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Abstract. Models describing the evolution of long internal
waves are proposed that are based on different polynomial
approximations of the exact expression for the phase speed
of uni-directional, fully-nonlinear, infinitely-long waves in
the two-layer model of a density stratified environment. It is
argued that a quartic KdV model, one that employs a cubic
polynomial fit of the separately-derived, nonlinear relation
for the phase speed, is capable of describing the evolution of
strongly-nonlinear waves with a high degree of fidelity. The
marginal gains obtained by generating higher-order, weakly-
nonlinear extensions to describe strongly-nonlinear evolu-
tion are clearly demonstrated, and the limitations of the quite
widely-used quadratic-cubic KdV evolution model obtained
via a second-order, weakly-nonlinear analysis are assessed.
Data are presented allowing a discriminating comparison of
evolution characteristics as a function of wave amplitude and
environmental parameters for several evolution models.

1 Preliminary considerations

The wide-spread appearance of packets of long internal
waves in the shallow, stratified waters of the coastal ocean
and lakes is firmly established (Osborne and Burch, 1980;
Apel et al., 1985; Scotti and Pineda, 2004; Ostrovsky and
Stepanyants, 1989; Stanton and Ostrovsky, 1998; Antenucci
et al., 2000; Duda et al., 2004; Helfrich and Melville, 2006).
These long-wave packets in many contexts are decidedly
nonlinear, containing waves with amplitudes that are equal
to and greater in magnitude than the controlling length scale
of the problem, which is typically the scale of the upper-
mixed layer depth. Furthermore, these long-wave packets
are known to stimulate strong benthic dissipation and mix-
ing, having a determining influence on the decay of internal
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tidal energy and the resuspension and transport of sedimen-
tary material (Bogucki et al., 1997; Bogucki and Redekopp,
1999; Stastna and Lamb, 2002; Bogucki et al., 2005). Hence,
there is increasing interest in the development of models
that can yield quantitative, evolutionary descriptions of such
wave packets in a wide range of environments. The present
work is directed toward proposing such a model, and assess-
ing its potential (along with that of various alternate models)
to describe reliable descriptions of packets possessing large
amplitude internal waves.

Aspects of the propagation of nonlinear internal waves in
the long-wave limit are examined in the case of a two-layer
model under the Boussinesq approximation. Specifically,
uni-directional propagation of a plane wave is considered
in the idealized environmental model of a two-layer density
stratification. This idealized case represents a convenient and
quantitatively relevant model for the lowest internal wave
mode in realistic stratifications when the water column pos-
sesses a single, prominent, thermoclinic layer whose depth
is at most a modest fraction of the fluid depth. In what fol-
lows, the characteristics of the environmental model are de-
fined in terms of the undisturbed, upper (lower) layer depths
h1 (h2) and respective fluid densitiesρ1 (ρ2), and the inter-
face displacement is denoted by the functionζ(x, t). Within
the Boussinesq approximation the layer densities enter only
through the reduced gravitỹg=g(ρ2−ρ1)/ρ1.

It is well established that the weakly-nonlinear evolution
of an interfacial gravity wave in the limit of two shallow
layers is described by the Korteweg-deVries (KdV) equation
(Grimshaw, 2002; Helfrich and Melville, 2006). It is
also quite well established that theoretical correspondence
with experiments and field data is significantly enhanced
when an extended (i.e., a quadratic-cubic) KdV equation is
employed (cf.,Grimshaw, 2002; Holloway and Pelinovsky,
2002; Helfrich and Melville, 2006). That is, the preferred
evolutionary model, when written in dimensional variables,
has the extended form
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ζt + c0(1 − α1ζ − α2ζ
2)ζx + β0c0ζxxx = 0. (1)

In the terminology adopted here this equation is referred to
as KdV2 whenα2 6=0, and as KdV1 whenα2=0. KdV1 is the
familiar and widely-studied equation where the nonlinearity
derives solely from the leading-order, nonlinear correction
to the linear long-wave phase speedc0. KdV2 represents
the case where both the first-order and second-order depen-
dencies (i.e., linear and quadratic terms in an asymptotic ap-
proximation for small amplitudes) of the long-wave phase
speed on wave amplitude are incorporated into the evolution
model. The coefficients in this equation have the following
representations in terms of the layer depths for the two-layer
environmental model:

c2
0 =

g̃h1h2

h1 + h2
=

1

2
g̃h(1 − ε2); (2)

α1 =
3

2

h2 − h1

h1h2
=

3ε

h(1 − ε2)
≡
α̃1

h
; (3)

α2 =
3

8

(h2 − h1)
2
+ 8h1h2

(h1h2)2
=

3

2

2 − ε2

h2(1 − ε2)2
≡
α̃2

h2
; (4)

β0 =
1

6
h1h2 =

1

6
h2(1 − ε2). (5)

These coefficients are given in two different forms, the latter
obtained by using the alternate representationsh1=h(1−ε),
h2=h(1+ε) for the layer depths withh equal to one-half the
fluid column depth andε=(h2−h1)/2h.

The fact that the coefficients of various terms in the evo-
lution Eq. (1) are available in terms of analytical expressions
that are easily calculated makes the two-layer model attrac-
tive for first-order estimates of wave properties. Neverthe-
less, a nagging question relating to any asymptotic approxi-
mation is the quantitative utility of representing a nonlinear
function in terms of only the leading terms of its asymptotic
expansion. This has been a persistent concern regarding the
application of KdV theory in contexts where there is a com-
pelling interest in assessing or comparing physical character-
istics at a quantitative level (e.g., front propagation speeds,
wave profile shapes, local wave-induced velocity shear and
mixing, wave-induced benthic stimulation, vertical and hor-
izontal particle transport by a solitary wave or long-wave
packet, etc.).

2 The case of equal layer depths

The first issue to be addressed is the evolution of the inter-
facial wave in the limiting case when the layer depths are
nearly equal, and when the wave amplitude becomes large.
Whenε=0 one observes from Eqs. (3) and (4) thatα1=0 and
α2=3/h2. In this limiting situation we have a special case of
KdV2 and, as noted originally byDjordjevic and Redekopp
(1978), both α2>0 andβ0>0 so that nonlinear steepening

augments the effect of linear dispersion and no equilibrium
solutions (e.g., solitary waves) are possible. Also, the evolu-
tion equation has the invarianceζ→−ζ and a waveform of
either polarity is possible. This is in contrast to the leading
order case for disparate depths (i.e., when|α1|�|α2ζ | and
the evolution is essentially described by KdV1). Equilibrium
solutions of KdV1 are possible whenα1ζ andβ0 have op-
posite signs, a condition implying that the wave polarity is
always such that the interface displacement is a wave of ele-
vation with respect to the shallowest layer.

The key point relating to this first issue is the sign (and
magnitude) of the higher-order terms in Eq. (1) whenε tends
toward zero, either from positive or negative values. That is,
althoughα1 tends to zero withε, what are the sign and mag-
nitude ofα3, etc., for small values of|ε|. The issue is readily
addressed through use of a recent result bySlunyaev et al.
(2003) where, based on earlier work byOstrovsky and Grue
(2003), an analytic expression for the fully-nonlinear, long-
wave propagation speed for a wave moving in one direction
was derived (see Eq. 45 inOstrovsky and Stepanyants, 2005):

c̃E =
cE

c0
= 1 + 3

h2 − h1

(h1 + h2)2
(h2 − h1 + 2ζ )×{√

(h1 − ζ )(h2 + ζ )

h1h2
−
h2 − h1 + 2ζ

h2 − h1

}

= 1 − 3(ε + ζ̃ )2 + 3ε(ε + ζ̃ )

√
1 − (ε + ζ̃ )2

1 − ε2
. (6)

Dimensionless variables (c̃E , ζ̃ )=(c/c0, ζ/h) are employed
in the second representation of the expression, termed the
“exact” value and denoted bỹcE . It is readily apparent, and
quite important to note, that Eq. (6) possesses the symmetry
propertyc̃E(ζ̃ ; ε)=c̃E(−ζ̃ ; −ε).

