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Abstract. We show how the traditional 4D-Var method as eddy-viscosities. Wy is the horizontal eddy viscosity in

can be adapted for implicit time-integration and extendeda coarse resolution model, then estimated gfrange from

for multi-parameter estimation. We present the algorithm10® m?s~1 to 10® m?s~L. In a flow having a typical length

for this new method, which we call I14D-Var, and demon- scaleL and a horizontal velocity scal&, the Reynolds num-

strate its performance using a fully-implicit barotropic quasi- ber

geostrophic model of the wind-driven double-gyre ocean cir- L

culation. For the latter model, the different regimes of flow Re = — (2)

behavior and the regime boundaries (i.e. bifurcation points) H

are well known and hence the parameter estimation problens hence a very uncertain parameter.

can be systematically studied. It turns out that 14D-Var is The parameterization of subgrid-scale processes intro-

able to correctly estimate parameter values, even when backtuces model errors and one cannot expect that the large-scale

ground flow and “observations” are in different dynamical ocean flows simulated resemble the ones observed. The qual-

regimes. ity of these simulations can, however, be substantially im-

proved by using observations in a data-assimilation frame-

work. Within this framework, the parameter estimation pro-

1 Introduction cedure is aimed at choosing an optimal parameter vector in
an admissible parameter volume, so that the model solution

The kinetic energy of ocean flows is distributed over manycorresponding to this parameter vector is “close to” observa-

scales of motion. In a numerical model with a specified res-tions.

olution, only part of the range of scales can be resolved. The One of the data-assimilation approaches used is the en-

effect of the unresolved scales on the transport of momensemble Kalman filter method (EnKF), which is an effi-

tum, heat and salt are represented by so-called subgrid-scaféent Monto-Carlo approximation to optimal Kalman filter-

parameterizations. These representations necessarily intrédg (Kalman 1960 Evensen 1994 2003. Although this

duce parameters of which the magnitude is very uncertain. method is generally used for initial state estimati@®gr-

A typical example is the representation of the horizontal ber (1989; Anderson(2001); Hargreaves et a(2004 sug-
mixing of heat in ocean flows. So-called meso-scale eddiesgested the application of EnKF for parameter estimation,
with typical spatial scales of 10-50 km, take care of much ofby considering the parameters as additional state variables.
this mixing. In ocean models with a too coarse horizontal This method was recently applied Byinan and Hargreaves
resolution, say 4, the effect of these eddies cannot be ade-(2004 to estimate a single parameter in therenz (1963
quately captured and the net horizontal heat fluis very ~ model. InAnnan et al.(2009, the method was applied to

often approximated as estimate parameters in an intermediate-complexity climate
model.
® =—-KuyVuT, 1) A second approach used is variational data assimilation

with 4D-Var as a typical method. In this method, all infor-

Wh_er_eT IS the temperaturg an_n'H is a so-called eddy dif- mation that is present in observations is combined with the
fusivity. Similar parameterizations are used for the transport

o . evolution determined by a particular ocean, atmosphere or
of momentum and in this case the coefficients are referred tc&limate model. In the 4D-Var approach, a cost function is

Correspondence toA. D. Terwisscha van Scheltinga minimized by varying the initial condition and/or the forc-
(a.d.terwisschavanscheltinga@phys.uu.nl) ing of the model. This cost function measures the distance
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between the data and a state vector at a sequence of time3.1 A summary of 4D-Var

The so-called analysis is that state which minimizes the cost

function and the minimization procedure requires the evalual et w be the state vector consisting of model variables that
tion of the gradient of the cost function. The 4D-Var method are to be estimated by combining model dynamics and ob-
is routinely applied at ECMWF in weather forecastifp¢ servations. lfw? is the background state add is the incre-
bier et al, 200Q Mahfouf and Rabier200Q Klinker et al, ment on the background state, then with 4D-Var one wants
2000. The method is also used in operational oceanograto determingSw such that the resulting stagedefined by

phy, for example within the French Mercator projestaver b
et al, 2003 Vialard et al, 2003 where the use of observa- ¥ =W +w. ®)

';lons tot|n|t|allze ocean circulation models results in betteriS “close” to observations. Le=M (1, ;_1) represent the
orecasts.

evolution operator of the particular model used, such that
Parameter estimation using variational methods has been

used for example byru and O’Brien (199]) to estimate ~ W() = M. ti—1)(w(ti-1). (4)

wind-stress coefficients a_md eddy-viscosity profileghu Substitution of Eq. 3) into Eq. @) and linearizing around

and Navon(1999 study adjustment of three parameters, onewb(ti) gives:

of them being a horizontal eddy viscosity, in the Florida

State University global atmosphere model using a variationaky (1) ~ M (#;, t;_1) (W’ (ti_1)) + M(t;, ti_)dw(t_1), (5)

approach. They combine 4D-Var with a penalty function

method to transform the constrained optimization problemwhereM (1, ti_) is the tangent linear operator,

into an unconstrained optimization problem. They show that OM

maximum benefit is obtained from the combined effect of M = — , (6)

both parameter estimation and initial condition optimization. AW [y yyb

An overview of many of the current parameter estimation ;4 Sw(t)=M (4, ti_1)sw(t_1)

