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Abstract. Models describing the evolution of long internal tidal energy and the resuspension and transport of sedimen-
waves are proposed that are based on different polynomiaiary material Bogucki et al, 1997 Bogucki and Redekopp
approximations of the exact expression for the phase speetl999 Stastna and Lami2002 Bogucki et al, 2005. Hence,

of uni-directional, fully-nonlinear, infinitely-long waves in there is increasing interest in the development of models
the two-layer model of a density stratified environment. It is that can yield quantitative, evolutionary descriptions of such
argued that a quartic KdV model, one that employs a cubicwave packets in a wide range of environments. The present
polynomial fit of the separately-derived, nonlinear relation work is directed toward proposing such a model, and assess-
for the phase speed, is capable of describing the evolution ofihg its potential (along with that of various alternate models)
strongly-nonlinear waves with a high degree of fidelity. The to describe reliable descriptions of packets possessing large
marginal gains obtained by generating higher-order, weakly-amplitude internal waves.

nonlinear extensions to describe strongly-nonlinear evolu- Aspects of the propagation of nonlinear internal waves in
tion are clearly demonstrated, and the limitations of the quitethe long-wave limit are examined in the case of a two-layer
widely-used quadratic-cubic KdV evolution model obtained model under the Boussinesq approximation. Specifically,
via a second-order, weakly-nonlinear analysis are assessedni-directional propagation of a plane wave is considered
Data are presented allowing a discriminating comparison ofin the idealized environmental model of a two-layer density
evolution characteristics as a function of wave amplitude andstratification. This idealized case represents a convenient and
environmental parameters for several evolution models.  quantitatively relevant model for the lowest internal wave
mode in realistic stratifications when the water column pos-
sesses a single, prominent, thermoclinic layer whose depth
is at most a modest fraction of the fluid depth. In what fol-
lows, the characteristics of the environmental model are de-

The wide-spread appearance of packets of long internaiined in terms of the undisturbed, upper (lower) layer depths

waves in the shallow, stratified waters of the coastal oceari’1 (hé) ar|1d respec’;ivz fluid ?jeQSitri]eaf (p2), and the _ir;t_er-
and lakes is firmly establishe@®gborne and BurghL98Q ace displacement is denoted by the funcisgn, 7). Within
Apel et al, 1985 Scotti and Pineda2004 Ostrovsky and the Boussinesq approxmatmn the layer densities enter only
Stepanyants1989 Stanton and Ostrovskit998 Antenucci  trough the reduced gravigi=g(p2—p1)/p1. .

et al, 200Q Duda et al. 2004 Helfrich and Melvillg 2008. It is well established that the weakly-nonlinear evolution
These long-wave packets in many contexts are decidedipf @n interfacial gravity wave in the limit of two shallow
nonlinear, containing waves with amplitudes that are equal@yers is described by the Korteweg-deVries (KdV) equation
to and greater in magnitude than the controlling length scaldGrimshaw 2002 Helfrich and Melville 2008. It is

of the problem, which is typically the scale of the upper- also quite well established that theoretical correspondence
mixed layer depth. Furthermore, these long-wave packetd/ith experiments and field data is significantly enhanced
are known to stimulate strong benthic dissipation and mix-When an extended (i.e., a quadratic-cubic) KdV equation is

ing, having a determining influence on the decay of internal®MPloyed (cf. Grimshaw 2002 Holloway and Pelinovsky
2002 Helfrich and Melville 2006. That is, the preferred

Correspondence tol. Sakai evolutionary model, when written in dimensional variables,
(tsakai@usc.edu) has the extended form

1 Preliminary considerations
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augments the effect of linear dispersion and no equilibrium
) solutions (e.g., solitary waves) are possible. Also, the evolu-
&+ co(1 — @18 — @28%)8x + Pocolxxx = 0. (1) tion equation has the invariange>—¢ and a waveform of

In the terminology adopted here this equation is referred toglrt;]eerr (’:J;)slzngrlziEOZ?:'EIee-d;htﬁsls(il2 C(\)A?traSt to the ;en%dmg
as KdV2 wheny2:£0, and as KdV1 whea,=0. KdV1 is the € for dispara pths (i.e., whef>>|e2f| and

h . . . . .. the evolution is essentially described by KdV1). Equilibrium
familiar and widely-studied equation where the nonlinearity

derives solely from the leading-order, nonlinear correctionSOIUtlons of KdV1 are possible wheng and fo have op-

to the linear long-wave phase speeg KdV2 represents posite signs, a condition implying that the wave polarity is

the case where both the first-order and second-order deperz?‘-lways such that the interface displacement is a wave of ele-

. . . : . vation with respect to the shallowest layer.
dencies (i.e., linear and quadratic terms in an asymptotic ap- The key poigt relating to this first is)gue is the sign (and

proximation for sma!l amplltu(_jes) of the ang-wave pha§e magnitude) of the higher-order terms in Efj) vhene tends
speed on wave amplitude are incorporated into the evolut|oq . o : .
oward zero, either from positive or negative values. That is,

model. The coefficients in this equation have the following . .

i . althougha; tends to zero witlk, what are the sign and mag-
representations in terms of the layer depths for the two-layernituole ofan. etc. for small values dt|. The issue is readil
environmental model: @3, =t gE|. y

addressed through use of a recent resulShynyaev et al.

2 ghiha }71(1 _ e, @) (2003 where, based on earlier work I@strovsky and Grue
O hi+hy 28 ’ (2003, an analytic expression for the fully-nonlinear, long-
3hy—h1 3e a1 wave propagation speed for a wave moving in one direction
= Tk, h(l—e?) e (3)  was derived (see Eq. 45@strovsky and Stepanyan2905:
3(hy —h1)>+8hihy 3 2—¢2 @ . CE ha — h1
%27 87 (hiho)? JRa—e e W ET g (h1+ h2)2 1
Bo = }hlhzz }h2(1_€2). (5) (h1—8)(ha+¢)  ha—h1+2¢
6 6 /’llhz h2 - /’ll
These coefficients are given in two different forms, the latter —
obtained by using the alternate representationrsh(1—e¢), 1—(e+¢)?

=1-3(e+2)?+3e(e+2) (6)

ho=h(1+-¢) for the layer depths with equal to one-half the 1—¢€2
fluid column depth and=(ha—h1)/2h.