The dependence of the phase speedc̃E on wave amplitude
is displayed in Fig.1 for several ratios of the layer depths
(i.e., values ofε). Results are shown by solid lines in the
figure and correspond to waves with physically relevant po-
larities; that is, waves of depression (ζ̃<0) for ε>0 (h1<h2)
and waves of elevation (ζ̃>0) for ε<0 (h1>h2). One ob-
serves immediately that the phase speed is not a monotonic
function of the wave amplitude. The negative sign before the
α2 coefficient causes the long-wave phase speed to diminish
as the wave amplitude increases. It is only in the particular
case of equal layer depths that the phase speed is a monotonic
function of the amplitude, diminishing continuously from its
maximum value of unity (i.e., the linear value) as the ampli-
tude increases.

To aid the reader in relating values of the parameterε to
physical dimensions, some representative values for the dif-
ferent ratios of the layer depths are given in Table1. Included
in Table1are corresponding values ofζ̃1=ζ/h1=ζ̃ /(1−ε) to
provide a direct conversion of the dimensionless wave ampli-
tude in terms of the upper-layer depth (the controlling length
scale for long waves whenε<0). Further, values of̃cEm, the
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Fig. 1. The exact, fully nonlinear long-wave phase speed as a func-
tion of wave amplitude for various layer-depth ratios, including
comparison with two polynomial fits̃c2N andc̃3N.

maximum value of̃cE , and the corresponding wave ampli-
tude ζ̃m where the phase speed maximum occurs, are also
given in Table1. Expressions for these relations can be de-
rived from the expression in Eq. (6) and their analytical forms
are presented subsequently.

With Eq. (6) in hand, it is straightforward to develop the
weakly-nonlinear expansion of the phase speed to orders be-
yond the quadratic term (i.e., theα2 term) that appears in
Eq. (1) and is defined in Eq. (4). The expansion of Eq. (6) to
higher orders yields the extended expression

c̃E = 1 − α1ζ − α2ζ
2
− α3ζ

3
− α4ζ

4
− · · · . (7)

We draw particular attention to the expressions for the fol-
lowing higher-order terms:

α3 =
3

16

(h2 − h1)(h1 + h2)
2

(h1h2)3
=

3

2

ε

h3(1 − ε2)3
≡
α̃3

h3
; (8)

α4 =
15

128

(h2 − h1)
2(h1 + h2)

4

(h1h2)4
=

15

8

ε2

h4(1 − ε2)4

≡ α̃4/h
4. (9)

One notes that̃α1 and α̃3 (and furtherα̃i for odd i) always
carry the same sign, being proportional toε=(h2−h1)/2h.
However, and most significantly, all coefficientsα̃i vanish
whenh2=h1 for i≥3. Consequently, and as pointed out in
the note bySlunyaev et al.(2003), the expansion for the non-
linear phase speed for long-wave propagation terminates at
the α̃2 term when the layer depths are equal, and the fully-
nonlinear phase speed whenh2=h1 is given exactly by the
simple polynomial expression

c̃E = 1 − 3ζ̃ 2. (10)

Stated in another way, the well-established coefficient for the
cubic KdV equation (Eq.1 with α1=0) contains already the

Table 1. Environmental parameters and corresponding wave prop-
erties for a range of depth ratios.

ε h2/h1 ζ̃1 ζ̃c ζ̃max c̃Emax

0 1 ζ̃ −1/
√

3 0.000 1.000

1/5 3/2 5̃ζ/4 −0.696 −0.100 1.031

1/3 2 3̃ζ/2 −0.773 −0.164 1.091

1/2 3 2̃ζ −0.868 −0.241 1.232

3/5 4 5̃ζ/2 −0.923 −0.284 1.375

2/3 5 3̃ζ −0.957 −0.310 1.513

3/4 7 4̃ζ −0.998 −0.339 1.768

4/5 9 5̃ζ −1.019 −0.353 2.000

5/6 11 6̃ζ −1.032 −0.361 2.214

6/7 13 7̃ζ −1.040 −0.365 2.412

7/8 15 8̃ζ −1.046 −0.367 2.598

8/9 17 9̃ζ −1.050 −0.368 2.774

9/10 19 10̃ζ −1.052 −0.369 2.941

exact nonlinear steepening when the layer depths are equal.
Furthermore, and as seen in Fig.1 and noted in Table1,
we find the surprising result that the nonlinear propagation
speed diminishes to zero for wave amplitudes of either po-
larity approaching the limiting value|ζ̃c|=1/

√
3. This con-

sequence of waves becoming stagnant as the wave amplitude
increases was observed in simulations for shoaling of wind-
driven, long internal waves in a lake1, and was an initiatial
motivation for the study presented here. The critical values
ζ̃c (i.e., amplitudes wherẽcE=0) for other depth ratios are
included in Table1.

3 Strongly nonlinear long waves

The second and principal issue addressed pertains to the
range of validity of the weakly nonlinear representation of
the phase speed and, consequently, the specification of the
appropriate “extended” evolution equation for depth ratios
that are not near unity. When considering numerical simula-
tions of lowest-mode, long internal wave motion along a sin-
gle characteristic direction in shallow waters, the exact non-
linear expressioncE(ζ ) for the long-wave phase speed given
in Eq. (6) can be inserted in place of the quadratic approxima-
tion appearing in Eq. (1). However, it is of some interest to
have a polynomial approximation forcE(ζ ) in order to obtain
an evolution equation that potentially yields analytical (i.e.,
parameterized) expressions for equilibrium solutions, a hier-
archy of conserved densities, and yet possesses the capacity

1Unpublished report by T. Sakai and L. G. Redekopp.
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Fig. 2. Comparison of various truncations of the weakly-nonlinear
approximation for the long wave phase speed with its exact expres-
sion c̃E . (a) ε=1/3; (b) ε=2/3.

to reliably describe wave motions over a wide range of am-
plitudes.

3.1 Higher-order approximations

Toward the objective of generating a polynomial approxi-
mation for c̃E(ζ ; ε), the truncated version of the weakly-
nonlinear expansion of̃cE is first compared to the exact ex-
pression in terms of the following quantity:

SN (ζ̃ ; ε) =

1 −

N∑
k=1

α̃k(ε)ζ̃
k

c̃E(ζ̃ ; ε)
. (11)

The deviation ofSN (ζ̃ ; ε) from unity measures the error con-
tained in the different truncations of the power series expan-
sion, and provides a basis for defining the range of valid-
ity of the widely-used KdV1 and KdV2 versions defined by
Eq. (1). Values of the functionSN (ζ̃ ; ε) for several values
of ε are shown in Fig.2 for different choices of the trunca-
tion parameterN . It is clear that KdV2 (i.e., theS2 curve

in Fig. 2) extends considerably the range of wave amplitudes
over KdV1 (i.e., theS1 curve) where quantitative descrip-
tions are sought. Nevertheless, the approximate represen-
tation of the long-wave phase speed diverges quite rapidly
from the true nonlinear value at wave amplitudes that may be
well below those observed in a number of contexts. One al-
ternative to extending the weakly-nonlinear expansion ofc̃E
to be used in the evolution equation, without resorting to an
excessively high order truncation of the series representation
for c̃E(ζ̃ ; ε), is to seek some approximate summation of the
series. To this end, the power-series expansion of the expres-
sion in Eq. (6) has been developed to high order and arranged
in the following form:

c̃E = 1 − α̃1ζ̃ − α̃2ζ̃
2

−α̃3ζ̃
3
{

1 +
5

4
ψ̃ +

3

2
ψ̃2

+
7

4
ψ̃3

+ 2ψ̃4
+ · · ·

+
1

4
φ̃

[
1 +

7

2
ψ̃ + 8ψ̃2

+ 16ψ̃3
+ · · ·

]
+

1

8
φ̃2
[
1 +

45

8
ψ̃ + · · ·

]
+ · · ·

}
. (12)

The quantities (̃ψ , φ̃) appearing in this expression are defined
as

ψ̃ =
εζ̃

1 − ε2
; φ̃ =

ζ̃ 2

(1 − ε2)2
. (13)

Examination of this series suggests that any practical trunca-
tion of c̃E in polynonnmial form must include a term of order
ζ̃ 3. With this in view, and motivated by the desire to produce
an evolutionary model with polynomial nonlinearity, we pro-
pose using the “summed-series”c̃S for the nonlinear phase
speed

c̃S = 1 − α̃1ζ̃ − α̃2ζ̃
2
− α̃3S ζ̃

3, (14)

yielding the extended evolution equation, termed here as
KdV3S, with a quartic nonlinearity.

