originated from the Saharan diatomite de-
posits (Nguetsop et al., 2004). Moreover, recent analyses of
modern sediments from a dried wetland (Ndjombi Swamp,
near Kika SE Cameroon) revealed the presence of a compara-
ble assemblage of taxa while other diatoms where completely
absent. Hence their abundance in lake sediments was inter-
preted as an intensification of NE trade winds that are pre-
ponderant in Adamawa during the boreal winter rather than
water depth or water trophic status changes. We can hypoth-
esised that, the appearance of these taxa in Lake Mbalang
marked as in Ossa area an intensification at least episodically
of the NE trade winds.

4.2 Phase II: between 3500 and 0 cal yr BP

Planktonic diatoms, dominated by eutrophicA. muzzanen-
sis indicated a high lake level and well mixed water. Ty-
choplanktonics declined significantly during this period and
nearly disappeared. Windblown diatoms were consistently
present, even if their abundance showed important fluc-
tuations. δ13CORG. values (ranging between−30.5 and
−22.3 ‰) increase from 3500 to 0 cal yr BP. This increase is
concomitant with the increasing proportion of C4 plant veg-
etation in the landscape cover and consequently its CORG.

contribution to the lake sediment.
From 3500 to 2800 cal yr BP (Subphase IIa): eutrophic

diatoms characteristic of well mixed layer increased and
reached about 70 % at 2600–2500 cal yr BP.A. distansvar.
humilis and A. distansvar. africana which are indicators
of the stability of water table decreased markedly. Mean
δ13CORG. values remained relatively low (−29.5± 0.7 ‰)
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and the mean CORG./NTOT. ratio does not change signifi-
cantly (15.1± 0.9) suggesting that sources and proportions
of organic matter have not changed yet CORG. content (mean
value 11.5 %) is lower compared to previous periods. The
persistence of windblown diatoms showed an intensification
of windiness on the lake environment. This phase marked an
unequivocal change of climatic conditions in the area; from
relatively more stable or less mixed water table reflecting
probably the stability of the air at low layers of the atmo-
sphere to more mixed water table linked to a reinforced sea-
sonality.

From 2800 to 800 cal yr BP (Subphase IIb):This phase is
marked by high fluctuations in abundances of planktonic taxa
at plurisecular timescale. AlthoughA. muzzanensisdomi-
nates throughout the sub-phase,Fragilaria delicatissimabe-
came more important and peaked at 2100 cal yr BP (14 %),
between 1800 and 1700 cal yr BP (5–61 %) and between
1100 and 900 cal yr BP (5–14 %). Contrarily toA. muz-
zanensis, F. delicatissimais considered as an oligotrophic
to mesotrophic taxa (Kammer and Lange-Bertalot, 1991).
Lowest abundances of planktonics are observed at 2400–
2200 cal yr BP, 1900, 1400 and 1000 cal yr BP. In these lev-
els, the epiphytic (Gomphonema. gracile, Amphora ovalis,
Cocconeis placentulaand its varietylineata)and aerophilous
(Eunotia incisaand E. pectinalisvar. minor) diatoms in-
creased, indicating a lowering of the lake level at least at
seasonal or interannual timescales. The relatively high abun-
dance of windblown diatoms indicated the maintenance of
the influence of the north-eastern trade winds in the Lake
Mbalang environment. The development ofF. delicatissima
when windblown diatoms are low indicated probably a less
mixed water table and/or a slight increase in lake level. This
idea is reinforced by the fact that epiphytic, benthic and
aerophilous taxa are very low. The sub-phase represents
probably the period of time during which short time maxi-
mum climate variability occurred. This variability is roughly
reflected onδ13CORG. with fluctuation of∼2 ‰ amplitude
and even smaller after 1500 cal yr BP (−24.6 to−22.3 ‰).
These relatively highδ13CORG. values and CORG./NTOT. ra-
tios (varying between 10.5 and 14.4; mean value 12.4± 0.9)
suggest yet terrestrial organic matter input suggesting the
maintenance of C4 plants in Lake Mbalang environment.
Very high biological activity of eutrophic algae may be re-
sponsible of such enrichedδ13CORG. however, the decreasing
CORG. trend along the core does not support this hypothesis.