The fact that the coefficients of various terms in the evo-. ' -
lution Eq. () are available in terms of analytical expressions " the”second representation of the expression, termed the
that are easily calculated makes the two-layer model attrac-€X@ct” value and denoted biy:. It is readily apparent, and
tive for first-order estimates of wave properties. Neverthe-duité important to note, that Ecs)(possesses the symmetry
less, a nagging question relating to any asymptotic approxiPrOPeryce(&: e)=ce(—{: —e). B _
mation is the quantitative utility of representing a nonlinear 1 1€ dependence of the phase spéedn wave amplitude

function in terms of only the leading terms of its asymptotic 'S displayed in Figl for several ratios of the layer depths

expansion. This has been a persistent concern regarding tH&€-» values of). Results are shown by solid lines in the
application of KdV theory in contexts where there is a com- l9ure and correspond to waves with physically relevant po-
pelling interest in assessing or comparing physical character@'!ties; that is, waves of depression<(0) for €>0 (h1<h2)
istics at a quantitative level (e.g., front propagation speedsand waves of elevatior; ¢-0) for € <0 (i1>/2). One ob-

wave profile shapes, local wave-induced velocity shear ang€'VeS immediately that the phase speed is not a monotonic

mixing, wave-induced benthic stimulation, vertical and hor- function of the wave amplitude. The negative sign before the

izontal particle transport by a solitary wave or long-wave %2 coefficient causes the long-wave phase speed to diminish
packet, etc.). as the wave amplitude increases. It is only in the particular

case of equal layer depths that the phase speed is a monotonic
function of the amplitude, diminishing continuously from its
2 The case of equal layer depths maximum value of unity (i.e., the linear value) as the ampli-
tude increases.
The first issue to be addressed is the evolution of the inter- To aid the reader in relating values of the paramettr
facial wave in the limiting case when the layer depths arephysical dimensions, some representative values for the dif-
nearly equal, and when the wave amplitude becomes largderent ratios of the layer depths are given in Tablincluded
Whene=0 one observes from Eq8)(and @) thatay=0and  in Tablel are corresponding values@f=¢ / h1=¢ /(1—€) to
a2=3/ 2. In this limiting situation we have a special case of provide a direct conversion of the dimensionless wave ampli-
KdV2 and, as noted originally bjordjevic and Redekopp tude in terms of the upper-layer depth (the controlling length
(1978, bothaz>0 and Bo>0 so that nonlinear steepening scale for long waves when<0). Further, values afg,,, the

Dimensionless variableg£, £)=(c/co, ¢/h) are employed
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ol Table 1. Environmental parameters and corresponding wave prop-
erties for a range of depth ratios.
151 € ha/h1 gl Ec Emax CEmax
0 1 z -1/+/3 0.000 1.000
o 1/5 32 /4 —0.696 -—0.100 1.031
\ \ 1/3 2 If/2 —-0.773 -0.164 1.091
0.5} -
\ L 12 3 X —0.868 —0.241 1.232
\ -
o NS 3/5 4 5%/2 -0923 -0.284 1.375
A Y ~
/// // \\\ \ \\ 2/3 5 K¢ —-0.957 -0.310 1.513
) ) ) ) ) ) ) NAAW -
-12 -1 -08 -06 -04 -02 0 02 04 06 08 1 12 3/4 7 X —0.998 —0.339 1.768
¢ 4/5 9 ¥ -1.019 -0.353 2.000
Fig. 1. The exact, fully nonlinear long-wave phase speed as a func- 5/6 11 & —-1032 -0.361 2214
tion of wave amplitude for various layer-depth ratios, including 6/7 13 7 —1.040 —-0.365 2.412
comparison with two polynomial fit&ypn andcay- .
7/8 15 g —1.046 -0.367 2.598
) ) ) 8/9 17 g -1.050 -0.368 2.774
maximum value ofg, and the corresponding wave ampli- .
tude Z,, where the phase speed maximum occurs, are also 910 19 1@ -1.052 0369 2.941

given in Tablel. Expressions for these relations can be de-

rived from the expression in Ecg)and their analytical forms

are presented subsequently. exact nonlinear steepening when the layer depths are equal.
With Eqg. 6) in hand, it is straightforward to develop the Furthermore, and as seen in Fij.and noted in Tabld,

weakly-nonlinear expansion of the phase speed to orders beve find the surprising result that the nonlinear propagation

yond the quadratic term (i.e., the term) that appears in speed diminishes to zero for wave amplitudes of either po-

Eq. (1) and is defined in Eq4j. The expansion of Eq6jto larity approaching the limiting valug,.|=1/+/3. This con-

higher orders yields the extended expression sequence of waves becoming stagnant as the wave amplitude

. 2 3 4 increases was observed in simulations for shoaling of wind-

Ce=1-—ol —ol® —asl™ —asl” — . (") driven, long internal waves in a lake and was an initiatial

We draw particular attention to the expressions for the fol-motivation for the study presented here. The critical values

lowing higher-order terms: ¢ (i.e., amplitudes wherégz=0) for other depth ratios are

included in Tablel.

oo 3h2—h)th? 3 e a3 @®)
5= 16 (hih2)3 T 2n3(1—e2)3 T p¥ _
15 (hp — h1)2(hy + hp)* 15 2 3 Strongly nonlinear long waves
(14 = —_— e
128 (h1h2)* 8 ht(1—e?)? The second and principal issue addressed pertains to the
=/ h*. (9) range of validity of the weakly nonlinear representation of

the phase speed and, consequently, the specification of the
appropriate “extended” evolution equation for depth ratios
that are not near unity. When considering numerical simula-
tions of lowest-mode, long internal wave motion along a sin-
gle characteristic direction in shallow waters, the exact non-

One notes thak; andas (and furtherg; for oddi) always
carry the same sign, being proportionalete(ho—h1)/2h.
However, and most significantly, all coefficieris vanish
whenhy=h1 for i>3. Consequently, and as pointed out in
f.he notehbﬁlunyae(;/ ]?t a||(2003, the expans?n fotr the_ notn- linear expressiong (¢) for the long-wave phase speed given
Inear phase speead for long-wave propagaion terminates % Eqg. 6) can be inserted in place of the quadratic approxima-
thea_g term when the layer depth; are equal, and the fu”y'tion appearing in Eq.1). However, it is of some interest to
nonlinear phase speed whep=h, is given exactly by the have a polynomial approximation fof (¢) in order to obtain

simple polynomial expression an evolution equation that potentially yields analytical (i.e.,
ép=1-322 (10) parameterized) expressions for equilibrium solutions, a hier-

_ ) . archy of conserved densities, and yet possesses the capacity
Stated in another way, the well-established coefficient for the

cubic KdV equation (Eql with «1=0) contains already the

lUnpublished report by T. Sakai and L. G. Redekopp.
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34 T. Sakai and L. G. Redekopp: Models for strongly-nonlinear internal waves

in Fig. 2) extends considerably the range of wave amplitudes
over KdV1 (i.e., theS; curve) where quantitative descrip-
tions are sought. Nevertheless, the approximate represen-
tation of the long-wave phase speed diverges quite rapidly
from the true nonlinear value at wave amplitudes that may be
well below those observed in a number of contexts. One al-
ternative to extending the weakly-nonlinear expansiofizof

to be used in the evolution equation, without resorting to an
excessively high order truncation of the series representation
for ¢£(Z; €), is to seek some approximate summation of the
e=1/3 series. To this end, the power-series expansion of the expres-
sion in Eq. 6) has been developed to high order and arranged
in the following form:

1.5

0.5 : : : : : : :
08 -07 -06 -05 -04 -03 -02 -01 O

¢ ép =1— a1 — aal?

b . 5. 3., 7., -
—— —a3;3{1+ ST+ ST 2
+%q§ [1+;1/?+8&2+16&3+-~}

1., 45
+59 [1+§w+-~}+-~-}. (12)

The quantitiesi, ¢) appearing in this expression are defined

as
S ~ ~

) s, £=2/3 - € - 72
1#21_62, ¢:(1—62)2.

e 07 06 05 04 03 02 o1 o Examination of this series suggests that any practical trunca-
g tion of ¢g in polynonnmial form must include a term of order
3. With this in view, and motivated by the desire to produce
Fig. 2. Comparison of various truncations of the weakly-nonlinear an evolutionary model with polynomial nonlinearity, we pro-
approximation for the long wave phase speed with its exact exprespose using the “summed-serie®’ for the nonlinear phase