The coefficient α̃3S of the quartic nonlinear term in
Eq. (14) is a “modeled” version of the coefficient̃α3, a modi-
fication toα̃3 that is designed to capture in approximate form
the higher-order terms in Eq. (14) for c̃E(ζ̃ ; ε). The modeled
expression for̃α3S is

α̃3S =
3

2

ε

(1 − ε2)3
exp

{
−KS

|εζ̃S |

1 − ε2

}
×

exp

{
ζ̃ 2
S

(1 − ε2)2

}
, (15)

which is obtained via a “pivoting” of the summed portion of
the infinite series about a selected value of the wave ampli-
tude, noted here as̃ζS . The different series in Eq. (12) have a
structure reminiscent of the exponential function, albeit with
coefficients that clearly do not decay as 1/n!. A factorKS
is introduced to capture a single, “respectable summation”
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for the different series involving̃ψ terms. After some testing
of different parametric choices, a recommended set of values
for the two parameters arẽζS=1/3 andKS=7/3. Clearly
these choices are somewhat arbitrary, and alternate values
may yield a better fit for any given value ofε, yet we sug-
gest that the selected values yield a “respectable fit” encom-
passing a significant and physically-relevant range of depth
ratios. The modeled form̃cS(ζ̃ ; ε) of the phase speed for
two depth ratios over a range of wave amplitudes is shown
in Fig. 3 by the curve noted as KdV3S. Results in Fig.3
are presented as a ratio of a particular approximation for the
nonlinear phase speed divided by the exact valuec̃E . Hence,
departures from unity provide an immediate measure the rel-
ative merits of any modeled approximation, and the range
of amplitudes where its representation of the true nonlinear
steepening is reasonably captured. The modeled expression
c̃S , with its selected fit parameters, significantly extends the
range of amplitudes where a polynomial expression provides
a good representation for the nonlinear steepening effects
over that of KdV2, for example, but the fidelity of the fit
degrades as the value ofε increases toward unity.

3.2 A full-range, quadratic approximation – KdV2N

Another approach toward developing an evolution model ca-
pable of describing strongly nonlinear long waves with rea-
sonable fidelity, yet possessing polynomial nonlinearity is to
construct a quadratic fit to the fully-nonlinear relation for
c̃E(ζ̃ , ε). To this end certain characteristic points on the
curve representing the true function can be identified, and
then a limited polynomial is proposed that passes through
these points, thereby providing an approximate representa-
tion encompassing a wide range of wave amplitudes. The
specific points vital to characterizing the functionc̃E(ζ̃ , ε)
are the following: the intercept value (c̃E=1, ζ̃=0), the max-
imum value (̃cE=c̃Em, ζ̃=ζ̃m), and the zero-crossing value
(c̃E=0, ζ̃00). Using Eq. (6), the following quantities can be
derived:

c̃m = 1 + ε2Sc(ε),

Sc(ε) =
3

2

[
1 − ε2

+

√
1 − ε2

]−1
; (16)

ζ̃m = −εSm(ε),

Sm(ε) = 1 −
1

√
2

[
1 +

√
1 − ε2

]− 1
2
; (17)

ζ̃00 = −sgn(ε)S00(ε),

S00(ε) = |ε| +
1

√
3

[
1 +

ε2

2
−

1

2

√
8ε2 + ε4

] 1
2

. (18)

A quadratic approximation can only enforce passage through
two points on the true function. Since the approximation
should apply for all values ofε, includingε=0, we choose for
the two pairs of (̃cE , ζ̃ ), the intercept value (1,0) and the max-

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0.9

0.95

1

1.05

1.1

ζ~

c 
/ c

E

ε=1/2

KdV3N

KdV3

KdV2N KdV2

KdV1

KdV3S

(a)

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0.9

0.95

1

1.05

1.1

ζ
~

c 
/ c

E

ε=3/4

KdV3N

KdV3

KdV2N KdV2

KdV1KdV3S

(b)

~
  ~

~
  ~

Fig. 3. Comparison of the various polynomial approximations for
the phase speed underlying the different evolution models.(a)
ε=1/2; (b) ε=3/4.

imum value (̃cEm, ζ̃m). This leads to the following quadratic
fit, termedc̃2N ,

c̃2N = 1 − κ̃1ζ̃ − κ̃2ζ̃
2, (19)

where the coefficients̃κ1 andκ̃2 have the values

κ̃1 = 2ε
Sc(ε)

Sm(ε)
, (20)

κ̃2 =
Sc(ε)

S2
m(ε)

. (21)

This approximate representation for the nonlinear, long-wave
phase speed is plotted on the right-hand portion of Fig.1,
shown by the dashed lines, to exhibit its correspondence
with the true function. By construction, it matches the curve
for ε=0 exactly, and its deviation from the true function in-
creases for increasing values ofε (i.e., disparate layer depths)
and at higher amplitudes. The error is depicted for two val-
ues ofε by the curve noted KdV2N in Fig.3. This quadratic
fit clearly increases the range of wave amplitudes beyond
KdV2, the weakly nonlinear quadratic approximation, but it
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does not provide advantages over KdV3S except that it is a
lower order polynomial approximation.

3.3 A full-range, cubic approximation – KdV3N

Examination of the quadratic fit exhibited on the right-hand
side of Fig.1shows that the fidelity of the quadratic represen-
tation for c̃E(ζ̃ ; ε) degrades significantly at large amplitudes
and higher values ofε, and that a reasonably faithful approx-
imation requires at least a polynomial of cubic order. To this
point, we propose a cubic approximation that, in addition to
passing through the points included in defining the quadratic
fit (Eq. 19), includes enforcement of the zero-crossing value
(c̃E=0, ζ̃00). This leads to the approximate relation, denoted
by c3N ,

c̃3N = 1 − γ̃1ζ̃ − γ̃2ζ̃
2
− γ̃3ζ̃

3, (22)

where the coefficients̃γi are given by the following functions
of ε:

γ̃1 =
ε

S00

{
Sc

Sm
(2S00 + |ε|Sm)

−|ε|
S2
m(1 + ε2Sc)

(S00 − |ε|Sm)2

}
, (23)

γ̃2 =
1

S00

{
Sc

S2
m

(S00 + 2|ε|Sm)

−2|ε|
Sm(1 + ε2Sc)

(S00 − |ε|Sm)2

}
, (24)

γ̃3 = sgn(ε)
Sc

S00S2
m

{
1 −

S2
m(1 + ε2Sc)

Sc(S00 − |ε|Sm)2

}
. (25)

This cubic fit is shown by the dash-dot curves on the left-
hand side of Fig.1. The match of this cubic fit with the true

function appears remarkably good. The ratio of this approxi-
mation to the true function is depicted by the curves denoted
KdV3N in Fig. 3. The reader will note that the ratiõc3N/c̃E
does not pass through the zero-crossing pointζ̃00. This oc-
curs because the cubic approximation cannot enforce a si-
multaneous matching of the value of the functions and their
slopes at the zero-crossing point, and consequently the ra-
tio is necessarily finite at̃ζ00. However, in order to portray
the high fidelity of the cubic approximation over the whole
range of relevant wave amplitudes we present the difference
between these functions1c̃3NE (defined as the difference
c̃3N − c̃E) in Fig. 4 for a wide range of depth ratios.