. is the corresponding
methods used is presentedNiavon(1999.

tangent-linear model. Lel; denote the vector of ob-
In general, the gradient of the cost function in the 4D- servations andH; the observation operator at time,

Var method is calculated by using both the forward and thethen

adjoint model. In this paper, we show that when a fully-

implicit model is available, 4D-Var can be performed with- i

out the need for an explicit adjoint model. The gradient can

= Hi(w(t)) ~ Hi(w°(t)) + Hisw(t), @)

whereH; is the linearization offf; around the background

be computed by using the transpose of the Jacobian matriétate. By the hypothesis of causality, we have

that is available during the implicit time stepping. This im-

plicit variant of 4D-Var, called 14D-Var, is highly suitable M, tg) = M(t;, ti_1) - - - M(t1, to), (8a)
for strongly nonlinear problems, since the Jacobian (the tan-

gent linear model) is evaluated at each time step and hencll (t;, tg) = M (tj, ti_1) - - - M (tg, to), (8b)

varies over a single assimilation interval. In addition, we

show how I4D-Var can be adapted for parameter estimationand the model estimates of the observations can be linked to
The capabilities of the resulting method are shown for thethe initial conditions at=ty through Eq. 88 as

barotropic quasi-geostrophic model of the double-gyre wind-

driven ocean circulation. From the bifurcation diagrams for Hi (@ (1)) & HiM(ti, to) (" (to)) + HiM (&, to)swito).  (9)
these flows Dijkstra and Katsmarnl997), the different flow In variational methods, such as 4D-Var, the analysisis

regimes (steady, perlod|c_ and_ quas-periodic) are knoyvn an(Eljefined as the state vector which minimizes both the distance
hence the parameter estimation problem can be studied sys-

b i - -
tematically. Using synthetic observations from the same 0 the backgrounab” (o) and to the time-sequence of obser

. . i S i < t:<t,. isi
model, we will show that 14D-Var is able to correctly es- vationsy; in the intervalip <  <t,. If the an_aly5|s IS closg
. the background state then the cost function can be written
timate parameter values, even when background flow ané0

(synthetic) observations are in different dynamical regimes. asCourtier et al(1994:

n
Jow) =sw B lsw+ Y _dIRd;, (10)
i=0

whereB is the matrix of background error covariancés,
2 The I4D-Var method is the matrix of observation error covariancés, is the in-
crement on the background state ané the length of the

) ) o _assimilation intervals (witlh 4 1 points). The departurek
To describe the version of 4D-Var for implicit models and its 5y defined as:

extension for multi-parameter estimation, we start by sum-
marizing the main steps of 4D-Var. di=y;, — HM(, to)(wb(to)) — HiM(;, to)sw(tg). (11)
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If Sw® is defined as the solution of the minimization problem, This nonlinear system of equations is solved using the

i.e. Newton-Raphson method. Let the Newton iteration index be
. _ indicated byl andN'*1! be the linearization ok'+* around
J(@w®) = minJ@w). (12) i+l For the system (Eq198, the Newton-Raphson
. o method is:
then the analysis at is given by _ _
. . w|+1,0 — wl, (20&)
w(t;) = M(t;, to) (w°(to) + sw?), (13) it et i
I+L+1 i+l A'+’+, 20b
and the background;b(tn+1) at the beginning of the next v v tAaw (200)
interval is given by: JAw T — gt 4 Gl (20c)
b b a
w” (t4+1) = M(tnt1, to) (w”(to) + Sw®). 14 1 -
" " . ~T+olL+N*), (20d)

To solve the minimization problem (Ef}2), the gradient
n and the linear system (Eq. 20c) has to be solved for each
VI@w) = 2B Lw — 22 MT(t, to)HiTRi_ldi, (15) iteration. The relation (EdL8) provides an explicit represen-
i—0 tation of the spatially discretized evolution operator as:

has to be calculated. In an explicit time-stepping ocean, at- i1
mosphere or climate numerical model, the usual procedure i (i1, ) (w(ti) = [ET +ol +N )}
to compute this gradient using a forward evolution over the

assimilation interval and a backward evolution using the ad- The spatially discretized tangent linear model follows
joint model, with evolutioM T (t;, t;_1) and forcingHTd;. It~ from linearization of this operator around”(:;) and be-
requires a discrete adjoint model that is well-defined and a$0mes

efficient as the forward model.