(13)

sioncg. () e=1/3; (b) e=2/3. speed
. _ _ _ &5 =1— a1l —at” — assc’, (14)
to reliably describe wave motions over a wide range of am-
plitudes. yielding the extended evolution equation, termed here as
KdV3S, with a quartic nonlinearity.
3.1 Higher-order approximations The coefficientazg of the quartic nonlinear term in

o ) ) ~ Eq. (14) is a “modeled” version of the coefficiedt, a modi-
Toward the objective of generating a polynomial approxi- fication tods that is designed to capture in approximate form

mation forcg(¢: €), the truncated version of the weakly- the higher-order terms in EqL4) for ¢z (Z; €). The modeled
nonlinear expansion af. is first compared to the exact ex- expression foéss is

pression in terms of the following quantity:

N a — §; exp —-K @ X
1- Y @it BT 2 —e2)3 1 ¢2
SNGie) = — (11) =2
N Ce(C;€) exp{(lg—sz)z}, (15)
— €

The deviation ofSy (Z; ) from unity measures the error con-

tained in the different truncations of the power series expanwhich is obtained via a “pivoting” of the summed portion of
sion, and provides a basis for defining the range of valid-the infinite series about a selected value of the wave ampli-
ity of the widely-used KdV1 and KdV2 versions defined by tude, noted here ag. The different series in Eq1p) have a

Eqg. (1). Values of the functiorSy (Z; €) for several values  structure reminiscent of the exponential function, albeit with
of € are shown in Fig2 for different choices of the trunca- coefficients that clearly do not decay ag:l A factor K

tion parametev. It is clear that KdV2 (i.e., the> curve is introduced to capture a single, “respectable summation”
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for the different series involving terms. After some testing (a)

of different parametric choices, arecommended set of values 11 ‘ ‘ ‘ ‘ ‘
for the two parameters ag=1/3 and Ks=7/3. Clearly e=1/2
these choices are somewhat arbitrary, and alternate values
KdVv3
KdV3S

may yield a better fit for any given value ef yet we sug- 105y
gest that the selected values yield a “respectable fit” encom-
passing a significant and physically-relevant range of depth "
ratios. The modeled forms(z; €) of the phase speed for *©
two depth ratios over a range of wave amplitudes is shown

in Fig. 3 by the curve noted as KdV3S. Results in F&. 095}
are presented as a ratio of a particular approximation for the
nonlinear phase speed divided by the exact vajueHence,
departures from unity provide an immediate measure therel- o9 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
ative merits of any modeled approximation, and the range o709 08 07 -06 '%'5 04 -08 02 010
of amplitudes where its representation of the true nonlinear

steepening is reasonably captured. The modeled expression ‘ ‘ ('?)

cs, with its selected fit parameters, significantly extends the
range of amplitudes where a polynomial expression provides

a good representation for the nonlinear steepening effects ;g5
over that of KdVv2, for example, but the fidelity of the fit
degrades as the value ©fncreases toward unity.

£=3/4
KdVv3s KdVv3 KdV1

3.2 Afull-range, quadratic approximation — KdV2N
KdV3N
Another approach toward developing an evolution model ca- 0957
pable of describing strongly nonlinear long waves with rea-
sonable fidelity, yet possessing polynomial nonlinearity is to
construct a quadratic fit to the fully-nonlinear relation for 09 T o9 08 07 —06 05 04 03 02 01 o
¢cg(¢,e). To this end certain characteristic points on the 4

curve representing the true function can be identified, and

then a limited polynomial is proposed that passes througttig. 3. Comparison of the various polynomial approximations for
these points, thereby providing an approximate representdl’® Phase speed underlying the different evolution modes.
tion encompassing a wide range of wave amplitudes. Thé=1/2: (b) e=3/4.

specific points vital to characterizing the functiép(z, €)
are the following: the intercept valuég{=1, =0), the max-
imum value €x=¢gn, {=Cn), and the zero-crossing value
(¢£=0, Zoo). Using Eq. 6), the following quantities can be

KdV2N Kdv2

imum value €., Z). This leads to the following quadratic
fit, termedcay,

derived: Gon = 1— i1 — kal?, (19)
Gn =14 6256(6) where the coefficient&; andk, have the values
_3 2 217t - Sc(€)
Set@) =3 [1-2+V1-e] 16 m=2", (20)
~m = —€O9m ’ ~ Sc
fn = €S (6)1 , - SZ((E)). (21)
-3 €
Sm(e)zl——[1+\/1—62] 2. 17) m
) V2 This approximate representation for the nonlinear, long-wave
Zoo = —Sgn(e)Soo(e), phase speed is plotted on the right-hand portion of Ejg.
) 1 shown by the dashed lines, to exhibit its correspondence
1 e 1 ith the true function. By construction, it matches the curve
Soo(€) = le| + —= |14+ — — =82 + ¢4 | . 18) Wit - By cons ' -
oo€) = fe] V3 [ 2 2 } (18) for e=0 exactly, and its deviation from the true function in-

creases for increasing valuesdi.e., disparate layer depths)
A quadratic approximation can only enforce passage througland at higher amplitudes. The error is depicted for two val-
two points on the true function. Since the approximation ues ofe by the curve noted KdV2N in Fig. This quadratic
should apply for all values ef, includinge=0, we choose for  fit clearly increases the range of wave amplitudes beyond
the two pairs of {, ¢), the intercept value (1,0) and the max- KdV2, the weakly nonlinear quadratic approximation, but it
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36 T. Sakai and L. G. Redekopp: Models for strongly-nonlinear internal waves

0.15 : : : : : function appears remarkably good. The ratio of this approxi-
mation to the true function is depicted by the curves denoted
041l ] KdV3N in Fig. 3. The reader will note that the ratigy /e
does not pass through the zero-crossing pgjgt This oc-
0.05 ) curs because the cubic approximation cannot enforce a si-
multaneous matching of the value of the functions and their
«I»“J o slopes at the zero-crossing point, and consequently the ra-
& tio is necessarily finite afpo. However, in order to portray
o 2/3 . . . . . .
374 ﬁ the high fidelity of the cubic approximation over the whole
| a5 1 range of relevant wave amplitudes we present the difference
between these functionacsy g (defined as the difference
-0.1}F 1 c3y — cg) in Fig. 4 for a wide range of depth ratios.
015 ‘ 877/8 ‘ ‘ ‘ 3.4 A full-range, cubic approximation with nonlinear dis-
-1.2 -1 -0.8 —%.6 -0.4 -0.2 0 persion _ KdV3N3

Thus far the proposed models for strongly nonlinear evolu-
tion have neglected nonlinear dispersive effects. Following
Ostrovsky and Gru€2003, nonlinear dispersion can be in-

corporated, at least in a modeling sense, by replacing the

does not provide advantages over KdV3S except that it is 4*€d ambient depths of the two layers with their local val-

Fig. 4. The phase speed error for the KdV3N model relativé go
for different depth ratios.

lower order polynomial approximation. ues in the linear expression for the first dispersive correction,
and by replacing the constant value of the linear, long-wave
3.3 Afull-range, cubic approximation — KdV3N phase speed by its nonlinear, amplitude-dependent expres-

sion éz(Z). That is, the fully-nonlinear evolution of long
Examination of the quadratic fit exhibited on the right-hand waves along a single characteristic can be written as
side of Fig.1 shows that the fidelity of the quadratic represen- _ L ~
tation foréz (¢; €) degrades significantly at large amplitudes ¢; + cocr (£)¢x + Boco (ﬁ(;)EE(g)gxx) =0, (26)
and higher values af, and that a reasonably faithful approx- *
imation requires at least a polynomial of cubic order. To thiswith ¢z given by Eq. 6) andg given by
point, we propose a cubic approximation that, in addition to .
(hi—O(h2+¢)  1—(e+0)?