3.4 A full-range, cubic approximation with nonlinear dis-
persion – KdV3Nβ

Thus far the proposed models for strongly nonlinear evolu-
tion have neglected nonlinear dispersive effects. Following
Ostrovsky and Grue(2003), nonlinear dispersion can be in-
corporated, at least in a modeling sense, by replacing the
fixed ambient depths of the two layers with their local val-
ues in the linear expression for the first dispersive correction,
and by replacing the constant value of the linear, long-wave
phase speedc0 by its nonlinear, amplitude-dependent expres-
sion c̃E(ζ̃ ). That is, the fully-nonlinear evolution of long
waves along a single characteristic can be written as

ζt + c0c̃E(ζ̃ )ζx + β0c0

(
β̃(ζ̃ )c̃E(ζ̃ )ζxx

)
x

= 0, (26)

with c̃E given by Eq. (6) andβ̃ given by

β̃(ζ̃ ) =
(h1 − ζ )(h2 + ζ )

h1h2
=

1 − (ε + ζ̃ )2

1 − ε2
. (27)

The functional dependence of the productD̃E=β̃c̃E on the
local displacement̃ζ is somewhat complicated, having the
form shown in Fig.5. As argued further in the next sec-
tion, it is of some interest to representD̃E by an approximate
quadratic dependence onζ̃ . This objective is readily accom-
plished by constructing a quadratic form that passes through
the intercept value (̃DE=0, ζ̃=0) and the maximum value
D̃E(ζ̃Dm)=D̃Em of the functionD̃E . To that end we propose
the approximate form for the nonlinear dispersive term

D̃E(ζ̃ ) = β̃(ζ̃ )c̃E(ζ̃ )

' D̃(ζ̃ ) = Dm

{
1 −

(ζ̃ − ζ̃Dm)
2

d2
m

}
. (28)

One can readily verify that excellent approximations for the
“fit” parameters (Dm, ζ̃Dm , dm) are:

Dm =
1 + ε2

1 − ε2
, ζ̃Dm = −

3

5
ε, dm =

3
√

2

10

√
1 + ε2. (29)

This quadratic approximatioñD is compared with the exact
relationD̃E on the left half of Fig.5.
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The evolution equation employing Eq. (22), and when in-
corporating the quadratic approximation for the proposed
nonlinear dispersive term Eq. (28) in accordance with the
extended form put forward in Eq. (26), is referred to here
as KdV3Nβc. We note, however, and as is readily evident
from Fig. 5, both the functionD̃E or its approximationD̃
become negative at large amplitudes. The sign of the dis-
persive term, therefore, may pass through zero and change
sign as the local displacement becomes large. As an attempt
to avoid this deficiency in the KdV3Nβc model, we propose
an alternate approximate form for the nonlinear dispersive
effect. This alternate form simply employs a constant value
c̃E=1 in Eq. (28), since it is the behavior of̃cE that drives the
value ofD̃E toward zero as the amplitude increases. Hence,
the functional form forD̃ is given simply by the expression in
Eq. (27), a form which is exhibited on the right half of Fig.5.
This approximation for the nonlinear dispersion effect yields
an evolution model denoted here as KdV3Nβ1.

4 Comparison of evolution models

A hierarchy of evolutionary models belonging generally to
the KdV family has been set forward in the preceding sec-
tion, each with a differing potential for describing strongly-
nonlinear wave motions. In this section we seek to provide
bases for discriminating between possible advantages or lim-
itations of the various models by computing several solution
properties of these models.

The first solution property to be compared is that of iso-
lated solitary wave solutions admitted by the equations. For
purposes of this discussion, we represent the extended ver-
sion of KdV equation in the general form as given in Eq. (26).
The proposed, nonlinear characterization of the dispersive
term as given in Eq. (26) is included and, as noted earlier,
the dimensionless amplitude isζ̃=ζ/h. A solitary wave is a
traveling wave solution given functionally by an expression
of the form

ζ̃ (x̃, t̃ ) = Z̃(X̃) = Z̃

√h2

β0
(x̃ − Ṽ t̃ )

 . (30)

In this expression we employ the definitions
(x, t)=(hx̃, ht̃/c0), and Z̃(X̃) satisfies the nonlinear
eigenvalue problem

d2Z̃

dX̃2
=

1

D̃E(Z̃)

{
ṽZ̃ − Ũ (Z̃)

}
≡ R(Z̃). (31)

The eigenvalueṽ=Ṽ−1 (where the dimensional solitary
wave speed is given byV=c0Ṽ ) is that function of the wave
amplitude such that̃Z(X̃) satisfies homogeneous boundary
conditions Z̃(+∞)=Z̃(−∞)=0. The functionD̃E(Z̃) is
given in Eq. (28), while Ũ (Z̃) is given by the relation

Ũ (Z̃) =

∫ Z̃

0

{
c̃E(ζ̃ )− 1

}
dζ̃ . (32)
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Fig. 5. Comparison of different models for nonlinear effects of dis-
persion.

The eigenvalue corresponding to solitary wave solutions can
be obtained directly by multiplying Eq. (32) by dZ̃/dX̃ and
writing the equation as

d

dX̃

1

2

(
dZ̃

dX̃

)2

−

∫ Z̃

R(θ)dθ

 = 0. (33)

SincedZ̃/dX̃=0 at the extremum of the solitary wave (i.e.,
crest or trough), one obtains directly the following expression
for the eigenvaluẽv in terms of the solitary wave amplitude
Ã:

ṽ =

∫ Ã

0
Ũ (Z̃)/D̃E(Z̃)dZ̃∫ Ã

0
Z̃/D̃E(Z̃)dZ̃

. (34)

We consider several cases of the eigenvalue relation given
in Eq. (34). First, we consider the case, termed KdVEβc,
with the exact nonlinear phase speed and the exact expres-
sion for D̃E(Z̃). The variation of the eigenvalue (alt., the
solitary wave speed) with wave amplitude, as computed from
Eq. (34), is presented in Fig.6 for the particular depth ratio
corresponding toε=2/3. This exact result is compared in
Fig. 6 with various alternate evolution models defined in the
previous section. Analytic expressions for the eigenvalue for
the different models are summarized in Appendix A. Fig.6
shows that the eigenvalue for KdV1 provides a reasonable
approximation for the speed of nonlinear wave features only
for wave amplitudes|ζ̃ |<0.1. Further, KdV2 provides a use-
ful approximation for wave amplitudes satisfying roughly
|ζ̃ |<0.4 (at this value ofε. For larger amplitude waves, one
of the higher-order approximations discussed here is needed
to give a faithful prediction of the wave speed. The reader
will also note that, with the exception of KdV1, all models
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Fig. 6. Comparison of the dependence of the eigenvalueṽ on soli-
tary wave amplitude forε=2/3.

yield a maximum value for the eigenvalue (alt., solitary wave
speed) at some intermediate amplitude. This point will be
addressed further in a subsequent paragraph.

The next solution component of the various proposed evo-
lution models that we compare is the profile of solitary
waves. Profiles for specified amplitudes obtained using dif-
ferent evolution models are shown in Fig.7 for the particu-
lar depth ratio given byε=2/3. As expected, profile forms
differ only marginally at low amplitudes, but significant dis-
parities emerge as the amplitude increases. At low ampli-
tudes the wave width diminishes with increasing amplitude
for all models, a result that holds uniformly for KdV1, as
is well known. However, as the amplitude increases (alt.,
as the degree of nonlinearity becomes increasingly signifi-
cant), all models with the sole exception of KdV1 manifest
a reversal in this trend of wave width increasing with wave
amplitude. In particular, the profile obtained using KdV2
becomes quite wide with a flat trough when the amplitude is
Ã=−0.47. This amplitude is just marginally below the limit-
ing amplitudeÃlim=−µ̃1/µ̃2=−0.47619· · · for KdV2. An
analytical expression for this limiting amplitude is obtained
in straightforward fashion from the functional relation for a
solitary wave solution of KdV2

Z̃(X̃) = Ã
1 − T 2

1 − bT 2
; T ≡ tanh(KX̃);

b = −
α̃2Ã

2α̃1 + α̃2Ã
. (35)

The limiting wave amplitude corresponds to that for which
the parameterb approaches the value of unity from below.