From 800 to 0 cal yr BP (Subphase IIc): high abundance
of planktonics indicates a persistence of high lake level.
The two main planktonic species alternated at this level, the
change fromAulocoseirato Fragilaria dominated assem-
blage in diatom community is interpreted as the changing
to more clear water column or shallowing, reduced mixing
when P:E is low (Stager and Anfang-Sutter, 1999). The sub-
stantial decrease of windblown taxa supports the inference
for more stable water column. This may also indicates im-
portant changes in water trophic status. Among other taxa,
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Fig. 8. Sketch of atmospheric features (clouds cover and air
movement) and relative modifications of Lake Mbalang level,
in the dry season (January) and rainy season (August) before
3500 cal yr BP(a) and afterwards(b). Before 3500 cal yr BP, strat-
iform cloud cover were abundant, convective cloud are dominant
after 3600 cal yr BP.

only Gomphonema gracile, Cocconeis placentulaand its va-
riety lineataremained present with percentages close to those
of the precedent zone. Theδ13CORG. values and CORG./NTOT
ratios were similar to the end of the previous sub-phase sug-
gesting yet the maintenance of C4 plants.

5 Discussion

The variations of the abundances of planktonic and tycho-
planktonics can be considered as indicators of lake level
changes (Fig. 9a), although the curve should be interpreted
with caution because these organisms can also thrive in large
free water surface. Acidophilous oligotrophic and tycho-
planktonicAulacoseira distansvar. humilis, A. distansvar.
africana and planktonic taxaFragilaria delicatissimaare
characteristic of stable or less mixed water table, which
presupposes also a relatively stable air layer over the lake.
During the boreal summer, a deep atmospheric convection
(zone C of the cross-section of the troposphere over tropical
Africa (after Leroux, 1970, 2001), entails heavy rains that
directly cool waters of the surface. In these conditions also
characterised by heavy clouds and subsequent reduced so-
lar radiation inputs, thermal differences between epilimnion
and hypolimnion are reduced and finally mixing occurred.
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Fig. 9. Comparisons between Lake Mbalang (North-Cameroon), Lake Ossa (South-West Cameroon) and Gulf of Guinea. Lake Mbalang
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diatoms, higher percentages correspond to more intense monsoon flux(b), NE trade winds (Harmattan) intensity, higher allochtonous diatom
abundance indicates more intense Harmattan(c). Changes from C3 to C4 dominant plants in vegetation is evidenced byδ13C of sedimentary
organic matter(d), also shown by palynological data(e) (Vincens et al., 2010). Variations in NE trade winds (Harmattan)(f) and lake level
(g) are shown in Lake Ossa as well as relative change in rainfall evidenced from alkaliphilous diatoms(h) (Nguetsop et al., 2004). Variations
in temperature off Gulf of Guinea is shown from Mg/Ca based SST(i), Rivers discharge based on ration Ba/Ca is also shown(j) (Weldeab et
al., 2005, 2007).
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However, if in the past the convective zone moved farther
north than today, the Adamawa plateau could have been sub-
jected to a climate that is described by Leroux in zone D
where subsiding air masses present at mid-levels of the at-
mosphere generate stability at low levels. Consequently, the
weather is cloudy and rainfall strongly reduced in the form
of light rain and drizzle. In these conditions, evaporative heat
loss may be suppressed or reduced, and surface warming dur-
ing this period of low wind stress is likely to cause more
stability in the water column (Kling, 1987). Hence, high
abundance of the two species in the past can suggest condi-
tions close to those observed in the boreal summer when the
ITCZ is farther north, which entail the stability of the water
column and/or the development of aquatic vegetation. Con-
versely, the planktonicAulacoseira muzzanensisand Aula-
coseira granulatathrive better in well mixed water tables
that are associated to high temperatures, intense storms and
windiness. These conditions are observed nowadays, mostly
during the boreal winter in the Adamawa plateau and entail
a deeper and unique thermocline in the water table (Kling,
1987). Such large diatoms have also been used as indica-
tors of water table mixing in east African lakes (Stager et
al., 1997). The variations in the intensity of the NE trade
winds are inferred, as in Lake Ossa, from relative abundance
of windblown diatoms (Fig. 9c). We suggest that the mixing
is mostly due to the intensification of the north-eastern trade
winds (Harmattan) during the year, although crater lakes of
the Cameroon volcanic line show high volume/surface ratios
and are relatively sheltered from winds.