1
Gi (21)

- -1

2.2 4D-var for implicit models (14D-var)
_ M 1 i+1
For models in which implicit time stepping is used, such M = w o ET tol +NT
. .. .. . w=w
as a Crank-Nicholson method, no explicit adjoint model is o
needed. To see why, we first write a model in general opera- = 1 H
tor form as ET —(1-w)(L + Ni)} (22)
ow -
T——+Lw +Nw)w=F, (16) Cai
where7 and/ are linear operatorsy’ is a nonlinear op- and it can be explicitly written as
erator andF contains the explicitly known part of forcing. _
prctl P g M(ti1, ti) = Cl’ilcz,i- (23)

Spatial discretization gives

Jw As the Jacobian matrid is available during the Newton-
TW +Lw+Nww=F, (17)  Raphson iteration, one gets the tangent-linear model and its
transpose, to be used in the computation of the cost function
with T, L, N and F being discretized versions @, £, N/ in 4D-Var, nearly for free. This approach has another advan-

and.F, respectively. Using a time stefr with time indexi, tage: the tangent linear model is adapted at each time step

a general implicit scheme can be defineddoe (0, 1] as, and hence 14D-Var is expected to perform better in strongly
nonlinear problems than the original 4D-Var method.

i-l-(wi+1 —w) 4+ (1 —w) (L +Nw)Hw + 2.3 Parameter estimation

At

oL +Nwt)w ™ = 1 - w)F + oF*L (18)  As mentioned in the introduction, typically parameter val-

ues are uncertain in ocean, atmosphere or climate models, in
For example, for = 1 the backward Euler method is ob- particular those associated with the mixing of, for example,
tained and fow = 1/2 the Crank-Nicholson method. Using heat and momentum. The typical problem which we consider

the notatiorN' = N(w'), then re-arranging Eq18) gives: here is one in which the parameters guessed are far from the
1 value needed for the model solution to be close to observa-
[ET +w(L + NTHwtl = G (19a) tional values. When parameters are not adapted, 4D-Var may

improve the results of badly tuned models but usually large
1 L : 1 error will remain. How can one adapt 4D-Var to change these
G’=[ET—(1—w)(L +N)Jw' +(1-0)F +oF ™" (19b)  parameters to “correct” values during assimilation?
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Parameter estimation is difficult in 4D-Var, since a change As a first guess, the parameters of the background are
in the underlying vector field due to a parameter variationtaken asp = p”. When these problems are solved, then the
cannot be easily taken into account. In 14D-Var, however, theanalysis is found from
paramgter dependence of the local Jacobian matrix is ex'pllci-va (t) = Mt to, pa)(wb(to) T 5wd), (31)
itly available. Letp be the vector of parameters and rewrite
the cost function10) to explicitly include the parameters in and the backgrouna”(z,11) at the beginning of the next

its formulation, i.e. interval is given by:
0 w”(1r+1) = M(tns1. to, p*) (@ (t0) + ). (32)
J@w, p) = gdi R ~di, (24) This sequential minimization has several advantages over

_ Eq. (26). First, for the minimization oveSw in Eq. 27),
where the departure are given by the cost function remains quadratic and hence a unique min-
d: = yi — H:M. to. p)wP(te)) — HiM (4. to, p)sw. (25 imum can b_e expected. S_econdly, minimizing over the in.itial

i = yi = HiM (i fo. p)(w (to)) — HiM(G. To. p)dw. (25) conditions first, yields an improvement of the model solution.
andM (1, to, p) represents the evolution operator. The mini- This improvement gives an indication whether the current es-

mization problem now becomes: timate p” is accurate. If not, the initial conditiodw?® gives
. an analysiav® (7o), which is close to the observatio. Fix-
m"}, J@w, p). (26) ing sw=58w? introduces a strong constraint on the minimiza-

. e tion problem (Eq29). ThoughJ (8w, p) is non-linear and
When a simultaneous minimization is attempted over both ' s :
the initial condition or forcing and the parameters, the Costtherefore multiple minima of Eq26) may be expected, this

- L : . constraint reduces the number of feasible minima. As a re-
function is no longer quadratic since the introduction of the o . o
. . o : -sult, the computation is numerically better conditioned. The
parameters as control variables gives additional nonlineari-__. . .
. . - : main advantage of 14D-Var over parameter estimation with
ties. Hence, a unique minimum is no longer guaranteed;

different approach is needed UD-Var is that 14D-Var takes in account changes in the state
In Zhu and Navor(1999, the cost function is extended due to a parameter variation, since the Jacobian is evaluated

by including a penalty term” g(p), where the penalty co- for each time step and therefore also the parameter depen-