As evident in Fig.7, wave profiles for KdV2N and KdV3N
at an amplitude ofÃ=−0.6 are nearly coincident, but the
profile of the wave predicted by KdV1 is significantly more
narrow. This characteristic under-prediction of the width

of the profile by KdV1 for higher wave amplitudes is well-
known based on established results using KdV2 models (e.g.,
Evans and Ford, 1996; Lamb and Wan, 1998; Grimshaw,
2002; Holloway and Pelinovsky, 2002). However, the results
presented here suggest that the widening of the wave profile
is significantly over-estimated by KdV2. The widening effect
beyond that corresponding to KdV1 becomes significant only
at amplitudes in excess of the limiting value for KdV2. We
point out for emphasis that the amplitudeζ̃1 (i.e., the dimen-
sionless wave amplitude based on the controlling dimension)
for the particular case ofε=2/3 corresponding to the com-
puted profiles shown in Fig.7a is ζ̃1=−1.5 whenζ̃=−0.5,
and that the wave profile predicted by KdV1 is actually a
“not-so-unreasonable” approximation when compared with
the profile based on KdV3N at this large amplitude state.
The profile shown in the last panel of Fig.7a for an ampli-
tude ofÃ=−0.64 does not include data for KdV2N because
the amplitude exceeds the limiting value for this model. The
widening effect for KdV3N relative to KdV1 at this ampli-
tude is partially due to the fact that the amplitudeÃ=−0.64
is only slightly below the value of̃Alim for KdV3N atε=2/3.

As discussed above, the models excluding KdV1 possess
limiting amplitudes which, when approached from below,
define conditions where the wave profile broadens signifi-
cantly, even to the point where the profile approaches a front
separating two uniform states. This naturally introduces the
notion of conjugate states as introduced byBenjamin(1966),
and computed byTurner and Vanden-Broeck(1988) and de-
scribed in further detail byAmick and Turner(1986) and
by Evans and Ford(1996). Values of the limiting solitary
wave amplitudes for the models KdV2, KdV2N, KdV3N,
KdV3Nβ1, KdV3Nβc and KdVEβc are presented in Table2
for a range of depth ratios, and these limiting amplitudes
are compared with results of the conjugate state amplitude
computed using the theory ofAmick and Turner(1986). For
the special case of a two-layer stratification with a rigid up-
per surface, the environmental case under examination here,
Amick and Turner(1986) obtained an analytic solution for
the conjugate state. When the Boussinesq approximation is
invoked, and when their results are transposed in terms of the
non-dimensional variables used herein, the conjugate state is
defined simply by the relations

ζ̃cs = −ε; c̃2
cs =

1

1 − ε2
; ũ2

cs1 =
1

ũ2
cs2

=
1 − ε

1 + ε
. (36)

The quantitiesũcs1 and ũcs2, also listed in Table2, define
the velocities of the upper and lower layers behind the front,
as measured in a wave-fixed frame, respectively. These val-
ues provide a basis for evaluating the maximum shear (i.e.,
vortex sheet strength) at the interface when a wave reaches
its limiting amplitude. The value of this velocity difference
is important relative to estimating the potential for Kelvin-
Helmholtz instability and internal mixing to occur as the
wave passes.
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Fig. 7. Comparison of solitary wave profile described by various evolution models at different amplitudes:(a) wave forms forε=2/3 (left
six panels);(b) wave forms for different values ofε (right four panels).

Included in Table2 is a comparison of the speed̃ccs of
the “front” separating the conjugate states and the value of
the speed̃cE(ζ̃cs) of the phase speed (Eq.6) evaluated at the
amplitude of the conjugate state. These values are particu-
larly disparate for low values of the depth ratio parameterε,
a difference that deserves some explanation. The computa-
tion of the conjugate state is based on an integral theory that
requires only an evaluation of the pressure at the upstream
and downstream locations relative to the front. As such, it
makes no approximation regarding the pressure distribution
through the front, and accurately uses the appropriate hydro-
static pressure distribution asymptotically far away from the
front. On the other hand, the derivation of the phase speed
given in Eq. (6) has explicitly used the leading order approx-
imation for the pressure distribution in the limit of infinitely
long waves everywhere through the wave profile, namely a
hydrostatic distribution. This distinction naturally gives dis-
parate values of the wave speed, and this different representa-
tion of the pressure is especially apparent in the case of more
nearly equal layer depths. When the layer depths are widely
disparate, the front dynamics implicit in the conjugate state
solution are more nearly hydrostatic.

We return now to the eigenvalue data exhibited in Fig.6,
and inject an observation regarding the existence of limit-
ing amplitudes of stationary solutions (e.g., solitary waves)
of the various evolution models. It was noted following
Eq. (35) that the amplitude corresponding to the maximum
of the eigenvalue for KdV2 and KdV2N coincided with the
condition that the parameterb=1, the condition for Eq. (35)
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β
c
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Fig. 8. Comparison of solitary wave profile described by KdVEβc
and Choi-Camassa’s model forε=2/3.

to describe an isolated front. In fact, our computations reveal
that the limiting amplitude condition for all evolution mod-
els corresponds to that amplitude for which the eigenvalue
reaches a maximum. Of course, the eigenvalue for KdV1 has
no local maximum and, therefore, KdV1 does not possess a
limiting amplitude. For this reason, a mark denoting the peak
of the eigenvalue is placed on the curves in Fig.6, points that
correspond to the limiting amplitudes for each of the models
represented in the figure.

It is important to note that an exact, stationary solution
of the Euler equations for an isolated (i.e., solitary) wave at
the interface between two layers of homogeneous fluid was
constructed byChoi and Camassa(1999). For the purpose
of comparing their exact solution with stationary solutions
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Table 2. Limiting wave amplitudes for different evolution models, and comparison with the theory of conjugate states.

KdV2 KdV2N KdV3N KdV3Nβ1 KdV3Nβc KdVEβc conjugate state

ε ζ̃max ζ̃max ζ̃max ζ̃max ζ̃max ζ̃max ζ̃cs ˜cE |ζcs ˜ccs ũcs1 ũcs2

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000

1/5 −0.196 −0.199 −0.200 −0.200 −0.200 −0.200 −0.200 1.000 1.021 0.817 1.225

1/3 −0.314 −0.328 −0.331 −0.333 −0.333 −0.333 −0.333 1.000 1.061 0.707 1.414

1/2 −0.429 −0.482 −0.492 −0.497 −0.497 −0.498 −0.500 1.000 1.155 0.577 1.732

2/3 −0.476 −0.620 −0.643 −0.657 −0.657 −0.660 −0.667 1.000 1.342 0.447 2.236

3/4 −0.457 −0.677 −0.712 −0.733 −0.732 −0.739 −0.750 1.000 1.512 0.378 2.646

4/5 −0.424 −0.706 −0.749 −0.777 −0.775 −0.786 −0.800 1.000 1.667 0.333 3.000

5/6 −0.390 −0.721 −0.771 −0.805 −0.802 −0.816 −0.833 1.000 1.809 0.302 3.317

6/7 −0.359 −0.729 −0.785 −0.823 −0.820 −0.837 −0.857 1.000 1.942 0.277 3.606

7/8 −0.332 −0.734 −0.794 −0.837 −0.833 −0.853 −0.875 1.000 2.066 0.258 3.873

8/9 −0.308 −0.737 −0.800 −0.846 −0.842 −0.865 −0.889 1.000 2.183 0.243 4.123

9/10 −0.287 −0.738 −0.804 −0.854 −0.849 −0.874 −0.900 1.000 2.294 0.299 4.359

of the evolution models proposed here, the wave profiles
for moderate amplitude waves of KdVEβc model are com-
pared with the corresponding Choi-Camassa (C-C) wave for
ε=2/3 in Fig. 8. It is seen that the KdVEβc profile slightly
underestimates the width of the wave profile, a consequence
(we conjecture) of inadequacies of the approximate represen-
tation of nonlinear dispersive effects in Eqs.(26) and (27). In
regard to the speed and amplitudes of the limiting wave, the
Choi-Camassa predictions are necessarily identical with the
conjugate state values given in Table2.

