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Acoustic-gravity nonlinear structures

D. Jovanovíc1, L. Stenflo2, and P. K. Shukla3

1Institute of Physics, P.O. Box 57, Yu-11001 Belgrade, Yugoslavia
2Department of Plasma Physics, Umeå University, S-90187 Umeå, Sweden
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Abstract. A catalogue of nonlinear vortex structures associ-
ated with acoustic-gravity perturbations in the Earth’s atmo-
sphere is presented. Besides the previously known Kelvin-
Stewart cat’s eyes, dipolar and tripolar structures, new solu-
tions having the form of a row of counter-rotating vortices,
and several weakly two-dimensional vortex chains are given.
The existence conditions for these nonlinear structures are
discussed with respect to the presence of inhomogeneities of
the shear flows. The mode-coupling mechanism for the non-
linear generation of shear flows in the presence of linearly
unstable acoustic-gravity waves, possibly also leading to in-
termittency and chaos, is presented.

1 Introduction

In recent years there has been a growing interest in the
nonlinear effects associated with large amplitude acoustic-
gravity perturbations in the Earth’s atmosphere. These ef-
forts were motivated by the need to obtain more accurate
predictions of the dynamics of the atmosphere under various
meteorological conditions, including different profiles of the
pressure and density, as well as the presence of shear flows.

The most commonly used model equations for the two-
dimensional,∂/∂y = 0, large amplitude acoustic-gravity
phenomena have the form

[
∂

∂t
−
(
ey × ∇ψ

)
· ∇

]
∇

2ψ −
1

4H 2

∂ψ

∂t

= −
(
ey × ∇q0

)
· ∇χ, (1)

and[
∂

∂t
−
(
ey × ∇ψ

)
· ∇

]
χ = 0, (2)
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where the notations are

ψ =
9

ρ0
, χ =

p
1/γ
0

ρ

(
1

p
1/γ
0

dp0

dz

)
z=zcr

,

1

4H 2
= ρ

1/2
0

d2ρ
−1/2
0

dz2
and q0 =

p
1−1/γ
0[

(d/dz) p
1−1/γ
0

]
z=zcr

. (3)

Here, 9 is the stream function, defined byv = −ey ×

∇9/ρ0, wherev is the fluid velocity. As usual,p andρ
are the pressure and density, andγ (γ ≈ 1.4) is the adiabatic
constant. The subscript “0” denotes the unperturbed quan-
tities, andz = zcr is the critical vertical position that will
be defined later. Equations (1) and (2) were derived (Sten-
flo, 1990; Stenflo and Stepanyants, 1995) for low frequency
disturbances in an almost incompressible fluid,δp/p0 �

δρ/ρ0 � 1, usually referred to as the anelastic regime. Al-
though the derivation (Stenflo, 1990) was restricted to ex-
ponential density profiles and perturbations with relatively
short wavelengths and small (but finite) amplitudes, the sys-
tem above was used as a simple model to study certain large
amplitude phenomena, such as self-organization into coher-
ent structures. A more rigorous analysis (Jovanović et al.,
2001) shows that the same equations are also valid in the
strongly nonlinear regime, in the vicinity of the extremum
z = zcr of the background density, where the condition
(∇2ρ0/ρ0)

1/2
� |∇ρ0/ρ0| is fulfilled.

In the nonlinear regime, the dynamics of the acoustic-
gravity phenomena, as described by Eqs. (1) and (2), is dom-
inated by nonlinear convection, and as a consequence, var-
ious coherent localized vortex structures may arise. The
form of the vortices is determined by the spatial profiles of
the background densityρ0(z) and pressurep0(z), and by
the zero-order shear flow, etc. The aim of this paper is to
present a unified theory of acoustic-gravity vortices. Be-
sides providing a catalogue of various vortex modes, whose
description is scattered in the existing literature, we also
present several new solutions in the form of weakly two-
dimensional vortex chains. In Sect. 6, we also present a new
nonlinear mechanism for the generation of shear flows in the
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atmosphere, based on the modulational instability of
acoustic-gravity waves. In the strongly nonlinear phase, the
latter provides the energy source for the vortex chain cre-
ation. The numerical studies also indicate the possibility of a
transition to chaos.

