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Abstract. One of the most widespread spring-block earth-
quake models, the Olami-Feder-Christensen model, is inves-
tigated without making the assumption that the duration of
individual earthquakes is negligible. While the Gutenberg-
Richter law for the size distribution of earthquakes is pre-
served qualitatively for earthquakes of finite duration, the b-
value decreases with increasing earthquake duration. The ef-
fect decreases with increasing lattice size, although it is not
clear whether it completely vanishes in the limit of infinite
grid size. For realistic values of earthquake duration, the ef-
fect is negligible, so that the original model with zero earth-
quake duration is appropriate for most applications.

1 Introduction

Spring-block earthquake models have a long history in seis-
mology. Models of this type were designed as a simplified
analogon to a fault (or a fault system). They consist of an ar-
ray of masses which are connected with each other by elastic
springs (Fig.1). In addition, each mass is connected to a rigid
plate by a leaf spring. This plate is responsible for long-term
driving of the system, i.e., for a slow increase of the forces
acting on each mass. In most models, this plate is assumed
to move at a given constant velocity, corresponding to a con-
stant rate of displacement at the fault. It is assumed that each
mass sticks at the ground as long as the force acting on it
(through all springs) are below a given threshold. If the force
on any mass exceeds this threshold, it becomes unstable, and
displacement occurs. As a result, the forces acting on other
masses may change, so that further masses may become un-
stable. This may lead to some kind of avalanches which are
interpreted as earthquakes of different sizes.

The first model of this type was proposed byBurridge and
Knopoff (1967); it describes the stick-slip motion of a one-
dimensional chain of masses. The displacement of unstable
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masses was computed by a set of coupled ordinary differen-
tial equations. Several constitutive laws for the motion of un-
stable blocks have been proposed, e.g. constant or velocity-
dependent friction (Carlson et al., 1994; Turcotte, 1997).

However, as soon as a large number of masses is involved
in an earthquake, the numerical effort becomes high because
a large set of coupled equations must be solved. Therefore, a
major step towards simulating large earthquake statistics was
made by introducing simplified models which do not simu-
late the motion of individual masses in detail but use simpler
rules. The simplification hinges on the fact that the duration
of an individual earthquake is much shorter than time spans
between earthquakes, so that finally the time scale of long-
term driving can be separated from the time scale of indi-
vidual earthquakes. In principle, this means that each earth-
quake shrinks to a point on the time axis or, in other words,
the motion of the driving plate stops during an earthquake.
A first step in this direction was performed byRundle and
Jackson(1977), several others followed (Nakanishi, 1990;
Brown et al., 1991; Matsuzaki and Takayasu, 1991; Olami
et al., 1992). At this time, the interest in spring-block mod-
els was renewed because their relationship to the theoretical
concept of self-organized criticality (SOC) (Bak et al., 1987;
Bak, 1996; Jensen, 1998; Hergarten, 2002) was discovered.

Although separating the timescales of rupture propagation
and earthquake sequences seems to be straightforward, there
is still discussion on the separation of earthquakes.Rubin
(2002) andVidale et al.(2003) argue that there is a gap of
about 10 s between the duration of an earthquake and the
beginning of the aftershock sequence. In contrast,Kagan
and Knopoff(1981) andKagan(2004) suggest that the same
mechanism describes the propagation of an earthquake and
cascades of aftershocks, so that the definition of an earth-
quake is rather arbitrary. From this the question arises to
which extent statistical properties of earthquake sequences
are affected by the duration of individual earthquakes and its
influence on separating earthquakes.
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Fig. 1. Setup of a spring-block earthquake model.

2 Olami-Feder-Christensen model

In the following we focus on the The Olami-Feder-
Christensen (OFC) model (Olami et al., 1992), which is one
of the most widespread spring-block models in seismology
as well as one of the most studied models in the field of SOC.
The OFC model was the first to combine a striking similar-
ity to earlier SOC models with the ability to reproduce the
Gutenberg-Richter law (Gutenberg and Richter, 1954) for the
size distribution of earthquakes.