To compare the solitary wave profiles predicted by the var-
ious evolution models at a further level of detail, we evaluate
the spatial locationX̃i of the inflection point of the profile,
the wave amplitudẽζi at the inflection point, and the wave
slope ζ̃

X̃i
at the inflection point. These data are presented

in Table3 for profiles computed using the depth ratio corre-
sponding toε=2/3.

Data do not appear in some columns because the selected
amplitude in the leading column exceeds the limiting ampli-
tude for the particular model. The wave width, as represented
by the location of the inflection point̃Xi , diminishes with in-
creasing wave amplitude in all models when the amplitude
is small, but most emphatically for KdV1. In the models
other than KdV1, the width begins to increase with increas-
ing wave amplitude beyond modest amplitudes of the order
ζ̃0≈−0.3. The increase in wave width becomes quite rapid
as these profiles approach their limiting amplitudes.

The last column of Table3 contains corresponding data
obtained from Choi and Camassa’s exact, stationary solu-
tion. One observes that KdV3Nβc model under estimates the
wave width by about 7% at an amplitude ofζ̃0=0.4, but the
wave speeds are essentially identical. Hence, the KdV3Nβc

model, for example, provides a nonlinear evolution equation
for moderately large waves in which the position, phase rela-
tions and characteristics of individual wave profiles are rep-
resented with quite high fidelity. For point of reference, the
valueζ̃0=0.4 corresponds to a wave amplitudeζ̃1=−1.2 for
ε=2/3 (h2=5h1).

A third level of comparison of the different models is
that of spatio-temporal evolution from a fixed initial condi-
tion. For this purpose, an initial condition corresponding to
a “non-equilibrium” form of a KdV2 solitary wave was cho-
sen. That is, the profile defined by Eq. (35) was used, and
the parameter set (Ã=−1/2 , b=3/4,K=1/4) was purpose-
fully selected in order to yield more than one leading solitary
wave in the asymptotic state for KdV2 and the selected depth
ratio ε=2/3. The result of a sequence of simulations on the
semi-infinite line are shown in Fig.9 where evolutionary data
are shown for a fixed time in a spatial coordinate frame that
moves with the linear, long-wave phase speedc0. A further
comparison of the evolution leading to the wave forms shown
in Fig. 9 is obtained by comparing the temporal variation of
the amplitude of the leading wave in the packet, and its spa-
tial position, as a function of time. These results are plotted
in Fig. 10.

Another point of interest regarding strongly nonlinear evo-
lution in realistic environments pertains to the propagation in
a wave guide of variable depth. The effect of variable depth
in the KdV1 or KdV2 models for the two-layer stratification
involves the addition of the term1

2ζdc0/dx in Eq. (1). A
model that incorporates the effect of strong nonlinearity can
be postulated by extending the weakly-nonlinear model to
contain the following generalization of Eq. (26):
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Table 3. Comparison of solitary wave inflection point data for different evolution models.

KdV1 KdV2 KdV2N KdV3N
ζ̃0 X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i

−0.1 3.80 −0.067 0.013 4.32 −0.066 0.012 4.36 −0.066 0.012 4.31 −0.066 0.012

−0.15 3.10 −0.100 0.024 3.81 −0.098 0.021 3.77 −0.098 0.021 3.74 −0.098 0.021

−0.2 2.69 −0.133 0.038 3.62 −0.128 0.030 3.47 −0.130 0.031 3.46 −0.130 0.031

−0.25 2.40 −0.167 0.053 3.60 −0.158 0.040 3.32 −0.161 0.041 3.34 −0.160 0.041

−0.3 2.20 −0.200 0.069 3.76 −0.185 0.048 3.28 −0.191 0.051 3.31 −0.190 0.051

−0.35 2.03 −0.233 0.087 4.12 −0.208 0.055 3.33 −0.219 0.061 3.36 −0.218 0.061

−0.4 1.90 −0.267 0.107 4.87 −0.226 0.060 3.47 −0.245 0.070 3.51 −0.245 0.070

−0.45 1.79 −0.300 0.127 6.74 −0.237 0.063 3.73 −0.269 0.079 3.75 −0.268 0.077

−0.47 1.75 −0.313 0.136 9.42 −0.238 0.064 3.88 −0.277 0.081 3.89 −0.277 0.080

−0.5 1.70 −0.333 0.149 – – – 4.18 -0.288 0.084 4.16 −0.288 0.084

−0.55 1.62 −0.367 0.172 – – – 4.99 -0.302 0.088 4.83 −0.304 0.088

−0.6 1.55 −0.400 0.196 – – – 7.09 -0.309 0.090 6.16 −0.313 0.091

−0.64 1.50 −0.427 0.216 – – – – – – 10.8 −0.316 0.092

−0.65 1.49 −0.433 0.221 – – – – – – – – –

Table 3. Continued.

KdV3Nβ1 KdV3Nβc KdVEβc C-C
ζ̃0 X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i

−0.1 4.74 −0.065 0.011 5.56 −0.063 0.010 5.33 −0.063 0.011 5.20 −0.064 0.010

−0.15 4.27 −0.096 0.020 5.19 −0.093 0.017 4.98 −0.093 0.018 4.90 −0.095 0.017

−0.2 4.07 −0.126 0.028 5.05 −0.122 0.024 4.88 −0.122 0.025 4.86 −0.124 0.024

−0.25 4.02 −0.155 0.037 5.04 −0.150 0.031 4.89 −0.150 0.032 4.96 −0.153 0.031

−0.3 4.07 −0.183 0.045 5.11 −0.177 0.038 4.98 −0.176 0.039 5.17 −0.179 0.037

−0.35 4.20 −0.209 0.053 5.26 −0.203 0.044 5.13 −0.202 0.045 5.48 −0.205 0.042

−0.4 4.42 −0.234 0.060 5.48 −0.228 0.050 5.36 −0.227 0.051 5.89 −0.228 0.047

−0.45 4.75 −0.256 0.066 5.82 −0.251 0.055 5.69 −0.249 0.056 6.45 −0.249 0.051

−0.47 4.93 −0.264 0.068 5.99 −0.259 0.057 5.86 −0.258 0.058 6.73 −0.256 0.052

−0.5 5.26 −0.275 0.071 6.31 −0.271 0.059 6.16 −0.270 0.061 7.22 −0.266 0.054

−0.55 6.04 −0.290 0.075 7.09 −0.287 0.062 6.89 −0.286 0.064 8.34 −0.280 0.057

−0.6 7.44 −0.300 0.077 8.50 −0.299 0.065 8.19 −0.298 0.067 10.2 −0.290 0.058

−0.64 10.3 −0.303 0.078 11.4 −0.303 0.065 10.7 −0.303 0.067 13.3 −0.294 0.059

−0.65 12.4 −0.304 0.078 13.6 −0.304 0.066 12.4 −0.304 0.068 14.9 −0.295 0.059

ζt +
1

2

∂c

∂x
ζ + c0c̃E(ζ̃ )ζx + β0c0(β̃(ζ̃ )c̃E(ζ̃ )ζxx)x = 0, (37)

In this equation we intend that evaluation of the rarefaction

term∂c/∂x involves differentiation of the nonlinear expres-
sion for the phase speed only with respect to explicit depen-
dence on the spatial coordinatex. That is, considering the
non-homogeneity to arise solely through the functionε(x̃),
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Fig. 9. Comparison of spatial wave forms at a fixed time as derived
from various models using the same initial condition (ε=2/3).

and ignoring the implicit dependence through the amplitude
function ζ̃ (x, t). In this case, for example, the rarefaction
term for the generalized equation (Eq.26) becomes

1

2

∂c

∂x
=

1

2

{
c̃E(ζ̃ , ε)

dc0

dx
+ c0

∂c̃E

∂ε

dε

dx

}
. (38)

In order to exhibit the effect of nonlinearity entering via this
term, the initial value problem was solved using a depth
variation whereε varied gradually (i.e., over a distance
of roughly 200(=2H) upper-layer depths) from its initial
(upstream) value ofε1=3/4 to its shelf (downstream) value
ε2=1/3 according to the relation
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Fig. 10. Change in(a) leading wave front amplitudẽAf and(b) its
position (̃xf−t̃) as a function of time (ε=2/3).