- ; . ; dence of the local Jacobian.
efficient vectora is determined such that penalty term is of . . .
the same order as the other terms in the cost function. The To test the 14D-Var method obtained in this way, one
uadratic vector functiog(p) is introduced to set the bour'1d— would like a problem for which it is known that different pa-
quadr 8(p . rameter values lead to a qualitatively different type of flow
aries in the parameter space. The advantage is that the c

o : . . . . havior. For such a problem, parameters can be chosen
function is again quadratic, but the direct disadvantage is tha . ;
: " in one flow regime (for example, a regime where only one
the results of the analysis can be very sensitive to the spec-

e - Steady state solution exists for> co) whereas synthetic ob-
ification of the penalty coefficient vectoNéash and Sofer y o) Y
1999 servations can be chosen at parameter values in another flow

In 14D-Var, the Jacobian matrix is explicitly available at regime (for example, a regime of multiple steady states, or

each time step, while the derivative of the vector field to each(q_uasr).perm(.jlc t_)eha\{lor). .The example b.elc.)w. of the W'.nd'
driven circulation in an idealized ocean basin is ideally suited

parameter can be made available. Hence, instead of simulta- . . :
e ) as such a problem, since the regime boundaries have been

neously minimizing ovew and p, one can attempt to min- : : N

L . . . studied extensivelyJijkstra and Katsmari997).

imize sequentially ove8w and p. In this approach, we first

determineSw® as a solution of the minimization problem

r?inJ(sw, pb) @27) 3 The quasi-geostrophic barotropic double-gyre flow

w
We consider a rectangular ocean basin of gizd. having a

with sw=0 as a first guess for the minimization apdl is  constant depttD. The basin is situated on a midlatitugle
the parameter vector for which the background has been Calplane with a central latitudéy=45 N and Coriolis param-

cglated. This minimization problem yields an analysis; at eter fo=29sindo, whereS2 is the rotation rate of the Earth.
given by The variation of the Coriolis parameter at the latituigds
wi (1) = M1, to, p°) (wP(to) + Sw). (28)  indicated bygo. The densityp of the water is constant and
the flow is forced at the surface through a wind-stress vec-
Next, we determing? such that the analysis (EQ8) is tor 7o[t*(x, ), T¥(x, y)]. The governing equations are non-
improved. This can be done by minimizing dimensionalized using the horizontal length sdaj¢he ver-
(29) tical length scaleD, a horizontal velocity scal& and the
advective time scalé /U. A typical choice of the horizon-

where the linearization around the background state has beetr"ilI velocity scalel/ is based on the Sverdrup balance and is

dropped, i.e. the departures are taken as given by
70
di = yi — H:M(1:, 10, p)(w°(to) + 5p). 30 Y= gL

minJ(Sw?, p),
p

(33)
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Th? effect of ocean-atnjosphgre deformanon; on th_eTabIe 1. Standard values of the parameters for the barotropic quasi-
flow is neglected. The dimensionless barotropic quasi-geostrophic ocean model in the steady flow regime.

geostrophic model of the flow for the vorticity and the
geostrophic streamfunctiof is (Pedlosky 1987

[3 +u—+ vi][; + Byl = Re™'V?¢
at dx ay
otY odt*
v (G0 = 55) (342)
= Vy (34b)

where the horizontal velocities are given by= —advy//dy
andv = 9y/0x. This equation contains several parameters.
These are the Reynolds numbRe, the planetary vorticity
gradient parametef and the wind-stress forcing strength
These parameters are defined as:

UL BoL? 1oL
" Ag’ U’ "~ pDU?
whereg is the gravitational acceleration add; is the lateral
friction coefficient. If the characteristic velocity is chosen

as in Eq. R2), it follows thata, = B8 and there are only two

Re B = (35)

Qr

independent parameters in the problem. We assume no-sli

conditions on the east-west boundaries and slip condition
on the north-south boundaries. The boundary conditions ar
therefore given by

x=0,x=1:1/f:%=o, (36a)
0x
y:Qy:l:W:é’:O. (36b)
The wind-stress forcing is prescribed as
-1
™ (x,y) = E((l —a) cog2ry) + a cogry)), (37a)
¥ (x,y) =0. (37b)

with a being an additional dimensionless parameter control
ling the symmetry of the zonal wind stress. ket0 the wind
stress is symmetric, with easterlies at the northern and sout
ern boundaries of the domain and westerlies at the midaxi
of the basin.