The OFC model refers to a two-dimensional, square array
of masses as shown in Fig.1 and establishes the following
rules:
Long-term driving: As a result of moving the driver plate,
the total force acting on each mass (the sum of the forces
exerted by the five adjacent springs) increases uniformly
through time.
Relaxation: As soon as the total force acting on any mass
reaches a given threshold, the mass becomes unstable,
initiating an earthquake. The unstable mass is immediately
displaced to its equilibrium position where its total force is
zero. As a result, the forces acting on adjacent masses have
increased, so that some of them may have become unstable,
too. These masses are relaxed according to the same rule,
instantaneously and independently of each other. If further
masses have become unstable then, the procedure is repeated
until the system has come to rest.

Let us use nondimensional variables in such a way that
both the rate of driving and the threshold of instability are
unity. Let us further assume that all horizontal springs are
of equal strengths (no difference between helical and leaf
springs), and thatk denotes the ratio of the elastic constant
of the vertical leaf springs to that of the horizontal springs.
Using a single indexi for numbering the masses, the OFC
model can then be written as a simple cellular automaton
with the variablesFi as the forces according to the flow chart
shown in Fig.2.

The inner loop describes the stages of an individual earth-
quake, while the outer loop simulates a sequence of earth-
quakes. The relaxation rule for unstable masses is rather sim-
ple: A certain fractionαi=

1
νi+k

(whereνi is the number of
nearest neighbors ofi) of the relaxed force is transferred to
each of the nearest neighbors, while the rest, amounting to
1−νiαi=

k
νi+k

, is returned to the driver plate and thus lost.
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Fig. 2. Flow chart of the OFC model. The abbreviationn(i) repre-
sents all nearest neighbors of the massi; αi=

1
νi+k

whereνi is the
number of nearest neighbors ofi.

This means that the OFC model is nonconservative fork>0,
in contrast to the most widespread SOC model, the sandpile
model (Bak et al., 1987). OFC studied the nonconservative
regime in detail and found that the model shows SOC not
only in the conservative limiting casek=0, but also in the
dissipative regimek>0. They also found that the power-law
exponent of the event size distribution increases withk, i.e.
as the level of conservation decreases, and that exponents
consistent with the Gutenberg-Richter law (Gutenberg and
Richter, 1954) found for earthquakes in nature are achieved
if all springs have roughly the same strength (k≈1).

Recent results have renewed the discussion on the OFC
model. From the view of application, the discovery of fore-
shocks and aftershocks obeying Omori’s law may be interest-
ing (Hergarten and Neugebauer, 2002). It was recently found
that several further properties of foreshock and aftershock se-
quences are reproduced by the model at least qualitatively,
although clustering of earthquakes is too weak compared to
real seismicity (Helmstetter et al., 2004). These results make
the OFC model attractive for application in seismology, but
some other results raise doubts concerning its applicability
to real earthquakes. As reviewed byJensen(1998), the OFC
model was found to be not robust against quenched disor-
der, which is incommensurate to the inhomogeneity of the
earth’s crust. Furthermore, it has recently been claimed that
many results obtained in the nonconservative regime may not
hold in the limit of infinite system size and infinite simulation
time. Lise and Paczuski(2001a,b) found that the power-law
exponent may not increase with decreasing level of conser-
vation but may be universal at least over a certain range of
parameter values.Drossel(2002) observed that the event
size distribution depends on the numerical accuracy in the
strongly nonconservative regime and suspected that all ear-
lier results might be artefacts of numerical inaccuracies. This
topic is discussed in view of our results later in this paper.
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3 Procedure

We now return to a version of the OFC model with finite
earthquake duration, which means that we skip the separa-
tion of time scales between individual events and long-term
driving. In the context of basic SOC models, the first sys-
tematic study in this direction was published byCorral and
Paczuski(1999). This study referred to a one-dimensional
sandpile model, the “Oslo” model. It was found that, depend-
ing on the duration of individual events, avalanche merging
occurs which finally turns into continuous flow. A version of
the OFC model with finite event duration was considered by
Hamon et al.(2002) in the context of solar flare statistics.