ε(x̃) =
ε1 + ε2

2
−
ε1 − ε2

2
tanh

(
x̃

H

)
. (39)

The initial condition in this simulation was the same as that
used for the simulations presented in Fig.9. Simulations
were performed for both the weakly-nonlinear version KdV2
and for the strongly nonlinear version KdV2N. Waveforms
obtained at several times are compared in Fig.11. As ex-
pected, the KdV2N waveform travels faster, and has a nar-
rower leading solitary wave since the limiting amplitude for
KdV2 is smaller, resulting in a more extended and flattened
trough. The waveforms appearing at a late time on the shelf
are shown in Fig.12.

It is apparent that a larger number of solitons are formed
for KdV2N on the shelf region, although the trailing wave-
shelf has not yet fully evolved to a point when the solitary
wave packet has separated from the dispersive tail. A curious
structure, particularly in the KdV2 waveform, is the occur-
rence of two localized soliton pairs, as seemingly a ‘phase-
locked’ state, following the lead wave. A similar sort of wave
pair seems to be manifest at earlier times (e.g.,t̃=60) in the
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Fig. 11. Comparison of shoaling wave forms for KdV2 and KdV2N for evolution from a common initial condition.

KdV2N waveform, and has a remnant form even att̃=1800.
We speculate that the formation of this pair-like form occurs
when the lead wave with near-limiting amplitude undergoes
deformation while passing over the topographic variation.
The individual entities in this pair-like form have (nearly)
identical amplitudes and propagate with (nearly) fixed prox-
imity to each other.

5 Concluding remarks

Several models have been proposed for the evolution of
lowest-mode, internal wave disturbances based on the ex-
act relation for the phase speed for nonlinear wave propa-
gation along a single characteristic in the long wave (hydro-
static) limit. The proposed models have been examined for
the purpose of providing a reliable, quantitative description
of the evolutionary character of waves in a two-layer strati-
fication with arbitrary amplitude. The need for models valid
for strongly nonlinear evolution is readily seen when consid-
ering several documented cases. For example, waveforms
with amplitudes (̃ζ1≈−0.8, ζ̃≈−0.32) in an environment
with ε=0.59 have been reported byPingree and Mardell
(1985); waveforms with (̃ζ1≈−2.1, ζ̃≈−0.32) in an environ-
ment withε=0.85 have been reported byTrevorrow(1998);
and waveforms with (̃ζ1=−4, ζ̃=−0.4) in an environment
with ε=0.91 have been reported byStanton and Ostrovsky
(1998). In weakly nonlinear theory the asymptotic expan-
sion presupposes that the characteristic amplitude parameter
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Fig. 12.Comparison of shoaling wave forms for KdV2 and KdV2N
at t̃=1800.

|ζ̃1|�1. In light of these observations, the need for reliable
models for strongly nonlinear evolution is indeed obvious.

We reiterate one of the motivations for this work. Al-
though the work ofChoi and Camassa(1999) allows one to
quite readily compute exact, equilibrium (stationary) solu-
tions for isolated waves, there is a need for evolution models
which allow rapid simulation for either predictive or interpre-
tive purposes. It is our thesis that a “simple” two-layer model
has significant advantages for these purposes. To this end, we
include in Appendix B some calculations of the KdV2 model
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Table 4. Properties of solitary waves of KdVEβc for environments having deep lower layers.

ε=4/5 ε=7/8 ε=9/10
ζ̃0 X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i
X̃i ζ̃i ζ̃

X̃i

−0.1 4.59 −0.062 0.013 4.34 −0.059 0.015 4.33 −0.058 0.015

−0.2 4.49 −0.117 0.029 4.56 −0.111 0.031 4.69 −0.108 0.031

−0.3 4.70 −0.168 0.044 4.93 −0.159 0.045 5.15 −0.155 0.045

−0.4 5.03 −0.217 0.057 5.34 −0.205 0.058 5.62 −0.199 0.057

−0.5 5.49 −0.262 0.069 5.81 −0.248 0.069 6.12 −0.241 0.068

−0.6 6.22 −0.302 0.078 6.42 −0.288 0.078 6.74 −0.280 0.077

−0.7 7.68 −0.330 0.084 7.36 −0.322 0.085 7.62 −0.314 0.083

−0.8 – – – 9.53 -0.343 0.090 9.39 −0.338 0.088

for a continuously stratified thermoclinic layer of finite thick-
ness, and then provide suggested values of the layer depths
to be used in an equivalent two-layer model.

Examination of Figs.3 and4 suggests that KdV2 would
considerably underestimate the nonlinearity for all cases
listed above. By contrast, the KdV2N evolutionary model
could be expected to yield a respectably satisfactory degree
of correspondence between model results and the level of
|ζ̃ | values associated with these observations. However, for
cases where amplitudes are such that|ζ̃ |>0.5−0.6, KdV3N
will be required to realize a reasonable fidelity between
model results and measured data. Advantages of KdV2N
include analytical expressions for both the form of a soli-
tary wave and its eigenspeed, the same advantages associ-
ated with KdV1 and KdV2. Hence, wave properties can be
readily computed and compared with laboratory or field data,
and simple scaling laws for these waves are available. Fur-
thermore, KdV2N provides a quite respectable approxima-
tion for the limiting amplitude, particularly in comparison to
KdV2, as seen in Table2. Of course, an analytical expression
for solitary wave solutions of KdV3N is certainly expected
to be accessible as well, although preliminary efforts on our
part have not yet yielded success in this venture. Hence, the
argument in favor of KdV2N over KdV3N on the basis of
possessing a solitary wave solution, with its specific scaling
relationships, is not entirely compelling.

Comparing data for solitary wave profiles for KdV2N and
KdV3N contained in Table3, it is clear that the difference
between the indicated values of the width of the wave pro-
file only becomes significant as the limiting amplitude is ap-
proached. On the other hand, comparison of profile widths
for KdV3N with those for KdV3Nβ1 and KdV3Nβc, it is
seen that nonlinear dispersive effects serve to increase the
wave width significantly, with the exception being when
wave amplitudes are near their limiting value for a specific
model. With this effect of nonlinear dispersion in view, it
is worth noting that, although no data have been included

herein, one could readily compute corresponding properties
for such cases as KdV2Nβ1 and KdV2Nβc. Furthermore,
since physical environments with relatively deep lower lay-
ers (i.e., values ofε approaching unity) are not uncommon,
data pertaining to KdVEβc for several depth ratios are pre-
sented in Table4.

Appendix A

The eigenvalue relation for case KdV3Nβc is, after carrying
through the evaluation of the integral terms in Eq. (34),

ṽ = Ṽ − 1 = −
1

JV

{
µ̃1

2
Jµ1 +

µ̃2

3
Jµ2 +

µ̃3

4
Jµ3

}
.