passing through the points included in defining the quadraticB(E) _ @7)
fit (Eg. 19), includes enforcement of the zero-crossing value hih2 1—¢2

(ce=0, ¢oo). This leads to the approximate relation, denoted . ol

by can, The functional dependence of the prodiitt=8¢g on the

3 y y local displacement is somewhat complicated, having the
Gay = 1— 1l — 7282 — 733, (22)  form shown in Fig.5. As argued further in the next sec-
tion, it is of some interest to represedi by an approximate

where the coefficientg are given by the following functions quadratic dependence @n This objective is readily accom-

of e: plished by constructing a quadratic form that passes through
~ € (S, the intercept valuefz=0, {=0) and the maximum value
= Soo E(ZSOO"*' |€1Sm) DEg(¢p, )=DEgn of the functionDg. To that end we propose
5 ) the approximate form for the nonlinear dispersive term
_|E|M N
(Soo — l€|Sm)2 |’ Dg(5) = B(¢)CE(©)
1S - (€ = tpm)?
= — 1 —(Soo+ 2l€|S ~D&)=Dpyl-—FG—1. (28)
Y2 S0 { Sy%( 00 + 2|€[Sm) m an1
el Sm(1+ €25c) (24) One can readily verify that excellent approximations for the
(Soo — €S2 |’ “fit” parameters O, ¢p,,, dn) are:
. S Sa(1+€2S.) 1+e2 3 3V2
=s 1- 2 1. 25 =" =_= =222/ 2
73 = S0 52 { Se(S00 — [€[Sm)2 @) Dn=1"5 =g dn=gVite (29)

This cubic fit is shown by the dash-dot curves on the left- This quadratic approximatiof is compared with the exact
hand side of Figl. The match of this cubic fit with the true relation D¢ on the left half of Fig5.
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T. Sakai and L. G. Redekopp: Models for strongly-nonlinear internal waves 37

The evolution equation employing EQ2), and when in- — —
corporating the quadratic approximation for the proposed o / KdV3NB,
nonlinear dispersive term Eg28) in accordance with the
extended form put forward in Eq2), is referred to here
as KdV3N3.. We note, however, and as is readily evident
from Fig. 5, both the functionDx or its approximationD
become negative at large amplitudes. The sign of the dis-
persive term, therefore, may pass through zero and changtm
sign as the local displacement becomes large. As an attemp
to avoid this deficiency in the KdV3Bl model, we propose
an alternate approximate form for the nonlinear dispersive
effect. This alternate form simply employs a constant value
ceg=1in Eq. £8), since it is the behavior a@fg that drives the
value of D toward zero as the amplitude increases. Hence, -1

IR

. ~ . . . . . -12 -1 -08 -06 -04 -02 0 02 04 06 08 1 1.2
the functional form fotD is given simply by the expression in 7

Eq. 27), a form which is exhibited on the right half of Fi§.

This approximation for the nonlinear dispersion effect yields rig. 5. comparison of different models for nonlinear effects of dis-
an evolution model denoted here as KdV&N persion.

4 Comparison of evolution models The eigenvalue corresponding to solitary wave solutions can

. . . be obtained directly by multiplying Eq32) by dZ/d X and
A hierarchy of evolutionary models belonging generally to writing the equation as

the KdV family has been set forward in the preceding sec-
tion, each with a differing potential for describing strongly- d 1174z 2 7
nonlinear wave motions. In this section we seek to provide— { = | —= | — / R(0)d6 ; = 0. (33)
bases for discriminating between possible advantages or limdX | 2 (dX)
itations of the various models by computing several solution .
properties of these models. SincedZ/d X=0 at the extremum of the solitary wave (i.e.,

The first solution property to be Compared is that of iso- crestor trOUgh), one obtains dil’ectly the f0||0Wing eXprESSion
lated solitary wave solutions admitted by the equations. Fofor the eigenvalue in terms of the solitary wave amplitude
purposes of this discussion, we represent the extended veA:
sion of KdV equation in the general form as given in E2f)( A
The proposed, nonlinear characterization of the dispersive / U(Z)/Dg(2)dZ
term as given in Eq.26) is included and, as noted earlier, § = 40 . (34)
the dimensionless amplitudejs=¢/ h. A solitary wave is a /A S s s

) e ) . 7Z/Dg(Z)dZ

traveling wave solution given functionally by an expression 0
of the form

We consider several cases of the eigenvalue relation given

. - . - h2 - in Eq. 34). First, we consider the case, termed KB/E

() =2(X)=2 \/7(;2 = Vi) (30)  with the exact nonlinear phase speed and the exact expres-
sion for Dg(Z). The variation of the eigenvalue (alt., the

In this expression we employ the definitions Solitary wave speed)with wave amplitude, as computed from

(x,)=(h%, hi/co), and Z(X) satisfies the nonlinear EQ. (34), is presented in Figb for the particular depth ratio

eigenvalue problem corresponding t&=2/3. This exact result is compared in
- Fig. 6 with various alternate evolution models defined in the

d_~Z — 1 _ {52 _ 0(2)} = R(2). (31)  Previous section. Analytic expressions for the eigenvalue for

dX?2 Dg(Z) the different models are summarized in Appendix A. FEg.

shows that the eigenvalue for KdV1 provides a reasonable
approximation for the speed of nonlinear wave features only
for wave amplitude$: | <0.1. Further, KdV2 provides a use-

ful approximation for wave amplitudes satisfying roughly
|¢|<0.4 (at this value of. For larger amplitude waves, one

) of the higher-order approximations discussed here is needed
. Z . - to give a faithful prediction of the wave speed. The reader
U(2) / {CE(C) - } (32)  will also note that, with the exception of KdV1, all models

The eigenvaluei=V—1 (where the dimensional solitary
wave speed is given by =coV) is that function of the wave
amplitude such thaZ (X) satisfies homogeneous boundary
conditions Z(+o00)=Z(—00)=0. The functionDg(Z) is
given in Eq. 28), while U (Z) is given by the relation
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of the profile by KdV1 for higher wave amplitudes is well-
known based on established results using KdV2 models (e.g.,
Evans and Ford1996 Lamb and Wan1998 Grimshaw
2002 Holloway and Pelinovsky2002. However, the results
presented here suggest that the widening of the wave profile
is significantly over-estimated by KdV2. The widening effect
beyond that corresponding to KdV1 becomes significant only
at amplitudes in excess of the limiting value for KdVv2. We