Paleoclimatic data suggest that tropical Africa experienced
during the Holocene important paleoclimatic changes that
are now well dated (Servant et Servant-Vildary, 1980; Gasse,
2000). The base of the core M4 (7200 cal yr BP) belongs to
the African humid phase that is documented in several conti-
nental sites (e.g. Gasse, 2000; Talbot and Johanessen, 1992;
Stager et al., 1997) and marine sites offshore Africa.

5.1 Middle to late Holocene: from 7200 to
3600 cal yr BP

Diatoms data of Lake Mbalang inferred a stable water ta-
ble that may indicate a stronger monsoon flow. These data
are consistent with appearance of mountain forest taxa pol-
lens in the palynological spectrum. The two most abun-
dant taxaOlea capensisandPodocarpus spwere probably
developed on nearby mountains that are today covered by
shrubby savannas dominated byHymenodictyon floribundus
(Vincens et al., 2010). The nearest modern ecological niche
of these two taxa according to Letouzey (1968, 1985) is lo-
cated at Mount Ngan-Ha (1923 m), some 35 km east of Lake
Mbalang. These species are also present some 300 km north
of the lake at Mount Poli (7◦50′ N; 2049 m) and at Tcha-
bal Mbabo highlands (7◦18′ N, 2460 m) located 165 km west
of Ngaoundere on the Cameroon volcanic line. In fossil
records,O. capensisand/orPodocarpussp. occurrences in

several locations in the northern subtropics and subequatorial
areas of Africa (Salzmann et al., 2002) and especially during
the Last Glacial Maximum were interpreted as indicative of
cooler air conditions during a longer period of the year linked
to stratiform cloud cover that are observed today only during
the boreal summer when upwelling system is reinforced off
the Gulf of Guinea (Maley and Brenac, 1998). But this hy-
pothesis is less likely during the Holocene because marine
isotopic data off the Gulf of Guinea showed no evidence of
past strong upwellings system at that area (Weldeab et al.,
2005, 2007). Another alternative is to consider episodic cold
air mass advections of middle and high latitudes that can also
contribute to such air conditions, but the weakness of this
hypothesis is shown by the absence of such occurrences in
the Saharan/Sahelian regions during this period (Servant and
Servant-Vildary, 1980). If the climatic determinism is the
same as today, their abundance in Adamawa fossil spectra
should imply a northward displacement of ecological bound-
aries as shown by palynological data (Watrin et al., 2009;
Lezine, 2009) and reproduced by vegetation models (Hély et
al., 2009). Diatoms in Lake Mbalang inferred a moderate to
high lake level which can correspond to precipitation lower
than today in a context of low evaporation because of the far
northern position of the ITCZ, but precipitation distribution
remained favourable for forest development as shown by pa-
lynological andδ13CORG. data. Although sponge spicules
and phytopliths were relatively abundant, low epiphytic and
benthic diatoms abundance showed that water level was not
strongly reduced. It is possible that these phytoliths were
from a more important belt than today of ligneous tree fring-
ing the lake (Alchorneasp.) during this period of relative low
evaporation and high water content in soils as is observed in
other sites of central Africa (Ngomanda et al., 2009b).