The governing equations were discretized on a equidis
tant N x M grid using central spatial differences. The Crank-
Nicholson scheme was used in the time-integration, the non
linear system of algebraic equations was solved with th
Newton-Raphson method and the emerging linear system
were solved iteratively with a preconditioned conjugate gra-
dient method. The gradient Eql5) was calculated us-
ing backward iteration, which required the transposition of
Eq. 23) and one extra linear system to be solved per iter-
ation. The derivative o/ with respect to a parameter;
was, when possible, calculated by differentiation of the dis-
cretized equations Eql18§) with respect top;. Otherwise
finite differences were used according to

aJ _J(w, p* +ce) — I(w, p*)

apj p:p* ’

(38)
&

h-

Parameter Value

L 1.0 x 108 m

U 71x 1073 m

D 7.0 x 107 m

Bo 201011 (msy1
fo 1.0x 104 s

g 9.8 ms—2
0 1.0 x 103 kgm~3
70 1.0x 101 Pa
Parameter Value

ar =B 2.8 x 103

a 0.0

wheree; is the j-th unit vectorp* is the point at which the
gradient of/ with respect tgp is evaluated and small. The
evaluation of the gradient with respect to one parameter re-
uires two evaluations of the cost functidnand in com-
arison with the gradient of the cost function with respect to
w does not require storage of the Jacobian, nor backward
iteration.

4 Results

In this section, we will show the performance of 14D-Var
on three test problems using the barotropic ocean model as
described in the previous section. The latter model is used
as the background model during assimilation and parameter
estimation and also for generation of the “observations” of
the streamfunctiony. A standard set of parameter values
was chosen that are similar to thosebijkstra and Katsman

(1997 and these values are given in TahléNith the choice
of U as in Eq. 83) and the wind stress as in E@Q73, there
are three independent dimensionless parameters in the sys-

Tem. We fix the value oB and consideRe, a; anda as our

“uncertain” parameters.

For the parameters as in Talle Dijkstra and Katsman
(1997 showed that there are several flow regimes depend-
ing on the value ofRe. For Re<30 the background model

as one unique steady-state symmetric (with respect to the
Basin’s mid-axis) double-gyre solution. For 3Re<52,
two stable asymmetric steady-state solutions exist, one with
a northward jet displacement (the so-called jet-up solution)
and one with a southward jet displacement (the jet-down
solution). Both asymmetric steady states become unstable
for Re>52 due to the occurrence of Hopf bifurcations. For
52< Re<T74 periodic orbits exists, while foRe>74 the so-
lutions are first quasi-periodic and thereafter become very ir-
regular. The boundaries between these qualitatively different
dynamical regimes depend on the valuespainda. For a
nonzero value ofi, the reflection symmetry with respect to
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Table 2. The values of the dimensionless parameter for each of the 140777777
cases |, ..., VI considered. [
120
Regime ar Re a I
| 2800 20 0.0 100 ¢ :
Il 2800 50 0.0 o H f
I 2800 120 0.0 8 80 L b
\Y) 2200 20 -0.2 = H g
\% 3400 50 0.2 ~. [ ]
Y/ 3400 120 -0.2 § 60 1
L L |
4 | I
“ bt R
the mid-axis of the basin is broken and no symmetric double I (LA 1V
gyre solutions exist anymore. 20k 4
All solutions below are calculated with a time-step of 1 f 1V
day on an equidistant 6040 grid. For moderate values of 0 T T P T
the Reynolds numbeRe, this resolution is sufficient to cap- 0 1000 2000 3000 4000

ture an accurate representation of the soluti@igkétra and
Katsman 1997. Six different parameter sets were consid-
ered to illustrate the Capablll_tles of the 14D-Var method (s_eeFig. 1. Time evolution of the basin integrated kinetic energy for the
Table2). To show the behavior of the background model in ifterent cases |, ..., VI.

each of these cases, the time evolution of the basin integrated

kinetic energy is shown in Fid.. For case |, for whicla=0,

a steady symmetric state is obtained of which the streamgpseryations are derived from the steady-state “jet-up” solu-
function ¢ is plotted in Fig.2a. At a slightly larger value o of case II (Fig2b) for Re=50.

of Re = 50 (case Il), an asymmetric steady state (Rigj.

is obtained which is a “jet-up” solution. For an even larger
value of Re=120 (case lll), the flow is time-dependent and
the time-mean of the streamfunction averaged over a 400
day period is shown in Fig2c. For the cases IV, V and
VI, the wind-stress forcing is asymmetrig£0). While the
flows for the cases IV and V approach steady states (show
in Fig. 2d and Fig.2e, respectively), the flow for case VI is

time

After a few intervals, the estimate &e computed with
I14D-Var is already close to “correct” valuRe=50 and even-
ually it converges toward this value (Figa). The value of

e cost function for each interval — before minimization over
the initial conditions (drawn) and after minimization ov¢
dashed) —is shown in Figb. The value of the cost function

onverges to zero, indicating that a perfect fit to the synthetic

in time-d d d the ti is plotted .observations is found. For the first interval, the value of the

'a;iggalgftlme— ependent and the time-mean state is plotte "Rost function is reduced by about three orders of magnitude
T after minimization over the initial conditions. In the remain-