2 Stationary solutions

We look for a solution of Eqs. (1) and (2) that is station-
ary in the reference frame travelling with a constant ve-
locity u along thex axis, i.e. which is dependent only on
the vertical coordinatez and the coordinatex − ut . Using
∂/∂t = −u(∂/∂x) and the properties of the vector product,
Eqs. (1) and (2) are readily integrated to

∇
2ψ + u

∫
dz

4H 2
+ q0

dF (ψ + uz)

d (ψ + uz)
= G (ψ + uz) , (4)

and

χ = F (ψ + uz) , (5)

whereF andG are arbitrary functions of the nonlinear char-
acteristicψ + uz. We are particularly interested in nonlinear
solutions that are localized, i.e. which vanish for(x, z) →

±∞. For the localized solutions, substituting the unper-
turbed valuesρ0(z), p0(z) andψ0(z) into Eqs. (4) and (5) we
can readily evaluate the asymptotic forms of the functionsF
andG. Since they are continuous functions, their asymptotic
forms are applicable along all the nonlinear characteristics
ψ(x, z)+uz = const. that extend to infinity in thex, z plane.
There may exist finite regions, usually referred to as vortex
cores, in which the characteristics are closed lines, whereF
andG may take completely different forms, provided that the
physical boundary conditions across the vortex core edge are
satisfied. Obviously, the full nonlinear problem is impossi-
ble to solve in the general case, since that would involve the
inversion of the unknown functionsF andG along sepatri-
ces between the regions of open and closed characteristics,
whose actual shape is also not known in advance. Further-
more, such a complex problem often does not have a unique
solution. The eventual stationary state (if any!) to which
the system saturates in the evolution, as described by the full
Eqs. (1) and (2), depends very sensitively on the initial con-
ditions and fine details, many of which are not included in
our Eqs. (4) and (5). Metaphorically, it is often said that the
state of the atmosphere is determined by the flapping of a
butterfly’s wing at some distant past.

Naturally, analytical solutions are available only if the
functionsF andG have sufficiently simple forms, which are,
in turn, permitted only for some specific profiles of the un-
perturbed quantitiesρ0(z), p0(z) andψ0(z) .

3 Solitary vortices

Solitary vortices can be constructed analytically when the
functionsF andG are adopted as linear, i.e.

F (ξ) = F0 + F1 · ξ, G (ξ) = G0 +G1 · ξ, (6)

but permitting the constantsF0,1 andG0,1 to take different
values inside and outside of the vortex core. The core is cho-
sen to be a circle with radiusr0. Although such a choice
seems to be very restrictive, it represents a paradigm for vor-
tices which are characterized by a single region of closed
isolines. Due to their topological constraints, all solitary vor-
tices (including those with more complicated expressions for
F andG) share many common features, resulting from the
fact that they are produced by the nonlinearities acting within
the core, leading to a linear (or weakly nonlinear) evanescent
response in the outer region.

3.1 Dipoles

The acoustic-gravity solitary vortices that propagate relative
to the surrounding fluid have the form of dipoles. They
were described previously (Stenflo, 1987; Stenflo and Stepa-
nyants, 1995). From the asymptotic considerations, it is ob-
vious that for a non-zero vortex velocityu, the simple ex-
pression (6) can be satisfied in the outer region only when the
unperturbed quantitiesχ0(z) andq0(z) are linear functions,
while H is constant and limz→±∞ ψ0(z) = 0. Such atmo-
spheric conditions may be realized only approximately for
small vortices (i.e. the vortices that are much smaller than the
characteristic length of the density and pressure inhomogen-
ities).

For the linear functionsF andG, Eqs. (4) and (5) are read-
ily integrated asχ = χ0(z)− (w2

g/u)ψ and

ψ = −ur0 cosθ


K1 (µr)

K1 (µr0)
, r > r0

µ2
+ κ2

κ2

r

r0
−
µ2

κ2

J1 (κr)

J1 (κr0)
, r ≤ r0

,(7)

wherer = (x′′2
+ z2)1/2, θ = arctan(x′′/z), x′′

= x − ut ,
andµ2

= 1/(4H 2) − ω2
g/u

2, and where the characteristic
wave numberκ is calculated from the nonlinear dispersion
relation that is due to the appropriate boundary conditions at
r = r0

J2 (κr0)

κJ1 (κr0)
+

K2 (µr0)

µK1 (µr0)
= 0. (8)

Here, the constantω2
g = −(1/u)(d/dz) χ0(z) is the squared

Brunt-Väis̈alä frequency, andJi andKi are the Bessel and
modified Bessel functions of the order ofi, respectively. For
typical atmospheric conditions, the vortex core radiusr0 is
of the order of 10–1000 m in the equatorial atmosphere. The
vortex velocityu is close to the sound speed, except for tem-
perature gradients corresponding to the instability threshold,
ωg ≈ 0, when the vortex speed may be much lower. For
details, we refer the reader to a previous paper (Stenflo and
Stepanyants, 1995).