From 7200 cal yr BP onwards, the decreasing trend of di-
atoms characterising the stable water column is punctuated
by several abrupt low abundance at 6700, 5800–6000, 5000–
5300, 4500 and 3600 cal yr BP (Fig. 9b) corresponding prob-
ably to episodes of weaker monsoon flux superimposed on
the general trend, showing the complexity of climate change
towards late the Holocene drier conditions. This pattern is re-
flected in water balance and vegetation landscape in several
areas of tropical Africa and was largely discussed to under-
line the timing and magnitude of climate change from one re-
gion to another and associated climatic mechanisms (Gasse,
2000). The abrupt dryness of the climate corresponding to
the end of the African Humid Period (AHP) shown by ma-
rine data off Mauritania (de Menocal et al., 2000; Adkins
et al., 2006) is close to 5000–5300 cal yr BP (420–470 cm)
low spell of tychoplanktonics observed in Lake Mbalang
(Fig. 9b). This event is interpreted in Lake Mbalang as a pe-
riod of increased mixing of the water table forced probably
by north-eastern trade winds of the dry season. Therefore,
the more development of Poaceae in Lake Mbalang area at
that time can be explained by increased seasonality with a
longer dry season compared to the previous period rather
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than an absolute decrease of rainfall as suggested by Vincens
et al. (2010). Lake Ossa located south of Adamawa (3◦50′ N)
experienced convective rainfall in agreement with our model
(Fig. 9h).

The spell dated at 4500–4000 cal yr BP corresponds prob-
ably to the most documented climatic phase throughout
Africa; it was recorded at several sites of both southern and
northern tropics (Servant and Servant-Vildary, 1980; Gasse,
2000). Drier conditions are also registered both by paly-
nological, limnological and/or sedimentological data in sub-
tropical latitudes of western Africa in Biu plateau (12◦32′ N)
and around lake Sele (7◦9′ N) after∼3800 yr BP (Salzmann
et al., 2002, 2005) with the opening of the Dahomey Gap
in the rain forest belt. In sub-equatorial regions this period
was marked in Lake Bosumtwi by a low lake level at about
4000 yr BP (Talbot and Delibrias, 1980) although recent data
did not confirmed this low stand (Russell et al., 2003). In
central African subequatorial regions, proxy data inferred
important disturbances in the periphery of the equatorial rain
forest belt with possible appearance of included savannas
(Ngomanda et al., 2009a, b) and complete dryness of lakes as
Lake Sinnda in south Congo by 4400 yr BP (Vincens et al.,
1994; Bertaux et al., 2000). In inner forest block, lakes were
less affected by this climatic change (Vincens et al., 1999;
Ngomanda et al., 2007; Kossoni et al., 2009). This period is
characterised in Lake Mbalang by the maintenance of indi-
cators of stable water table in agreement with the palynolog-
ical andδ13CORG. data, and thus to a stronger monsoon. But
the appearance of windblown diatoms (∼4400 cal yr BP) at-
tests probably the beginning of the aridification of the Sahara
and/or the intensification of the NE trade winds (Fig. 9c).

Despite the scarcity of paleoclimatic records on highlands,
the Bambili (western Cameroon) core provided a 24 000 yr
time series that highlighted the comprehension of paleo-
climatic evolution around the Gulf of Guinea. Contrarily
to lowlands, Lake Bambili registered a dramatic low lake
level from 10 000 to 7000 cal yr BP, then fluctuated around
this low value afterwards (Stager and Anfang-Sutter, 1999)
while other sites of tropical Africa underwent the so called
“African humid period”. In Lake Njupi located north of
Bambili at 1020 m altitude,Olea. capensisand Podocar-
pus sp. were present until around 3000 yr BP, suggesting
a comparable evolution as the Adamawa plateau. Thus
highlands as Bambili (2264 m altitude) may probably have
evolved differently during greater part of the Holocene in
term of water balance as suggested by Stager and Anfang-
Sutter (1999), however synchronous evolutions between low-
lands and highlands seems to have started at 3000 cal yr BP.
Lake Mbalang evolved like lowlands in term of the pattern
of change even though the palynological and hydrological
signals seem to have been also controlled by altitudinal and
meridian variations of climatic factors. It is thus possible
that lowlands and highlands below 1200 m altitude like the
Adamawa plateau were under conditions characterised by an
important cloud cover during a greater part of the year while

highlands such as Bambili were submitted to drier climate
over the year.