The steady state and time-dependent streamfunction fieldmg intervals, a decrease of about one order of magnitude is
were used as the initial background or as synthetic observagynd.

tions in the data-assimilation runs presented below. The ob-

servations of/ atall the gridpoints were used, i8; isequal o1\ ations and the initial background (drawn) and between
to the identity operator for all. Two types of test problems e hservations and the analysis (dashed) are plotted. The
were considered: single-parameter and multi-parameter estyigrorence hetween analysis and observations is for all in-
’T‘a“"”- For multi-parameter .estlmatlon, a “?ta' O,f _50.|ter.a- tervals smaller than the difference between observations and
tions were calculated, each with one sequential m'n'm'zat'orbackground and both norms converge to zero indicating that

as described in Sect. 2.3, and we use 6 points per assimilatiog perfect fit has been found. The difference between the

interval. For the single-parameter estimation runs, the COMypservations and the background increases over the assim-

putation was terminated after an increase in the optimizeq o interval which indicates that the background is still
cost function was dgtected at_su_bsgqugnt intervals. For thes‘cﬁtracted away from the observations. However, this effect
test problems, 5 point per assimilation interval were used. decreases when the estimate far approache®e=50. Af-
ter the first interval both differences are close to each other
4.1 Single parameter estimation at the first point in the second interval. This shows that the
model solution at this point is already close to the observa-
In these test-problems, we uge as the uncertain parame- tions. This is in agreement with the decrease of three orders
ter, while the values of; anda are fixed. As a first test, Of magnitude in the cost function as seen in Rig.
the unique steady-steady state solution of case | gigfor The L,-norm of the initial gradient of the cost function
Re=20 is taken as the initial background and the syntheticwith respect to the increment (drawn) before sequential mini-

In Fig. 3c, theL2-norm of the differences between the ob-
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(a): Regime | (b): Regime II (a)
1.0 P 10 SR AR A 60F ; 5
=
08f| \ 50 ;_ _;
=
o 5 U e E
0.4} O'g s0F 3
0.2F 20 ‘ ‘
0.0 I I | | 10 E L L L L L E
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mization and after minimization ovéte (dashed) are plotted 0 5 10 15 20 25 30

in Fig. 3d. The convergence of the gradient to zero indicates
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again that both a perfect fit to observations and an accuratgjg. 3. Results for initial background from case | and observa-

estimate ofRe have been found. During the first 14 intervals, tions from case I1:@) Re versus the number of intervals (note

the dashed curve is above the dotted curve (B, but the  that the number of intervals is equal to the number of sequen-

distance between the curves is decreasing and becomes ndgd minimizations ofJ); (b) the initial value of the cost function

ligibly small after the 14th interval. This indicates that during (drawn), its value after minimization over the initial conditions (dot-

the first 14 interva'S, (|arge) improvementsm and/or the ted) and after minimization oveRe (dashed),(c) the Lo-norm of

background model are still possible but that after the 14ththe difference between the observations and the initial background

interval, the state-parameter solution is very close to the s
lution corresponding to the observations. In summary, for
the case in which the initial background and the “observa-
tions” are in different dynamical regimes — a unique steadyqyer g, (dashed).
regime (case I) and a multiple equilibria regime (case Il) —

the performance of 14D-Var is very good.

O(drawn) and the difference between the observations and the anal-
ysis (dashed)(d) the Ly-norm of the initial gradient of the cost
function with respect to the increment (drawn), its value after mini-
mization over the initial conditions (dotted) and after minimization
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(a) case | Re=20). As the results in Fig4 show, 14D-Var is
4OF ' ' 3 able to estimate the correct valuerd (Fig. 4a) and the con-
3 E vergence of the different norms is similar (Fitip—d) to that
100E 3 in Fig. 3. This indicates that 14D-Var is also capable of ef-

. 5OF E ficiently estimate an uncertain parameter for highly transient
" o ; observations.
4o 3 Several other test problems, with other combinations of
20F 3 dynamical behavior — i.e. steady state, periodic, quasi-
ok . . . . 3 periodic and irregular, for the initial background and obser-
6] 5 10 15 20 25

vations — were investigated. The 14D-Var method worked
equally well for these problems.

Interval

4.2 Multi parameter estimation

Using the barotropic model of the wind-driven circulation,

s we can also test the performance of 14D-Var in a multi-

] parameter estimation problem. A maximum of three uncer-
7 tain parametersRe, o, anda, can be considered. In all

] the test problems below, the initial background is the unique

mf‘so s 0 e . 2-5 steady state of case IV (Figd). Due to a negative value of
Interval this steady state has a small southward jet displacement when
() ' compared to the symmetric steady-state of case | @p.