point out for emphasis that the amplitugle(i.e., the dimen-
sionless wave amplitude based on the controlling dimension)
sl N\ | for the particular case af=2/3 corresponding to the com-
puted profiles shown in FigZa is 1=—1.5 whenz=-0.5,
and that the wave profile predicted by KdV1 is actually a
0 : : : : : : : “not-so-unreasonable” approximation when compared with
' - ' ' ' the profile based on KdV3N at this large amplitude state.
The profile shown in the last panel of Figa for an ampli-
tude of A=—0.64 does not include data for KdV2N because
the amplitude exceeds the limiting value for this model. The
widening effect for KdV3N relative to KdV1 at this ampli-
tude is partially due to the fact that the amplitudie—0.64
yield a maximum value for the eigenvalue (alt., solitary wave is only slightly below the value ofim, for KAV3N ate=2/3.
speed) at some intermediate amplitude. This point will be As discussed above, the models excluding KdV1 possess
addressed further in a subsequent paragraph. limiting amplitudes which, when approached from below,
The next solution component of the various proposed evo-define conditions where the wave profile broadens signifi-
lution models that we compare is the profile of solitary cantly, even to the point where the profile approaches a front
waves. Profiles for specified amplitudes obtained using dif-separating two uniform states. This naturally introduces the
ferent evolution models are shown in Figfor the particu-  notion of conjugate states as introduced3@njamin(1966,
lar depth ratio given by=2/3. As expected, profile forms and computed bfurner and Vanden-Broedi 98§ and de-
differ only marginally at low amplitudes, but significant dis- scribed in further detail byAmick and Turner(1986 and
parities emerge as the amplitude increases. At low ampliby Evans and Ford1996. Values of the limiting solitary
tudes the wave width diminishes with increasing amplitudewave amplitudes for the models KdV2, KdV2N, KdV3N,
for all models, a result that holds uniformly for KdV1, as KdV3Npg;, KdV3NB. and KdVES, are presented in Tabk
is well known. However, as the amplitude increases (alt.,for a range of depth ratios, and these limiting amplitudes
as the degree of nonlinearity becomes increasingly signifi-are compared with results of the conjugate state amplitude
cant), all models with the sole exception of KdV1 manifest computed using the theory éimick and Turner(1989. For
a reversal in this trend of wave width increasing with wave the special case of a two-layer stratification with a rigid up-
amplitude. In particular, the profile obtained using KdV2 per surface, the environmental case under examination here,
becomes quite wide with a flat trough when the amplitude isAmick and Turner(1986 obtained an analytic solution for
A=—0.47. This amplitude is just marginally below the limit- the conjugate state. When the Boussinesq approximation is
ing amplitudeAjm=—fi1//io=—0.47619. - - for KdV2. An invoked, and when their results are transposed in terms of the
analytical expression for this limiting amplitude is obtained non-dimensional variables used herein, the conjugate state is
in straightforward fashion from the functional relation for a defined simply by the relations
solitary wave solution of KdV2

Fig. 6. Comparison of the dependence of the eigenvaloe soli-
tary wave amplitude fog=2/3.

= - 1 - 1 1—¢
S oo 21T . fos = =6 C?szﬁ; “§s1=?=ﬁ- (36)
Z(X):Al——b']—z; 7T =tanh K X); € us o €
@A The quantitiesi.y1 andii.g2, also listed in Table, define
= —m. (35) the velocities of the upper and lower layers behind the front,

as measured in a wave-fixed frame, respectively. These val-

The limiting wave amplitude corresponds to that for which ues provide a basis for evaluating the maximum shear (i.e.,

the parameteb approaches the value of unity from below.  vortex sheet strength) at the interface when a wave reaches
As evident in Fig7, wave profiles for KdAV2N and KdV3N its limiting amplitude. The value of this velocity difference

at an amplitude ofA=—0.6 are nearly coincident, but the is important relative to estimating the potential for Kelvin-

profile of the wave predicted by KdV1 is significantly more Helmholtz instability and internal mixing to occur as the

narrow. This characteristic under-prediction of the width wave passes.
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Fig. 7. Comparison of solitary wave profile described by various evolution models at different amplifajlesve forms fore=2/3 (left
six panels){b) wave forms for different values ef (right four panels).

Included in Table2 is a comparison of the speég; of 0
the “front” separating the conjugate states and the value of
the speed (z.) of the phase speed (E6). evaluated at the
amplitude of the conjugate state. These values are particu-
larly disparate for low values of the depth ratio parameter ...
a difference that deserves some explanation. The computa:
tion of the conjugate state is based on an integral theory that
requires only an evaluation of the pressure at the upstrear -06f
and downstream locations relative to the front. As such, it
makes no approximation regarding the pressure distribution
through the front, and accurately uses the appropriate hydro-
static pressure distribution asymptotically far away from therig. 8. Comparison of solitary wave profile described by KJ¥E
front. On the other hand, the derivation of the phase spee@nd Choi-Camassa’'s model fex2/3.
given in Eqg. 6) has explicitly used the leading order approx-
imation for the pressure distribution in the limit of infinitely

long waves eyerywhere thrpugh .the, wave profile, .namelly 0 describe an isolated front. In fact, our computations reveal
hydrostatic distribution. This distinction naturally gives dis- that the limiting amplitude condition for all evolution mod-

parate values of the wave speed, and this different represent%]s corresponds to that amplitude for which the eigenvalue

tion of the pressure is especially apparent in the case of MOrfaaches a maximum. Of course, the eigenvalue for KdV1 has
n_early equal layer depths. _\Nh_en th? Igyer depths are W'del¥1o local maximum and, therefore, KdV1 does not possess a
d|spgrate, the front dynamics |mpl.|C|t in the conjugate StateIimiting amplitude. For this reason, a mark denoting the peak
solution are more nearly hydrostatic. of the eigenvalue is placed on the curves in Bigoints that

We return now to the eigenvalue data exhibited in lig. ~ correspond to the Iimiting amplitudes for each of the models
and inject an observation regarding the existence of limit-"epresented in the figure.
ing amplitudes of stationary solutions (e.g., solitary waves) It is important to note that an exact, stationary solution
of the various evolution models. It was noted following of the Euler equations for an isolated (i.e., solitary) wave at
Eq. 35) that the amplitude corresponding to the maximum the interface between two layers of homogeneous fluid was
of the eigenvalue for KdV2 and KdV2N coincided with the constructed byChoi and Camass@d999. For the purpose
condition that the parametée=1, the condition for Eq.35) of comparing their exact solution with stationary solutions

-0.2r
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Table 2. Limiting wave amplitudes for different evolution models, and comparison with the theory of conjugate states.

Kdv2 KdV2N KdV3N KdV3NB; KdV3NB. KdVES. conjugate state

€ Zmax Zmax Zmax Cmax Zmax max Les CElees  Cos Ues1 — Heg2

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000
15 -0.196 -0.199 -0.200 —0.200 —-0.200 -0.200 -0.200 1.000 1.021 0.817 1.225
1/3 -0.314 -0.328 -0.331 -0.333 -0.333 -0.333 -0.333 1.000 1.061 0.707 1.414
1/2  -0.429 -0.482 -0.492 —0.497 —0.497 —0.498 -0.500 1.000 1.155 0.577 1.732
2/13 -0.476 -0.620 -0.643 —0.657 —-0.657 —0.660 -—0.667 1.000 1.342 0.447 2.236
3/4 -0.457 -0.677 -0.712 —0.733 —-0.732 —-0.739 -0.750 1.000 1.512 0.378 2.646
4/5 -0.424 -0.706 -0.749 -0.777 -0.775 -0.786 —0.800 1.000 1.667 0.333 3.000
56 —-0.390 -0.721 -0.771 -0.805 -0.802 -0.816 -0.833 1.000 1.809 0.302 3.317
6/7 —-0.359 -0.729 -0.785 —0.823 —0.820 —0.837 -0.857 1.000 1.942 0.277 3.606
7/8 —-0.332 -0.734 -0.794 —-0.837 —-0.833 -0.853 -0.875 1.000 2.066 0.258 3.873
8/9 -0.308 -0.737 -—-0.800 —0.846 —0.842 —0.865 —-0.889 1.000 2.183 0.243 4.123
9/10 -0.287 -0.738 -0.804 —0.854 —-0.849 -0.874 —-0.900 1.000 2.294 0.299 4.359