5.2 The Late Holocene (last 3600 cal yr BP)

After 3600 cal yr BP, diatoms and other proxies of Lake
Mbalang inferred significant changes of the climatic con-
ditions. High abundance ofA. muzzanensisand A. granu-
lata suggest a more mixed water layer and a deeper thermo-
cline. These conditions prevail today during the boreal win-
ter. The lake level remained relatively high after 3000 cal yr
and decreased between 2400–2100 cal yr BP. The other rel-
ative lowstands are dated at 1800 and 1400 cal yr BP, time
after which the lake started its evolution towards present
day’s high level (Fig. 9a). The windblown diatoms re-
mained relatively important consistent with a significant in-
fluence of the NE trade winds during the year responsible
of a well mixed water table. Nevertheless, the diatom de-
rived lake depth reflects limnological variations and conse-
quently water balance at centennial to millennial timescales.
The relatively higher abundance of epiphytic, benthic and
aerophilous mixed with planktonic and tychoplanktonic di-
atoms in individual samples reflects the lowering of lake level
at the interval of time represented by one sample (∼6 yr)
or could reflect seasonal variability. In that case, one can
hypothesise in such climatic conditions the development of
planktonic diatoms during the rainy season high lake level
and development of littoral forms during the dry season at the
lake borders on Cyperaceae (sedges) that fringe the lake to-
day. But this short term variability did not strongly affect the
vegetation cover: among minor changes we noticed a deple-
tion of theδ13CORG. values (Fig. 9d), concomitant to a slight
decrease of the Poaceae at 1800 and 1400 cal yr BP (fig 9e).
Palynological data in Lake Mbalang showed the expansion
of Poaceae at 3000 cal yr BP, they remained the most abun-
dant than any other groups of plants until the present days.
Sedges also developed and reached their highest abundance
suggesting the lowering of lake level at a short timescale.
Montane forest regrowth (Fig. 9e), and arboreal savannas
taxa abundance became very low. These modifications in
the vegetation landscape implied a more dry and contrasted
climate (Vincens et al., 2010) as also suggested by diatom
habitat groups and windblown diatoms (Fig. 9c). The 2400–
2100 cal yr BP event is also well marked in other sites of
the subequatorial regions of central Africa (Vincens et al.,
1999). The data confirmed a more dry climate in southern
Congo, but at the latitude of Lake Ossa, woody pioneer helio-
philous taxa appear in the rain forest (Reynaud-Farrera et al.,
1996), probably as a result of stormy rainfall rather than ab-
solute low precipitation (Nguetsop et al., 2004) as well as in
Nyabessan located 200 km south of Lake Ossa (Ngomanda et
al., 2009b). In Lake Bosumtwi (6◦30′ N; 1◦25′ E), sedimen-
tological records showed an evolution towards aridity and
more seasonality at about 3000 yr BP (Russell et al., 2003;

Clim. Past, 7, 1371–1393, 2011 www.clim-past.net/7/1371/2011/



V. F. Nguetsop et al.: Past environmental and climatic changes during the last 7200 cal yr BP 1389

Talbot et Johannessen, 1992). The reduction of the mixing at
1700, 700–600 and at 400 cal yr BP is marked by a slight de-
crease of Poaceae and the increase of Cyperaceae,δ13CORG.

values decreased also slightly. This last event shows the
sensitivity of vegetation and hydrology to recent centennial
climate variability as it was demonstrated by Ngomanda et
al. (2007, 2009b).