Compared to the original OFC model with instantaneous
relaxation, we modify the model rules in the following way:
The first mass involved in an earthquake is instantaneously
relaxed, but before it is checked whether further masses have
become unstable, model time is increased by a given incre-
mentτ . The incrementτ corresponds to the time span needed
for the relaxation of one mass and is considered as a parame-
ter or, in other words, the time needed for rupture to proceed
from one mass to an adjacent mass. We therefore denoteτ

“rupture propagation time” in the following.
If further masses have been destabilized (these may be

more than in the original model since all forces have in-
creased byτ ), these masses are simultaneously relaxed as
in the OFC model. It is again assumed that the relaxation
takes the timeτ (not for each mass, but for all masses which
are relaxed simultaneously). After increasingt by τ , stability
is checked again and unstable masses are relaxed. This pro-
cedure is repeated until the system has come to rest again.
Then we switch to the next earthquake by increasingt up to
the point where the next mass becomes unstable. Modify-
ing the flow chart (Fig.2) is simple, we must only add the
action t=t+τ to the box on the right-hand side (within the
loop simulating an individual earthquake). The original OFC
model is recovered forτ=0.

This procedure is nearly the same as that suggested by
Hamon et al.(2002) for modeling solar flare statistics. The
only difference concerns long-term driving between events.
While our approach preserves the continous driving rule of
the OFC model, their approach introduces driving in discrete
portionsτ .

Extending the algorithm suggested byGrassberger(1994)
for efficient simulation of the model (for a detailed descrip-
tion see, e.g.Hergarten, 2002) is straightforward, so that the
modified model can be simulated as efficiently as the original
OFC model. However, analyzing the behavior in dependence
of the parameterτ requires a high computational effort since
a large sequence of events must be simulated for each value
of τ in order to obtain reliable statistics. We therefore use a
simplified approximation to this model, based on simulations
of the original OFC model. First, the original model is sim-
ulated until transient components have vanished in order to
achieve a quasi-steady state. Then, a sequence of 109 events
is computed and stored, including time of occurrenceti , size
si , and number of relaxation cyclesci (number of runs of the

inner loop in Fig.2) needed until the system comes to rest
again for each eventi. In a second step, a value of the param-
eterτ is chosen, and it is assumed that the duration of each
event isτci , so that this event ends at the timeei=ti+τci . If
the next event starts before this one has ended, i.e. ifti+1≤ei ,
it is assumed that both events are not separated. In this case,
the two eventsi andi+1 are joined to one new event which
starts at the timeti , ends at the time max{ei, ei+1} and has
the sizesi+si+1. This procedure is applied to the following
events, too, so that a set of events is joined if they overlap in
time.

The main advantage of this approximation is that it can be
applied for different values ofτ by reanalyzing earthquake
sequences of the original OFC model without running the
model. In return, we cannot measure event sizes in terms of
the number of masses involved in the event (the rupture area),
but only in terms of the number of relaxations. The reason is
that the number of relaxed blocks is not additive if the rupture
areas of different events overlap. However, it turns out that
this practically makes no difference since the probability of
overlapping rupture areas is very low ifτ is not too large in
the nonconservative OFC model.

The model is run with free boundary conditions, in con-
trast to several earlier studies where rigid-frame boundaries
were used. For free boundary conditions, the parameterαi

is higher at the boundaries than in the bulk since the actual
number of neighbors is only two or three instead of four.
As discussed byHergarten(2002), transient periodic compo-
nents die out more rapidly under free boundaries, so that the
quasi-steady state required for a stable statistics is achieved
earlier. Apart from a slightly smaller exponent of the earth-
quake size distribution (for given values ofk), free boundary
conditions apparently have no further effect on the results.

4 Results

Figure 3 shows the event size statistics obtained from the
simple approximation where the finite rupture propagation
time τ is introduced afterwards. The parameterk is cho-
sen tok=1, which is the most widely used value for the
OFC model. The lattice consists of 512×512 masses. The
statistics are derived from a sequence of 109 events, while a
much larger number of events was skipped in the beginning
of the simulation in order to avoid artefacts of transient com-
ponents. The event sizes is measured in terms of the number
of relaxations (if a mass is displaced more than once, it is
counted more than once, too),n(s) is the number of events
of sizes.