of the evolution models proposed here, the wave profilesmodel, for example, provides a nonlinear evolution equation
for moderate amplitude waves of KdYSE model are com-  for moderately large waves in which the position, phase rela-
pared with the corresponding Choi-Camassa (C-C) wave fotions and characteristics of individual wave profiles are rep-
€=2/3 in Fig. 8. Itis seen that the KdVE. profile slightly resented with quite high fidelity. For point of reference, the
underestimates the width of the wave profile, a consequencealuezo=0.4 corresponds to a wave amplitugle=—1.2 for
(we conjecture) of inadequacies of the approximate represens=2/3 (h2=5h1).
tation of nonlinear dispersive effects in E@&)Yand 7). In
regard to the speed and amplitudes of the limiting wave, the[h
Choi-Camassa predictions are necessarily identical with th%
conjugate state values given in TaBle

To compare the solitary wave profiles predicted by the var-
ious evolution models at a further level of detail, we evaluate

the spatial locatiork; of the inflection point of the profile, fully selected in order to yield more than one leading solitary

the wave amplltgd@f, "’?t the |pflect|on point, and the wave wave in the asymptotic state for KdV2 and the selected depth
slope¢y. at the inflection point. These data are presented _ . : .
. i _ . . ratio e=2/3. The result of a sequence of simulations on the
in Table 3 for profiles computed using the depth ratio corre- S . .

semi-infinite line are shown in Fi@.where evolutionary data

sponding tee=2/3. X o . )
. are shown for a fixed time in a spatial coordinate frame that
Data do not appear in some columns because the selecte : .
) . . - - moves with the linear, long-wave phase spegdA further

amplitude in the leading column exceeds the limiting ampli- . : .

. . omparison of the evolution leading to the wave forms shown
tude for the particular model. The wave width, as represente . . : ; e

in Fig. 9 is obtained by comparing the temporal variation of

by the location of the inflection poirX;, diminishes with in- . : : )

: . . . the amplitude of the leading wave in the packet, and its spa-
creasing wave amplitude in all models when the amplitude,. " : .
) . tial position, as a function of time. These results are plotted
is small, but most emphatically for KdV1. In the models in Fia. 10
other than KdV1, the width begins to increase with increas- 9.5
ing wave amplitude beyond modest amplitudes of the order Another point of interest regarding strongly nonlinear evo-
to~—0.3. The increase in wave width becomes quite rapidlution in realistic environments pertains to the propagation in
as these profiles approach their limiting amplitudes. a wave guide of variable depth. The effect of variable depth

The last column of Tabl& contains corresponding data in the KdV1 or KdV2 models for the two-layer stratification
obtained from Choi and Camassa’s exact, stationary soluinvolves the addition of the terré;dco/dx in Eq. @). A
tion. One observes that KdV3N model under estimates the model that incorporates the effect of strong nonlinearity can
wave width by about 7% at an amplitude t=0.4, but the  be postulated by extending the weakly-nonlinear model to
wave speeds are essentially identical. Hence, the K@/3N contain the following generalization of EQR8):

A third level of comparison of the different models is
at of spatio-temporal evolution from a fixed initial condi-
on. For this purpose, an initial condition corresponding to
a “non-equilibrium” form of a KdV2 solitary wave was cho-
sen. That is, the profile defined by E@5[ was used, and
the parameter sef=—1/2 , b=3/4, K =1/4) was purpose-
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Table 3. Comparison of solitary wave inflection point data for different evolution models.

5 ) K~dVl y y KgVZ y y Kd~V2N y 5 Kd~V3N R

) Xi gi 5 Xi gi 5 Xi gi 8%, Xi Gi $%,
-0.1 3.80 -0.067 0.013| 4.32 -0.066 0.012| 4.36 —0.066 0.012] 4.31 -0.066 0.012
—-0.15| 3.10 -0.100 0.024| 3.81 —-0.098 0.021| 3.77 —0.098 0.021| 3.74 —-0.098 0.021
-0.2 2.69 -0.133 0.038| 3.62 -0.128 0.030( 3.47 -—-0.130 0.031] 3.46 -—-0.130 0.031
—0.25| 2.40 -0.167 0.053| 3.60 —-0.158 0.040| 3.32 -0.161 0.041| 3.34 -0.160 0.041
-0.3 220 -0.200 0.069| 3.76 —-0.185 0.048| 3.28 —-0.191 0.051] 3.31 -0.190 0.051
—0.35| 2.03 -0.233 0.087| 4.12 -0.208 0.055| 3.33 -0.219 0.061| 3.36 —-0.218 0.061
-0.4 1.90 -0.267 0.107| 487 —-0.226 0.060| 3.47 —-0.245 0.070| 3.51 —-0.245 0.070
—-0.45| 1.79 -0.300 0.127| 6.74 -0.237 0.063| 3.73 -0.269 0.079| 3.75 -0.268 0.077
—-0.47| 1.75 -0.313 0.136| 9.42 -0.238 0.064| 3.88 —-0.277 0.081| 3.89 -—-0.277 0.080
-0.5 1.70 -0.333 0.149|, - - - 4,18 -0.288 0.084 4.16 —0.288 0.084
—-0.55| 1.62 -0.367 0.172| - - - 499 -0.302 0.088 4.83 -0.304 0.088
—-0.6 1.55 -0.400 0.196| - - - 7.09 -0.309 0.090 6.16 —0.313 0.091
—-0.64 | 1.50 -0.427 0.216| - - - - - - 10.8 -0.316 0.092
—0.65| 149 -0433 0.221] - - - - - - - - -

Table 3. Continued.

)  KdVaNpy  KdVaNge  KdVEB ) cc
) Xi gi 5 Xi gi 5 Xi gi 8%, Xi Gi 8%,
-0.1 474 —-0.065 0.011] 5,56 —-0.063 0.010| 5.33 -0.063 0.011] 5.20 -0.064 0.010
—0.15| 4.27 -0.096 0.020| 5.19 -0.093 0.017| 498 -0.093 0.018]| 490 -0.095 0.017
-0.2 407 -0.126 0.028| 5.05 -—-0.122 0.024| 4.88 —-0.122 0.025| 4.86 —-0.124 0.024
—-0.25| 4.02 -0.155 0.037| 5.04 -0.150 0.031| 4.89 -0.150 0.032| 496 -—-0.153 0.031
-0.3 4,07 -0.183 0.045| 5.11 -0.177 0.038] 498 -0.176 0.039| 5.17 -0.179 0.037
—0.35| 420 -0.209 0.053| 5.26 —0.203 0.044| 5.13 -0.202 0.045| 5.48 -0.205 0.042
—04 | 442 -0.234 0.060| 548 —-0.228 0.050| 5.36 —0.227 0.051| 5.89 —-0.228 0.047
—0.45| 475 -0.256 0.066| 5.82 —-0.251 0.055| 5.69 -0.249 0.056| 6.45 -0.249 0.051
—0.47 | 493 -0.264 0.068| 5.99 -0.259 0.057| 5.86 —-0.258 0.058| 6.73 —0.256 0.052
-0.5 526 -0.275 0.071| 6.31 -0.271 0.059| 6.16 —-0.270 0.061| 7.22 —-0.266 0.054
—0.55| 6.04 -0.290 0.075| 7.09 -0.287 0.062| 6.89 —-0.286 0.064| 8.34 -0.280 0.057
—-0.6 | 744 -0.300 0.077] 850 —0.299 0.065| 8.19 -0.298 0.067| 10.2 —-0.290 0.058
—-0.64 | 10.3 -0.303 0.078| 11.4 -0.303 0.065| 10.7 -0.303 0.067| 13.3 —-0.294 0.059
—-0.65| 124 -0.304 0.078| 13.6 —-0.304 0.066| 124 —-0.304 0.068| 149 —-0.295 0.059