The variousJk terms in this relation are defined as

JV = −
dm

2

{
(1 − P) ln

(
1 + S

1 − P

)
+(1 + P) ln

(
1 − S

1 + P

)}
;

Jµ1 = −d2
m(P + S)+

d2
m

2

{
(1 − P)2 ln

(
1 + S

1 − P

)
−(1 + P)2 ln

(
1 − S

1 + P

)}
;

Jµ2 = −
d3
m

2

{
(S2

− P 2)+ 6dm(S + P)

+(1 − P)3 ln

(
1 + S

1 − P

)
+ (1 + P)3 ln

(
1 − S

1 + P

)}
;

Jµ3 = −d4
m

{
(1 + 6d2

m)(P + S)+ 2dm(S
2
− P 2)

+
1

3
(P 3

+ S3)

}
+
d4
m

2

{
(1 − P)4 ln

(
1 + S

1 − P

)
−(1 + P)4 ln

(
1 − S

1 + P

)}
.
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In writing these expressions we have employed the definition

P =
ζ̃Dm

dm
; S =

ζ̃ − ζ̃Dm

dm
.

In a corresponding manner, the relevantJk terms for
KdV3Nβ1 are, upon using the definitionS1=ζ̃1+ε,

JV = −
1

2

{
(1 − ε) ln

(
1 + S1

1 + ε

)
+(1 + ε) ln

(
1 − S1

1 − ε

)}
;

Jµ1 = −ζ̃ +
1

2

{
(1 + ε)2 ln

(
1 + S1

1 + ε

)
−(1 − ε)2

(
1 − S1

1 − ε

)}
;

Jµ2 = 3εζ̃ −
1

2
(S2

1 − ε2)−
1

2

{
(1 + ε)3 ln

(
1 + S1

1 + ε

)
+(1 − ε)3 ln

(
1 − S1

1 − ε

)}
;

Jµ3 = −(1 + 6ε2)ζ̃ + 2ε(S2
1 − ε2)

−
1

3
(S3

1 − ε3)+
1

2

{
(1 + ε)4 ln

(
1 + S1

1 + ε

)
−(1 − ε)4 ln

(
1 − S1

1 − ε

)}
.

Appendix B

We present calculations aimed at guiding the formation of an
equivalent two-layer model to characterize long wave prop-
agation in a wave guide which contains a thermoclinic layer
of finite thickness. For this purpose we consider an environ-
mental model where a single thermoclinic layer with con-
stant Brunt-V̈ais̈alä frequency having thicknesshm is posi-
tioned in a wave guide such that the distance from the upper
surface to the mid-depth of the stratified layer ish10. The
total depth of the wave guide ish10+h20, h20 being the dis-
tance from the middle of the thermocline to the bottom of the
wave guide. The goal is to specify the equivalent upper-layer
(mixed layer) depthhequiv=h1 in a two-layer environmental
model with total fluid depthh1+h2=h10+h20 for different
thicknesseshm of the thermoclinic layer.

Several different criteria for defining an equivalent two-
layer model can be proposed. To establish conditions
for an equivalent model, the value of the reduced grav-
ity g̃=g(ρ1−ρ2)/ρ1 must be specified. We takeρ1 and
ρ2 to be the epilimnion and hypolimnion densities in
the continuously-stratified environment. Thus, within the
Boussinesq approximation, the value ofg̃ is equal to the in-
tegral of the Brunt-V̈ais̈alä frequency across the depthhm of
the stratified layer. With̃g fixed, one further condition must
be prescribed to fix the remaining free parameter – the equiv-
alent upper-layer depthhequiv (equal toh1 in the text of this
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Fig. B1. Equivalent upper layer depth based on matching phase
speed of solitary wave as a function of wave amplitude.

paper). We present calculations here based on two different
options for this purpose, and then compare the consequent
values ofhequiv. First, we constrain the speed of lowest-
mode, isolated (solitary) wave features in the continuously-
stratified case to correspond with those in an equivalent two-
layer model. This criterion forces a correspondence between
the location of waves relative to their source, and also phase
relationships between different waves in a packet. Second,
we choose to match the peak isopycnal displacement (wave
amplitude) in the continuously-stratified model with the in-
terface displacement in the equivalent two-layer model.

It is immediately clear that each of these bases for equiva-
lence depend on the wave amplitude. In order to establish
equivalence, therefore, it seems that comparable approxi-
mations for nonlinear and dispersive effects should be em-
ployed for each environmental model. However, since a
fully-nonlinear representation of the nonlinear phase speed
comparable to Eq. (6) is not available for the continuously-
stratified case, we choose to use the KdV2 description of
wave evolution for both environments. For the two-layer
model we employ the relations given by Eqs. (1–5) in the
text, and for the continuously-stratified wave-guide we use
the KdV2 description as presented byGrimshaw(2002).

Results for the upper-layer depth for the equivalent two-
layer model based on the criterion of matching the nonlin-
ear phase speeds of equal-amplitude solitary waves are given
in Fig. B1 for two different cases, depth ratios correspond-
ing to h10/h20=1/3 (ε=1/2) andh10/h20=1/5 (ε=2/3).
Solitary waves in environments with these depth ratios are
waves are of depression (alt., waves of elevation with respect
to the shallower upper layer). Values ofhequiv andA pre-
sented in Fig.B1 are scaled byh10, the depth of the mid-level
of the thermoclinic layer. One observes that the equivalent
upper-layer depth is less than the mid-level depthh10, and
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isopycnal displacement as a function of wave amplitude.

the reduction in equivalent upper-layer depth increases as the
thicknesshm of the thermoclinic layer increases. Further,
the variation ofhequiv with wave amplitude is much weaker
when the layer depths are less disparate. In fact, in the deeper
case withh10/h20=1/5, the results show that thehequiv>h10
when the wave amplitude becomes large (i.e., larger nega-
tive values). Of course, if the results shown in Fig.3 for the
two-layer model are also indicative of corresponding results
for the continuously-stratified case, the utility of the KdV2
approximation should properly be restricted to amplitudes
Ã=|A/h|<0.3.

Figure B2 presents results for the equivalent two-layer
depth hequiv based on the alternate criterion of matching
the peak isopycnal displacement. To realize correspond-
ing isopycnal displacements, the value ofhequiv is found, in
contrast to results shown in Fig.B1, to be greater than the
mid-thermocline depthh10. Furthermore, the value ofhequiv
based on this criterion exhibits quite sensitive amplitude de-
pendence, withhequivdecreasing toward the mid-thermocline
depth as the wave amplitude increases.

This brief consideration of issues underlying the selection
of an equivalent two-layer model shows clearly that some
physical effects must be compromised in the use of a sim-
plified environmental model. In this connection, we prefer
to base the equivalent model on the first criterion. That is,
we prefer that wave arrival times and phase information
be replicated as accurately as possible. Employing this
criterion, values ofhequiv have been computed for several
choices of the parameters eps andhm/h10. The computed
values ofhequiv, having the form shown in Fig.B1, were
then averaged over that range of wave amplitudes satisfying
the condition 0.9≤|cKdV2/cE |≤1.0 for the two-layer model.
Results of this calculation are summarized in TableB1. We
suggest that the values ofhequiv presented in TableB1 should

Table B1. Equivalent upper layer depth for different thickness of
thermoclinic layer.

hm/h10
h10/h20 ε 0.2 0.4 0.6 0.8 1.0

1/3 1/2 0.88 0.79 0.71 0.63 0.56

1/5 2/3 0.93 0.86 0.79 0.72 0.66

1/7 3/4 0.94 0.88 0.81 0.75 0.69

1/9 4/5 0.94 0.88 0.82 0.76 0.70

1/11 5/6 0.94 0.89 0.83 0.77 0.71

1/13 6/7 0.94 0.89 0.83 0.77 0.72

provide a useful guide for defining quantitatively equivalent
two-layer models for natural environments containing single,
prominent thermocline having finite thickness.
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