3.2 Tripoles

Tripoles are known to emerge in two-dimensional incom-
pressible flows. Stable tripolar vortices were observed in
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the Earth’s atmosphere (Pingree and Le Cann, 1992) and
produced in the rotating tank experiments (van Heijst and
Kloosterziel, 1989). Their theoretical explanation was pre-
sented first in the context of plasma physics (Jovanović et
al., 1998), and recently, they were also constructed for the
acoustic-gravity mode (Jovanović et al., 2001).

Tripoles can also be analytically constructed using the
simple expressions (6), but in contrast to the dipoles, they
do not propagate relative to the surrounding fluid, i.e. they
are carried by a zero-order flow. The solution of the basic
Eqs. (4), (5), and (6), in the form of a tripole, can be obtained
only in the presence of a sheared flow with a linear velocity
dependence, linearly inhomogeneous inverse square length
1/H 2, and parabolicz-dependence of the quantitiesχ0 and
q0, i.e.

χ = δχ − ω2
g,0

(
z+ εχz

2
)
, (9)

ψ = δψ + w
(
z+ εψz

2
)
, (10)

q0 = z+ εqz
2, (11)

and

1

4H 2
=

1

4H 2
0

(1 + 2εHz) , (12)

where the perturbationsδχ andδψ are vanishing forz →

±∞, and whereωg,0, w, H0, εχ , εψ , εq , andεH are con-
stants, satisfying

u

w
=
εψ

εχ
− 1, (13)

and(
εψ

εχ
− 1

)(
εψ

εχ
−
εH

εχ

)
= 4H 2

0

ω2
g,0

w2

(
1 −

εq

εχ

)
. (14)

Under these conditions, the outer solution is readily ex-
pressed in terms of the modified Bessel functionsK0, K2,
of the zeroth and second order, as

δψ (out) = β0K0 (µr)+ β2K2 (µr) cos 2θ. (15)

Likewise, from the requirement that the terms which are lin-
ear inz must cancel out, we obtainF (in)1 = F

(out)
1 , and the

solution is, therefore,

δψ (in) = α0J0 (κr)+ α2J2 (κr) cos 2θ

−
1

κ2

[
wεψ

(
µ2

+ κ2
) (
z′′2 − z2

0

)
+G

(out)
0 −G

(in)
0

]
+

2

κ4
wεψ

(
µ2

+ κ2
)
, (16)

whereG(out)0 = 2wεψ , the e-folding numberµ is determined
by

µ2
= G

(out)
1 =

1

wεψ

(
uεH

4H 2
0

−
ω2
g,0 εχεq

wεψ

)
(17)

and we have used the notationsκ2
= −G

(in)
1 , z0 = (w +

u)/(2wεψ ), z′′ = z + z0, r = (x′′2
+ z′′2)1/2 and θ =

arctan(x′′/z′′). Our solutions (15) and (16) must satisfy the
standard physical boundary conditions across the edge of the
vortex core. We require that the functionG is continuous and
that its argumentψ + uz is constant atr = r0. As a conse-
quence, the stream functionψ is also continuous across the
core edge, providing the finiteness of the flow velocity. In
addition, we require that the flow velocity, and consequently,
the radial derivative(∂/∂r)δψ , is also continuous. Eliminat-
ing the amplitudesαi , βi , (i = 0, 2) from the corresponding
continuity relations, we obtain the nonlinear dispersion rela-
tion

2

r0

(
µ2

κ2
+ 1

)
=
µ2

κ2

(∂/∂r0)J2 (κr0)

J2 (κr0)

+
(∂/∂r0)K2 (µr0)

K2 (µr0)
. (18)

It is worth noting that this dispersion relation is related only
to the second harmonic.