The effect of the rupture propagation timeτ becomes vis-
ible for τ≥2×10−6. While the power law is preserved qual-
itatively, its exponent decreases. For comparison, the dashed
line gives the result obtained from simulating 108 events with
the full model forτ=10−5. The curves of both model ver-
sions are parallel; this shows that the approximation pre-
serves the behavior of the full model. The shift between the
curves arises from the fact that the 109 events taken from the
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Fig. 3. Event size statistics obtained from the simplified model.
The dashed line gives the result from the full model andτ=10−5

for comparison.

original OFC model collapse to 1.5×108 events forτ=10−5,
while only 108 events were simulated with the full model.

For a more quantitative view, we determine the exponents
b of the obtained power-law size distributionsP(s)∼s−b.
In order to keep the analogy to the established Gutenberg-
Richter law, the distribution is considered in the cumula-
tive sense, so thatP (s) is the probability that the size of
an arbitrary event is greater or equal tos, although in the
physics literature noncumulative distributions are often pre-
ferred. Technically, the exponentb is obtained from fitting a
power law to the noncumulative data in order to avoid arte-
facts of fitting cumulative distributions. The range of fitting
is from 10 to 1000 where rather clear power law behavior is
found. The applied procedure is described in detail in the
book ofHergarten(2002).

Figure4 gives the exponents obtained fork=1 on grids of
different sizes from 128×128 to 2048×2048 masses. How-
ever, when comparing results obtained from grids of differ-
ent sizes, it should be taken into account that the mean num-
ber of events per unit time depends on the grid size. The
mean recurrence timeT of earthquakes (regardless of their
size) decreases fromT =1.8×10−4 on the 128×128 grid to
T =3.5×10−6 on the 2048×2048 grid. We therefore useT as
a time scale, i.e. consider the rescaled timeτ

T
. Furthermore,

the power-law exponentb slightly depends on the grid size,
so that we consider the rescaled propertyb

b0
whereb0 is the

exponent obtained forτ=0 on the considered lattice. The ef-
fect of the finite rupture propagation timeτ becomes weaker
if the grid size increases. However, the lattice sizes consid-
ered in this study are not sufficient to ascertain whether the
effect completely vanishes in the limit of infinite lattice size.
The decreasing distance of adjacent curves in Fig.4 suggests
that the effect may persist even for infinite grid size.

In general, results obtained in the strongly non-
conservative regime (large values ofk) should be considered
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Fig. 4. Dependence of the power-law exponentb of τ obtained for
k=1 and lattice sizes from 128×128 to 2048×2048 masses (from
left to right).

with some caution. A large number of events must be
simulated in order to approach the critical state until tran-
sient components have died out. Fork=2, we have skipped
2.5×1010 events before the analyzed sequence was taken, for
k=4 this number was ten times higher. Although transient
components seem to be weaker under the free boundary con-
ditions used here compared to the widely used rigid-frame
boundary conditions (Hergarten, 2002), the curves shown in
Fig. 4 are not entirely time-independent. By skipping up to
1012 events we still found a variation in the curves which
slightly exceeds the line width, but not a systematic trend to-
ward one direction. We therefore conjecture that the curves
are exposed to some time-dependent noise, but appear to be
free of systematic variation through time. However, a more
detailled analysis of transient components would go beyond
the scope of this paper.