5.3 Paleoclimatic interpretation

Diatoms data suggest a decreasing trend of the monsoon
flux in Adamawa area from mid-Holocene (7200 cal yr BP)
to mid-late Holocene, consistently with the decreasing sum-
mer insolation in the Northern Hemisphere and correlatively
reducing land-ocean contrast linked to orbital changes. Al-
though orbital changes account for a greater part in explain-
ing the hydrological changes (Kutzbach and Street-Perrot,
1985), they induced regional atmospheric factors that may be
useful in understanding the response of the local hydrologi-
cal system. The better comprehension of climatic changes in
central Africa regions around the Gulf of Guinea should in-
tegrate the structure of the atmosphere during the wet season
when the monsoon flux overrides the NE trade winds in the
northern summer. According to Leroux (1970, 2001), five
climatic zones can be individualized in the meridian struc-
ture of the troposphere at this period of the year, they have
been used in interpreting past climatic conditions by sev-
eral authors (e.g. Nguetsop et al., 2004; Ngomanda et al.,
2009b). The compression and dilatation of these climatic
zones over the year can explain a series of climatic condi-
tions that are encountered yearly today between 20◦ N and
5◦ S. One can then hypothesize that, if in the past the rain
belt moved northwards and entailed rainfall at Saharan re-
gion at around 6000 yr BP as shown by paleoclimatic data
(e.g. Gasse, 2000) and reproduced by paleoclimatic models
(Kutzbach and Street-Perrot, 1985; Kutzbach and Guetter,
1986) it is likely that all the climatic zones that are linked
to the strengthening of the monsoon, and not only the con-
vection area, were more extended than today during the bo-
real summer. This hypothesis is reinforced by the fact that
cloud cover and low evaporation that are limited today be-
tween 5◦ S and 4◦ N are also reproduced by climatic model in
higher latitude at 6000 yr BP (Kutzbach and Guetter, 1986).

From 7200–3600 cal yr BP, the lake level was mostly mod-
erate to high as evidenced by planktonic diatoms and the
water column generally stable. We suggest that the ITCZ
mean position at that time was north of the Adamawa plateau
(Fig. 2b) in agreement with paleoclimatic data (Gasse and
Van Campo, 1994); this position entailed at the latitude
of the studied lake, stratiform cloud cover and low pre-
cipitation (Fig. 8a). Temperatures were consequently rela-
tively low due primarily to these atmospheric features, but
also, to the relatively high altitude of the Adamawa plateau
(1100–1200 m). These conditions were favourable for the

development of the mountain forest taxa in the vegetation
landscape and the regrowth at the forest borders (Vincens et
al., 2010). This period was characterized by very low mix-
ing except between 5000–5300 cal yr BP; the Harmattan was
probably very weak until 4500 cal yr BP.

From 7200–6900 cal yr BP, diatoms data suggest a rela-
tively deep and stable lake. Despite the age uncertainties off-
set and the different time resolution in published data, this
subphase could correspond to the wet episode that is well
known in Saharan and Sahelian regions (Servant et Servant-
Vildary, 1980; Gasse, 2000), the African Humid period. The
high monsoon inflow suggested by diatoms at 6400, 5500,
4600 and 4200 cal yr BP and characterized by relatively high
lake level in Adamawa plateau (Fig. 9a) appeared at certain
periods of time to be uncorrelated with data of sea surface
temperatures (Fig. 9i) and rivers discharges (Fig. 9j) off the
Gulf of Guinea (Weldeab et al., 2005, 2007). This can be
explained if the variability of the mean position of the ITCZ
is considered at multi-secular to millennial timescale as it is
observed today over the year. Consistent northernmost mean
position of the ITCZ may have favoured rainfall at the north-
ern part of the catchments of Niger River while the south-
ern part and probably a great part of the Sanaga and Ntem
may have been under stable air layers (Fig. 2b). Conversely,
the southernmost mean position of ITCZ may have favoured
high rainfall around the Gulf of Guinea in the greatest part of
the Sanaga and Ntem river catchments, and drier conditions
in the upper part of the Niger River. These rivers discharge
off the Gulf of Guinea may thus be very variable depending
on SSTs and the position of ITCZ which strongly influences
precipitation and evaporation on the continent. Lake Ossa
high lake levels are observed in the context of low rainfall
between 4800 and 4400 cal yr BP suggesting a climate with
low evaporation and low rainfall consistent with the northern-
most position of the ITCZ. Hence, the apparent discrepancies
observed between rainfall on the continent, SSTs and rivers
discharges off the Gulf of Guinea during Middle to Late
Holocene (Weldeab et al., 2005, 2007) could be explained
by these meridian changes of the structure of the lower levels
of the atmosphere at centennial to millennial timescales.