4 Vortex chains

Vortex chains, with various forms, may arise in ordinary flu-
ids and plasmas in the presence of sheared flows, as a result
of the nonlinear saturation of the Kelvin-Helmholtz instabil-
ity. They typically appear in more complicated geometries,
in which the asymptotic form of the functionG in Eq. (4) is
nonlinear.

Several analytical and semi-analytical vortex chain solu-
tions have been constructed so far from a simplified version
of Eq. (4) in the form of the Liouville equation

∇
2ψ = G (ψ + uz) . (19)

Obviously, Eq. (19) is applicable to acoustic-gravity phe-
nomena only if the quantitiesH andq0 are related through

u

∫
dz

4H 2
+ q0

dF (ψ + uz)

d (ψ + uz)
= 0. (20)

This condition may be imposed in advance (i.e. indepen-
dently of the solution forψ , which is still unknown) only
if F is a linear function on the entirex, z plane. The slope of
such a linear function is readily obtained from the asymptotic
version of Eq. (5). Thus,

F1 ≡
dF (ψ + uz)

d (ψ + uz)
= p

−1/γ
0 (zcr)

dp0 (zcr)

dzcr

· lim
z→±∞

1

ψ0 + uz

[
p

1/γ
0 (zcr)

ρ0 (zcr)
−
p

1/γ
0 (z0)

ρ0 (z0)

]
= const., (21)

whereψ0(z) is the unperturbed stream function, andz0 is de-
fined byψ0(z0)+uz0 = 0. Noting that in the zero-amplitude
limit, the unperturbed stream function also satisfies Eq. (19),
and using the quadratures, we obtain the following implicit



336 D. Jovanovíc et al.: Acoustic-gravity nonlinear structures

relation betweenψ0 and the asymptotic form of the corre-
sponding functionG

z =

∫ ψ0−uz

dζ

[
2
∫ ζ

dξ G (ξ)
]−1/2

. (22)

4.1 Kelvin-Stewart cat’s eyes

For the acoustic-gravity problem, the Kelvin-Stewart cat’s
eyes solution of the Liouville Eq. (19) was found previously
(Stenflo, 1994; Shukla and Shaikh, 1998). It has the form

ψ = −uz+ A ln

[
coshkz+

(
1 − β−2

)1/2
coskx′′

]
, (23)

whereA, k andβ are arbitrary constants. Introducing the
above expression into Eq. (19), one readily obtains the cor-
responding expression

G (ξ) =
Ak2

β2
exp

(
−

2ξ

A

)
. (24)

The cat’s eyes may be visualized as a row of identical vor-
tices, with the typical spatial scale 2π/k, which are driven
by an anti-parallel shear flow. From Eqs. (20), (21), and (23)
one can see that such a solution is possible only when the un-
perturbed quantitiesp0, ρ0 andv0 (v0 = −dψ0/dz) asymp-
totically, for large|z|, behave as

v0 − u ∼
z

|z|
,
p

1/γ
0

|z| ρ0
∼ const.,

and

ρ
1/2
0

(
d2/dz2

)
ρ

−1/2
0

(d/dz) p
1−1/γ
0

∼ const. (25)

4.2 Row of counter-rotating vortices

The solution in the form of a row of counter-rotating vortices

ψ = −uz+ Aarctanh
κz coskxx

kx coshκzz
, (26)

is obtained from Eq. (19) whenG is adopted as

G (ξ) =
A

4

(
κ2
z − k2

x

)
sinh

4ξ

A
, (27)

which is possible only under the following asymptotic con-
ditions for|z| → ∞

v0 = u,
p

1/γ
0

ρ0
∼ const., (28)

and

ρ
1/2
0

(
d2/dz2

)
ρ

−1/2
0

(d/dz) p
1−1/γ
0

∼ const. (29)

Although the nonlinear structure in the form (26) is known
in the literature for the ordinary fluids and plasmas (see, e.g.
Mallier and Maslowe, 1993), until now it has not been pro-
posed in the acoustic-gravity context.

5 Weakly two-dimensional vortex chains

The exact analytical vortex chain solutions (23) and (24) have
been obtained only for the very specific density, pressure and
shear flow profiles described in Sect. 4. Naturally, nonlinear
structures with similar topologies are expected to exist in a
much broader variety of atmospheric configurations. As an
example, in this Section, we will construct several weakly 2-
D (two-dimensional) chains, with∂ψ/∂z � ∂ψ/∂x. How-
ever, the overall picture of the generation of vortex chains is
still not clear, and additional extensive studies are necessary.