19 . R
4+ 5£§ + cofe(@)ex + Boco(BE)er(@)eur)x =0, (37)

41

termac/ox involves differentiation of the nonlinear expres-
sion for the phase speed only with respect to explicit depen-

dence on the spatial coordinate That is, considering the
non-homogeneity to arise solely through the functéa@i),

In this equation we intend that evaluation of the rarefaction
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from various models using the same initial conditiee-2/3).

term for the generalized equation (E2f) becomes

e, ), teop - (38)

10c 1
de dx

dco OCE de
209x 2

variation wheree varied gradually (i.e., over a distance

of roughly 20@=2H) upper-layer depths) from its initial

(upstream) value of1=3/4 to its shelf (downstream) value

€2=1/3 according to the relation
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Fig. 10. Change in(a) leading wave front amplitudéf and(b) its

position § y—7) as a function of timeq=2/3).

€1+ €2

€1 — €2 X
- tanh{ — | .
2 5 an (H)

e(x) =

(39)

The initial condition in this simulation was the same as that
Fig. 9. Comparison of spatial wave forms at a fixed time as derived ysed for the simulations presented in F&y. Simulations
were performed for both the weakly-nonlinear version KdVv2
and for the strongly nonlinear version KdV2N. Waveforms
obtained at several times are compared in Eil. As ex-
and ignoring the implicit dependence through the amplitudepected, the KdV2N waveform travels faster, and has a nar-
function Z (x, 7). In this case, for example, the rarefaction rower leading solitary wave since the limiting amplitude for
KdV2 is smaller, resulting in a more extended and flattened
trough. The waveforms appearing at a late time on the shelf

are shown in Figl2.

It is apparent that a larger number of solitons are formed
for KAV2N on the shelf region, although the trailing wave-
In order to exhibit the effect of nonlinearity entering via this shelf has not yet fully evolved to a point when the solitary
term, the initial value problem was solved using a depthwave packet has separated from the dispersive tail. A curious
structure, particularly in the KdV2 waveform, is the occur-
rence of two localized soliton pairs, as seemingly a ‘phase-
locked’ state, following the lead wave. A similar sort of wave
pair seems to be manifest at earlier times (€:g60) in the
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Fig. 11. Comparison of shoaling wave forms for KdV2 and KdV2N for evolution from a common initial condition.

KdV2N waveform, and has a remnant form even=a1800.
We speculate that the formation of this pair-like form occurs
when the lead wave with near-limiting amplitude undergoes, 5 KdvaN
deformation while passing over the topographic variation.
The individual entities in this pair-like form have (nearly) o4l
identical amplitudes and propagate with (nearly) fixed prox- -
imity to each other.

0.3

Kdv2
0.2

5 Concluding remarks
01r
Several models have been proposed for the evolution o
lowest-mode, internal wave disturbances based on the ex g
act relation for the phase speed for nonlinear wave propa '°%°
gation along a single characteristic in the long wave (hydro-
static) limit. The proposed models have been examined oy 15 comparison of shoaling wave forms for Kdv2 and Kdv2N
the purpose of providing a reliable, quantitative descriptiona;7—1800.
of the evolutionary character of waves in a two-layer strati-
fication with arbitrary amplitude. The need for models valid
for strongly nonlinear evolution is readily seen when consid-|¢1|<1. In light of these observations, the need for reliable
ering several documented cases. For example, waveformsodels for strongly nonlinear evolution is indeed obvious.
with amplitudes §,~—0.8, ;~—0.32) in an environment We reiterate one of the motivations for this work. Al-
with €¢=0.59 have been reported Ringree and Mardell though the work ofChoi and Camassd 999 allows one to
(1989; waveforms with {~—2.1,.~—0.32) inan environ-  quite readily compute exact, equilibrium (stationary) solu-
ment withe=0.85 have been reported Gyevorrow(1998; tions for isolated waves, there is a need for evolution models
and waveforms withgi=—4, =—0.4) in an environment  which allow rapid simulation for either predictive or interpre-
with €=0.91 have been reported IStanton and Ostrovsky tive purposes. Itis our thesis that a “simple” two-layer model
(1998. In weakly nonlinear theory the asymptotic expan- has significant advantages for these purposes. To this end, we
sion presupposes that the characteristic amplitude parametarclude in Appendix B some calculations of the KdV2 model

1050 1100 1150 1200 1250 1300 1350
X

www.nonlin-processes-geophys.net/14/31/2007/ Nonlin. Processes Geophys. 414 2807



44 T. Sakai and L. G. Redekopp: Models for strongly-nonlinear internal waves

Table 4. Properties of solitary waves of Kd\ for environments having deep lower layers.

} y e=~4/5 . e=~7/8 ; 6=~9/10
%0 Xi gi ¢%, Xi Gi 8%, Xi gi 8%,
—-0.1| 459 -0.062 0.013| 4.34 -0.059 0.015| 4.33 -0.058 0.015
—-0.2 | 449 -0.117 0.029| 456 -0.111 0.031] 469 -0.108 0.031
—0.3| 470 -0.168 0.044| 493 -0.159 0.045| 5.15 -0.155 0.045
—-0.4 | 503 -0.217 0.057| 534 -0.205 0.058| 5.62 -0.199 0.057
—-05| 549 -0.262 0.069| 5.81 -0.248 0.069| 6.12 -0.241 0.068
—-06 | 6.22 -0.302 0.078| 6.42 —-0.288 0.078| 6.74 —-0.280 0.077
—-0.7 | 768 —-0.330 0.084| 7.36 —-0.322 0.085| 7.62 —-0.314 0.083
-0.8 - - - 953 -0.343 0.090 9.39 -0.338 0.088

for a continuously stratified thermoclinic layer of finite thick- herein, one could readily compute corresponding properties
ness, and then provide suggested values of the layer depthier such cases as KAV and KdV2N3.. Furthermore,
to be used in an equivalent two-layer model. since physical environments with relatively deep lower lay-

Examination of Figs3 and4 suggests that Kdv2 would €rs (i.e., values of approaching unity) are not uncommon,
considerably underestimate the nonlinearity for all caseglata pertaining to KdVE, for several depth ratios are pre-
listed above. By contrast, the KdV2N evolutionary model Sented in Tabld.
could be expected to yield a respectably satisfactory degree
of correspondence between model results and the level of )