In the first problem, the parameters of case V are estimated
by taking its steady-state (Fige) as the observations. Note
that case V has different values for all three parameter than
case |V and that, in particular, the value @ohas opposite
sign. The steady state in case V is a jet-up solution and hence
substantially different than that of case IV (Figl). Due to
the higher value of, and Re, the amplitude of the flow is
also a lot stronger.

Time [days] The 14D-Var method is able to find accurate estimates for
all parameters. After 10 intervals the estimated values of
all three parameters are close to those of case V @dg.

¢). In Fig.5d, the final value of the cost function after min-
imization is one order of magnitude smaller than its value
before sequential minimization for all intervals, and two or-

lly—w*ll,, lly—well,

. T ] ders of magnitude smaller for the first interval. During the
oL | first twenty intervals, both values of the cost function rapidly

| | decrease, but after 22 intervals convergence is much slower.
10 ) ) ) ) This is due to the minimization routine used, which termi-

° 5 0 20 25 nates when the difference of the cost functibbetween suc-
cessive iterates is smaller than 0 After 22 intervals, the
Fig. 4. Results for initial background from case | and observations iNitial value of the cost function before minimization over
from case Ill:(a) Re versus the number of intervals (note that the the parameters is smaller than the stop criteria. As a result,
number of intervals is equal with the number of sequential mini- the minimization routine will always terminate after one it-
mizations ofJ); (b) the initial value of the cost function (drawn), eration, which leads to less improvement of the cost function
its value after minimization over the initial conditions (dotted) and and decrease convergence. This has no consequences for the
after minimization oveRe (dashed)(c) the Lp-norm of the differ-  result. After 20 intervals the final values of the cost function
ences between the obseryations and the initigl background (drawn of order 104, and hence the analysis is already sufficiently
and between the observations and the analysis (dasg)eL2-  jose to the observations. Furthermore, the estimates for the
norm of the initial gradlent of the cqu fl:InCt.IOH with respeg to the parameter are accurate after 20 intervals.
m_c_rement (drawn), its value_ a_lft(_er mlnlmlzatlon over the initial con- For this, and the following test problems, we do not show
ditions (dotted) and after minimization ovRe (dashed). ' . e o
anymore the differences between the observations and initial
background and between observations and analysis, nor the
The second problem to test I14D-Var is slightly more com- gradient of the cost function with respect to the increment
plicated as we use the time-dependent observations from casecause these figures look qualitatively the same asS€id.
Il (Re=120) and as initial background the steady state ofand Fig.4c,d. The results show that I4D-Var is capable of
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Fig. 5. Results for the initial background from case IV and obser- Fig. 6. Results for initial background from regime IV and observa-
vations from case V(a) «; versus the number of intervals (note tions from regime VI(a): o; versus the number of intervals (note
that the number of intervals is equal to the number of sequentiathat the number of intervals is equal with the number of sequen-
minimizations ofJ); (b) Re versus the number of interval&) a tial minimizations ofJ); (b) Re versus the number of intervals;
versus the number of interval@) the initial value of the cost func-  (c) a versus the number of intervalgl) the initial value of the cost
tion (drawn), its value after minimization over the initial conditions function (drawn), its value after minimization over initial conditions
(dotted) and after minimization ové¥e (dashed). (dotted) and after minimization ovée (dashed).

solving accurately and efficiently this multi-parameter esti-
mation problem. After 8 intervals the estimates for, and Re are already