The low monsoon inflows at 6700, 6000–5800 and 4600–
4400 cal yr BP are also characterised by relatively low lake
levels in Lake Mbalang. SSTs are low to medium except
at 6700 cal yr BP where they are high. The general condi-
tions suggest a position of the ITCZ further north than to-
day, but brief low lake levels could indicate at least the ITCZ
episodic southward displacements entailing either low rain-
fall (if the ITCZ moves south of Adamawa) or high rainfall
(if the Adamawa region is included in the convection zone)
and high evaporation in the two cases (Fig. 8b). The appear-
ance of windblown diatoms in Adamawa at 4500 cal yr BP
corresponds probably to the desiccation of the Sahara or in-
tensification of the NE trade winds. At 5300–5000, lake
levels are high in Adamawa, SSTs and river discharges are
high, rainfall is high in low latitude (Lake Ossa), suggesting
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the displacement towards the south of the ITCZ at a posi-
tion favourable to convective rainfall in the two regions. This
phase is probably contemporaneous of the onset of a dry
episode in Sahara; paleolakes retreated around 5800 yr BP
(Vernet, 1995; Servant and Servant-Vildary, 1980) consis-
tently with the termination of the African humid period (de
Menocal, 2001). At that time, high mixing as observed at the
upper part of the studied core (after 3600 cal yr BP) shows
that position of the ITCZ was closed to its modern position
(Fig. 2a). This hypothesis is reinforced by the development
of savannah in the vegetation landscape indicating as today a
more contrasted climate. Between 3600 and 3000 cal yr BP,
SSTs off the Gulf of Guinea alternate between moderate
and low values, and river discharges were relatively low or
moderate in good agreement with low rainfall in Lake Ossa
but high lake level inferred in Lake Mbalang may indicated
higher rainfall in Adamawa plateau linked to the displace-
ment towards the north of the convective rain belt.

Between 3000 and 0 cal yr BP,diatom data suggest the sig-
nificant reduction of the monsoon flux. The lake level re-
mained broadly high except between 2400–2100, 1800 and
1400 cal yr BP. Although the lake did not decline dramati-
cally, indicating that rainfall remained relatively important,
the increase of savannah taxa and their maintenance until to-
day attest a seasonality change of the rainfall distribution.
The influence of the NE trade winds during the year is shown
by the persistence of windblown diatoms. A low lake level
registered both in Lake Mbalang and in Lake Ossa between
2400 and 2100 cal yr BP and in others subequatorial regions
of Africa coincided with higher rainfall in Ossa region and
important fluctuations of SSTs off the Gulf of Guinea while
the river discharges decreased gradually. It revealed the un-
stable position of the ITCZ and consequently the rainfall
belt modifications during this southwards shift. In agree-
ment with our model, this episode corresponds to the south-
ernmost position of the ITCZ, at least episodically. Conse-
quently, it entailed more arid conditions northwards as shown
by intense windblown diatoms, indicating the strengthening
of NE trade winds in Ossa region, stormy rainfall around the
Gulf of Guinea with subsequent disturbances inside the for-
est block. After 2000 cal yr BP, the evolution towards present
days is observed. These new conditions are roughly charac-
terized by relatively high lake level in Lake Ossa and in the
Adamawa, high rainfall in Ossa region suggesting a sharp
northwards shift of the mean position of the ITCZ. Mean-
while, both river discharges and SSTs showed a decreasing
trend. Brief highstand at 2000–1900 cal yr BP, lowstands at
1800 and 1400 cal yr BP attested the more intense or weak-
ening of the monsoon inflow respectively. The reduction of
the mixing at 700–600 and at 400 cal yr BP marked a slight
intensification of the monsoon which is well recorded both
by rainfall regime and lake level in Ossa.