IZ| values associated with these observations. However, fof\PPendix A

cases where amplitudes are such tgat0.5—-0.6, KdV3N ) ) i ]

will be required to realize a reasonable fidelity between ' N€ €igenvalue relation for case KdVBNis, after carrying
model results and measured data. Advantages of Kdv2Nnrough the evaluation of the integral terms in E2)(
include analytical expressions for both the form of a soli- y 1 (s i i
tary wave and its eigenspeed, the same advantages assofi=V — 1= —— {—Jﬂl + = Jup + —Jﬂg}
ated with KdV1 and KdV2. Hence, wave properties can be Jv L2 3 4

readily computeq and compared with laboratory orfield data, e variousJ; terms in this relation are defined as
and simple scaling laws for these waves are available. Fur-
thermore, KdV2N provides a quite respectable approxima- dp 148§

tion for the limiting amplitude, particularly in comparisonto  *V = ~ 2 {(1 — )l < _ )

KdV2, as seenin Tabl2 Of course, an analytical expression 1-§

for solitary wave solutions of KdV3N is certainly expected +(1+ P)In <1 n P)} ;

to be accessible as well, although preliminary efforts on our )

part have r_10t yet yielded success in this venture. Hen_ce, th9u1 — —d,%(P £S5+ d_m {(1 _ P2 ( 1+ S)
argument in favor of KdV2N over KdV3N on the basis of 2 1-p

1

possessing a solitary wave solution, with its specific scaling 2 1-S8
relationships, is not entirely compelling. —(@1+P)%In 1+ P ;
Comparing data for solitary wave profiles for KdV2N and 43

KdV3N contained in Table, it is clear that the difference Ju, = [(52 — P?) + 6dy (S + P)

between the indicated values of the width of the wave pro- 14§ 1-5§

file only becomes significant as the limiting amplitude is ap- +1-P)%In <—> + @+ P)3In ( )} ;
proached. On the other hand, comparison of profile widths 1-»p 1+p

for KdV3N with those for KdV3NB1 and KdV3NB,, itis  J,, = —d2 [(1+ 6d2)(P + S) + 2d,,(S* — P?)

seen that nonlinear dispersive effects serve to increase the 4

wave width significantly, with the exception being when +}(P3+ S3)} + A {(1_ P)*In <1+ S)
wave amplitudes are near their limiting value for a specific 3 2 1-pP
model. With this effect of nonlinear dispersion in view, it 4 -8

is worth noting that, although no data have been included —@+P)%In <1+ p)}

_m
2
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In writing these expressions we have employed the definitior 1.1

10 20

— h, /h, _=1/5 (e=2/3)

b 173 (e=1/2)
10 20

EDm E - EDm
P=" S=>">""-"".
dm dl‘l’l g
In a corresponding manner, the relevant terms for
KdV3Np; are, upon using the definitio$y=¢1+e,

equiv h10

1+ S -
Jy = — {(1—e)| ( + 1) -
1+
+d+eln ( )}
=t v omn(15%)
0.6 ‘ ‘ ‘ ‘
1-§ -1 -0.8 -0.6 -0.4 -0.2 0
~- e>2< 1)} A,
T, = 3€§ _ ‘(Sl _ E2) _ } 1+ )3 In 1+ Sl Fig. B1. quivalent upper Iayer.depth based on matching phase
2 1+e +€ speed of solitary wave as a function of wave amplitude.

+(1—-¢)3In <ﬁ>}
1—¢

Juy = —(1+ 662)2 + 26(55 —€? paper). We present calculations here based on two different

options for this purpose, and then compare the consequent

—}(Sf 3+ = {(1+ )4In< + Sl) values ofequi- First, we constrain the speed of lowest-
3 1+ mode, isolated (solitary) wave features in the continuously-
4 1-81 stratified case to correspond with those in an equivalent two-
—(1-¢e"In . L
—€ layer model. This criterion forces a correspondence between

the location of waves relative to their source, and also phase
relationships between different waves in a packet. Second,
we choose to match the peak isopycnal displacement (wave

We present calculations aimed at guiding the formation of ar amplitude) in the continuously-stratified model with the in-
equivalent two-layer model to characterize long wave prop- terface displacement in the equivalent two-layer model.
agation in a wave guide which contains a thermoclinic layer Itis immediately clear that each of these bases for equiva-
of finite thickness. For this purpose we consider an environJence depend on the wave amplitude. In order to establish
mental model where a single thermoclinic layer with con- €quivalence, therefore, it seems that comparable approxi-
stant Brunt-\&isala frequency having thickness, is posi- mations for nonlinear and dispersive effects should be em-
tioned in a wave guide such that the distance from the uppePloyed for each environmental model. However, since a
surface to the mid-depth of the stratified layetig. The fully-nonlinear representation of the nonlinear phase speed
total depth of the wave guide iso+h20, h20 being the dis- comparable to Eq.6] is not available for the continuously-
tance from the middle of the thermocline to the bottom of the Stratified case, we choose to use the KdV2 description of
wave guide. The goal is to specify the equivalent upper-layeMave evolution for both environments. For the two-layer
(mixed layer) depthiequv="1 in a two-layer environmental Model we employ the relations given by Eq$-§) in the
model with total fluid depthhy+ho=h1g+h2o for different text, and for the continuously-stratified wave-guide we use
thicknesses,, of the thermoclinic layer. the KdV2 description as presented yimshaw(2002).

Several different criteria for defining an equivalent two-  Results for the upper-layer depth for the equivalent two-
layer model can be proposed. To establish conditiondayer model based on the criterion of matching the nonlin-
for an equivalent model, the value of the reduced grav-ear phase speeds of equal-amplitude solitary waves are given
ity g=g(p1—p2)/p1 must be specified. We take; and in Fig. B1 for two different cases, depth ratios correspond-
p2 to be the epilimnion and hypolimnion densities in ing to hi1g/h20=1/3 (e=1/2) and h1o/ h20=1/5 (¢=2/3).
the continuously-stratified environment. Thus, within the Solitary waves in environments with these depth ratios are
Boussinesq approximation, the valuegois equal to the in-  waves are of depression (alt., waves of elevation with respect
tegral of the Brunt-\disala frequency across the depif) of to the shallower upper layer). Values bfquiv and A pre-
the stratified layer. Wittg fixed, one further condition must sented in FigB1 are scaled by 1o, the depth of the mid-level
be prescribed to fix the remaining free parameter — the equivef the thermoclinic layer. One observes that the equivalent
alent upper-layer depthequiv (equal toh; in the text of this  upper-layer depth is less than the mid-level deipth, and

Appendix B
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Table B1. Equivalent upper layer depth for different thickness of

1ol ———— h, /h=1/3 (e=1/2) ] thermoclinic layer.

— - — h,/h=1/5 (e=2/3) e L
o : hm/h10

7 hio/hog € | 02 04 06 08 1.0
1/3 1/2| 0.88 0.79 0.71 0.63 0.56
1/5 2/31 093 086 0.79 0.72 0.66
1/7 3/4| 094 088 081 0.75 0.69
1/9 4/5| 094 088 0.82 0.76 0.70
1/11 5/6| 094 089 0.83 0.77 0.71
1/13 6/7| 094 089 0.83 0.77 0.72

-1 -0.8 -0.6 -0.4 -0.2 0
10

provide a useful guide for defining quantitatively equivalent

Fig. B2. Iig”i;’alem upt)per I?yert,dept? based onlltmgtching Peakiyo-layer models for natural environments containing single,
Isopycnal displacement as a function of wave ampiitude. prominent thermocline having finite thickness.
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