We now make a rough estimate on realistic values ofτ

in order to assess this result. Let us, e.g. consider the
1024×1024 lattice as a representation of a large fault of
100×100 km2, so that grid spacing corresponds to 0.1 km. If
we assume that the speed of rupture propagation is at least
1 km

s (which is rather low), we obtainτ≤0.1 s. Remem-
ber that one time unit in the OFC model is the time span
needed to reload a completely relaxed region to the thresh-
old of instability. Therefore, one time unit should corre-
spond to at least 100 years even for very active faults, so that
τ<4×10−11 in the units of the OFC model. In combination
with the mean recurrence timeT ≈8×10−6 obtained for this
lattice, we arrive atτ

T
<5×10−4 which is in the range where

the effect ofτ is negligible (Fig.4).
However, when transferring this result to real seismic-

ity it should be kept in mind that clustering of earthquake
sequences in the OFC model is weaker than in nature
(Helmstetter et al., 2004); in real seismicity there are more
earthquakes immediately after a mainshock which probably
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cannot be distinguished from the mainshock. The effect of
the rupture propagation velocity on the b-value may there-
fore in nature be stronger than found in this model study.

Let us now consider our results in view of a study on
the effect of finite numerical precision recently published
(Drossel, 2002). In this study, it was found that the event
size distribution in the OFC model depends on the floating
point precision. Single and double precision were compared
with the result that double precision yields less large events
and, in particular, more events of size 1 than single precision.

Numerical precision and finite rupture propagation time
may be closely related to each other. Let us assume that two
earthquakes take place in the OFC model with infinite pre-
cision within a time interval of length2. If the numerical
precision is not as good as2, the two events will take place
simultaneously. The same happens in our model with finite
rupture propagation time if the duration of the first earth-
quake is larger than2. Thus, the numerical precision is re-
lated to the rupture propagation timeτ at least by its order of
magnitude.

Let us assume a numerical precision of 8 digits for sin-
gle precision floating point arithmetics. Since the forcesFi

of nearly unstable masses are close to unity, the accuracy of
these forces is about 10−8. Coming back to Fig.4 and re-
member thatT =3.5×10−6 on the 2048×2048 grid, we rec-
ognize thatτ

T
should be in the order of magnitude of 10−3.

This is the range where the effect of the finite rupture prop-
agation time just becomes visible. Thus, a slight difference
between single and double precision is not surprising in view
of our study on finite rupture propagation times.

In the study on numerical precision, it was suspected that
the dominance of small events becomes stronger in the limit
of infinite precision, so that finally only events of size 1 oc-
cur. The results shown in Fig.4 seem not to confirm this sus-
picion since the curves converge towards one for small values
of τ . However, we have additionally analyzed the number of
events involving only one mass as a function ofτ explic-
itly without any clear result whether this number is limited
for τ→0, so that this question can only be answered with
the help of simulations of higher accuracy than double preci-
sion. On the other hand, this is a mainly theoretical question
since realistic values of the earthquake duration correspond
to a precision somewhere between single and double.

However, the results on the effect of numerical precision
published byDrossel(2002) were derived from simulations
in the strongly nonconservative regimeαi≤0.1, which means
k≥6. Fig.5 presents our results obtained for different values
of k from 0.5 to 4 and a lattice of 512×512 masses. Obvi-
ously, the effect of the finite rupture propagation time extends
towards smaller values ofτ

T
if k increases. This confirms the

strong difference between single and double precision found
by Drossel(2002), but still has no effect if realistic values of
τ are used.

Therefore, using the original OFC model with instanta-
neous relaxation and double precision arithmetics is appro-
priate at least fork≤4; there is neither a need to regard a
finite rupture propagation time, nor a need to improve accu-
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Fig. 5. Dependence of the power-law exponentb of τ for k=0.5, 1,
2 and 4.

racy beyond double precision. Using single precision may
have a visible effect ifk≥2, but since most simulations are
performed withk=1, even single precision should be ade-
quate.

5 Conclusions

Our study has shown that introducing a finite earthquake du-
ration affects the results of the OFC model, which is one of
the most successful spring-block earthquake models. How-
ever, the effect becomes visible only if the rupture propaga-
tion is quite slow, so that the assumption of instantaneous re-
laxation made in the original OFC model is appropriate with
respect to application, although the effect may be stronger in
nature than in the OFC model. A finite numerical precision
has similar effects as a finite rupture propagation time, and
we found that realistic values correspond to a floating point
precision somewhere between single and double. Thus, the
question for the model’s behavior in the limit of infinite nu-
merical precision is a rather theoretical matter without con-
sequences for model applications in seismology.
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