Holocene short climatic events were evidenced in several
sites of the monsoon domain both in Africa and Asia, the
forcing factors is primarily the modifications of insolation

that is modulated by sea surface temperatures and land sur-
faces feedback mechanisms (Gasse et Van Campo, 1994; de
Menocal et al., 2000).

6 Conclusions

Planktonic and tychoplanktonic diatoms variation suggested
that Lake Mbalang did not dry during the last 7200 cal yr BP
as relative fluctuations of water level are observed. A low
lake level recorded at 2400–2100 cal yr BP is contemporane-
ous to a climatic event evidenced in several areas of tropi-
cal Africa, and other low lake levels are observed at 1800
and 1400 cal yr BP, after which the lake rose to its present
level. Nevertheless, diatom data showed that the lake evolved
from oligotrophic stable water table before 3600 cal yr BP
to mixed and eutrophic conditions afterwards, correspond-
ing respectively to a strong monsoon flow before and a more
intense north-eastern trade winds (Harmattan) after. The
δ13CORG. data indicated the development in the landscape
of more forested vegetation, also confirmed by palynologi-
cal data in good agreement with the inferred climate. How-
ever, the decreasing monsoon trend was punctuated by sev-
eral abrupt weakenings at 6700, 5800–6000, 5000–5300, and
4500 cal yr BP. After 3000 cal yr BP, the savanna vegetation
developed in the Adamawa area and has persisted until to-
day. These climatic changes can be attributed to the mod-
ifications of the position of the Intertropical Convergence
Zone (ITCZ), its northernmost position between 7200 and
3600 cal yr BP entailed at the level of the Adamawa plateau,
a climate characterized by very low precipitation and also
very low evaporation as is observed today during the bo-
real summer in the southwest of Cameroon. After 3600–
3000 cal yr BP, the ITCZ moved southward and reached a
position where convective rainfall became dominant, but its
amount and/or its distribution were no longer favourable to
forest development.
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(Service de Cooṕeration et d’Action culturelle de Yaoundé”) to
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and Karabıyıkǒglu, M.: The tempo of Holocene climatic change
in the eastern Mediterranean region: new high-resolution crater-
lake sediment data from central Turkey, Holocene, 11, 721–736,
2001

Russell, J., Talbot, M. R., and Haskell, B. J.: Mid Holocene climate
change in Lake Bosumtwi, Ghana, Quaternary Res., 60, 133–
141, 2003.

Salzmann, U. and Hoelzmann, P.: The Dahomey gap: an abrupt cli-
matically induced rain forest fragmentation in West Africa dur-
ing the late Holocene, Holocene, 15, 190–199, 2005.

Salzmann, U., Hoelzmann, P., and Morczinek, I.: Late Quaternary
climate and Vegetation of the Sudanian zone of Northeast Nige-
ria, Quaternary Res, 58, 73–83, 2002.

Schoeman, F. R.: Systematical and ecological study of the diatom
flora of Lesotho with special reference to water quality, V and R
Printers, Pretoria, 355 pp., 1973.

Servant, M. and Servant-Vildary, S.: L’environnement quaternaire
du bassin du Tchad, in: The Sahara and the Nile, edited by:
Williams, M. A. J. and Faure, H., Balkema, Rotterdam, 133–162,
1980.

Servant-Vildary, S.: Etude des diatomées et paĺeolimnologie du
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