In the next test problem, we will use the time-dependentclose to the target values of case VI (Fég, b). The initially
streamfunction field of case VI as observations, while still correct parameteg;, is changed at first, but recovers to its
keeping case IV as background. For case VI, the value ofnitial value. This indicates that, although values of initially
Re is even larger than that of case V and the jet oscillatescorrect parameters may change in the beginning, the final es-
around a “jet-down” mean. Note that one parameteini- timates of those parameters are recovered. Compared to the
tially has the correct value but that it is free to vary during results of the previous test problem, the figures of the behav-
the parameter estimation procedure. ior of the cost function look qualitatively the same (compare
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Fig. 6d and Fig.5d). The same rapid decrease is seen inthe A few additional cases were studied to test the perfor-
first 20 intervals, as is the slow convergence thereafter due tonance of 14D-Var under “noisy” observations. We added
the stop criteria. The results of this test problem also showsaussian noise, with zero mean and a prescribed standard
that 14D-Var gives an analysis close to the observations andleviationo, to the model-derived observations and consid-
an accurate estimation of the parameters in the model. ered a single parameter setup wRla as the uncertain pa-
These two test problems were among several investigatedameter. Other parameters had standard values as in Table
The other problems investigated involved other combinationg~or the initial background, the symmetric steady state of case
of several initial steady state solution and their associated pal (Re=20) was taken and the observations consisted of the
rameters and steady state, (quasi-)periodic and irregular obasymmetric steady state from case Rle&50). For several
servations. For some of these problems one or two paramevalues ofo, in the range @01-0.2, a twenty-member en-
ters did have the correct value initially. The result were assemble of estimations faRe was calculated. The estimates
good as the two multi-parameter estimation problems dis-of Re in the ensemble members decreased whemas in-
cussed in this section. Accurate estimations of the paramereased, but they stabilized betweRa=40 and Re=45.
eters were found and the analysis was always close to thelowever, the spread around the ensemble mean was signifi-
observations. cant and the best estimate B¢ (for each values of) was
often aroundRe=49. For large standard deviations, the ob-
served values ofy close to zero (right side of the basin and
5 Conclusions around the jet) can change several orders of magnitude and/or
sign. This leads to an ill-posed minimization problem or sud-
The main point of this paper was to show that one can perden increases id. Although 14D-Var was not able to esti-
form 4D-Var data assimilation without using an explicit ad- mate the value foRe exactly, the method is able to provide
joint model, when an implicit forward model formulation is values close to the correct value.
available. In that case, the tangent-linear model, needed for Variational methods seem to have a disadvantage when
the evaluation of the gradient of the cost function, can be decompared to the EnKF method, since they rely on accurate
rived and its transpose can be explicitly calculated withoutadjoints and gradients. In our methodology, we circumvent
much extra cost. constructing the adjoint model, by utilizing the extra infor-
Implicit forward models have an advantage that usuallymation available in the implicit model. In this methodology,
larger time steps can be taken than with explicit forwardwe linearize the model at every point of the assimilation in-
models. The choice of the time step in implicit models is terval, which gives a gradient that is more accurate than when
not limited by numerical stability, like in explicit models, but an adjoint method was used. This makes the estimation tech-
by numerical accuracy. The discrete derivation of the im-nique more suitable for parameter estimation in nonlinear
plicit models is in most cases more complicated than thosenodels. InLea et al (2000, some fundamental methodolog-
of explicit models, since the Jacobian matrix has to be ob-ical issues concerning sensitivity analysis of chaotic systems
tained and large linear systems of equations involving thisare addressed. They show that, for the Lorenz system, varia-
matrix have to be solved. Over the last decade a hierarchy ofional methods are a limited tool for sensitivity analysis and
implicit ocean and climate models has been developed, aidegarameter estimation, due to the behavior of the adjoint and
by the development of efficient solvers for linear systems ofgradient for various time scales. Note that et al.(2000),
equationsDijkstra, 2000. however, also found a range of time-scales for which the ad-
Here, a simple one-layer quasi-geostrophic model of thgoint was reasonably accurate. This suggests that if the in-
double-gyre wind-driven circulation was used as backgroundegration segment is chosen carefully, variational methods,
model and for generating observations. For this model, thesuch as 14D-Var, may still produce good results.
different flow regimes are known for different values of the  The potential for real world applications of 14D-Var heav-
control parameters. The 14D-Var method performs well in aily depends on the quality and performance of numerical
variety of test problems for this model, involving both single solvers of giant dimensional linear systems. With respect
and multi parameter estimation. Even when the initial back-to the computational work, which has to be performed in the
ground model and the observations are chosen in differenimplicit time stepping, the extra costs of the 14D-Var method
dynamical regimes, 14D-Var is able to find an accurate esti-are (i) the storage of several Jacobian matrices and (i) the
mate of the uncertain parameters in the model as well as golution of the additional linear systems. As in most implicit
perfect fit to the observations. ocean modelsWeijer et al, 2003, efficient storage schemes
While this is the first step in the development of implicit are used for the Jacobian, the extra storage is not expected
4D-Var methods, there are several issues which need furthetlo become a severe problem for more complex models. In
study to evaluate the potential use of these methods in moraddition, the preconditioners which have been developed for
realistic models and real world applications. These are (i)the implicit time stepping procedure can also be used to solve
the effect of noisy observations and more complex behaviothe additional linear systems in 14D-Var. Currently, systems
of trajectories, and (ii) the effect of an increase in dimensionof O(10°) equations can be solved with techniques such as
of the state space. While we cannot address these issues heéviRILU combined with GMRES Botta and Wubs1999
in depth, we discuss each of them briefly below. which makes it possible to apply 14D-Var to ocean or atmo-
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sphere models with reasonable resolution. The main advarEvensen, G.: The ensemble Kalman filter: theoretical formulation
tage of 14D-Var over traditional 4D-Var methods is that at and practical implementation, Ocean Dynamics, 53, 343-367,
each time step, changes in the state due to a parameter vari- 2003.

ation are taken into account because of the availability andiargreaves, J., Annan, J., Edwards, N., and Marsh, R.. An effi-
use of the local Jacobian matrix. cient climate forecasting method using an intermediate complex-
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