In the presence of a shear flow in the unperturbed state,
whose stream functionψ0 satisfies the Liouville equation

ψ0 + uz = G0 (ψ0 + uz) , (30)

and for the density and pressure profiles that satisfy the con-
dition

u

∫
dz

4H 2
+ q0

dF (ψ + uz)

d (ψ + uz)
= a · (ψ0 + uz) , (31)

we may rewrite our basic Eq. (4) as(
∇

2
− a

)
(ψ − ψ0) = G1 (ψ + uz)− G0 (ψ0 + uz) , (32)

whereG1 (ξ) = G (ξ) − aξ , anda is an arbitrary constant.
Obviously, a localized solutionψ → ψ0 for |z| → ∞ is ob-
tained if the functionG1 behaves asymptotically as limψ→ψ0

G1 (ψ + uz) = G0 (ψ0 + uz).
Two different solutions of Eq. (32), found numerically in

the context of plasma physics, can be applied here to the
acoustic-gravity problem.

5.1 Tearing and bending modes

First, we assume that in the unperturbed state there exists a
shear flow in thex direction, whose velocityexv0(z) is given
by

v0 (z) = u− Aκz tanhκzz, (33)

which corresponds to

ψ0 = −uz+ A ln coshκzz, (34)

and

G0 (ξ) = Aκ2
z exp

(
−

2ξ

A

)
. (35)

We proceed by adoptingG1 = G0 in Eq. (32), and look for a
weakly 2-D solution in the form

δψ ≡ ψ − ψ0 = δψ0 (z)+ δψ1 (z) coskxx, (36)

with δψ0 � δψ1. This permits us to rewrite Eq. (32) as two
coupled equations forδψ0 andδψ1(
d2

dz2
− a

)
δψ0

−
Aκ2

z

cosh2 κzz

[
exp

(
−

2δψ0

A

)
− 1

]
= 0, (37)



D. Jovanovíc et al.: Acoustic-gravity nonlinear structures 337

and[
d2

dz2
− k2

x − a

+
2κ2

z

cosh2 κzz
exp

(
−

2δψ0

A

)]
δψ1 = 0. (38)

Equations (32)–(35) and (37), (38) have been extensively
studied (Vranjěs and Jovanović, 1996, 1997). In the linear
limit, Eq. (32) has a stable solution forkx < (κ2

z − 1)1/2.
Conversely, a localized nonlinear solution was found from
Eqs. (37) and (38) if 0≤ κz ≤ 1, i.e. in the parameter range
in which the linear solution is unstable. It consists of two
nonlinear modes, which correspond to the even and odd so-
lutions forδψ1. Physically, these two modes emerge due to
the tearing/reconnection, and the bending of the stream lines,
respectively. The wavelength of the bending mode is almost
an order of magnitude larger.

We note that the asymptotic dependence of the zero-order
shear flow (33) is the same as in the case of the Kelvin-
Stewart cat’s eyes. The density and pressure profiles that
admit this type of vortex chain are determined from Eqs. (5)
and (31), with the additional requirement thatF is a linear
function which asymptotically, forz → ±∞, yields

p
1/γ
0

|z| ρ0
∼ const., (39)

and

ρ
1/2
0

d2

dz2
ρ

−1/2
0 +

F1

u

(d/dz) p
1−1/γ
0 (z)

(d/dzcr) p
1−1/γ
0 (zcr)

∼
z

|z|
. (40)

From (40) one may conclude that the symmetric (i.e. the tear-
ing/reconnection) vortex chain, (37) and (38), has the same
physical nature as the Kelvin-Stewart cat’s eyes, which are
adjusted here to a nonsymmetric atmospheric configuration,
i.e. to different values of the parameters 1/4H 2 anddq0/dz

at low (z → −∞) and high (z → +∞) altitudes.

5.2 Double vortex chain

A chain of a different type is obtained when we adoptψ0 =

G0(uz) = 0, and

G1 (ξ) =
α

2 coshξ
. (41)

For a weakly 2-D solution (36), using (41), the basic Eq. (32)
breaks down to the following two equations(
d2

dz2
− a

)
δψ0 −

α

2
cosh−1 (δψ0 + uz) = 0, (42)

and[
d2

dz2
− k2

x − a −
α

2

sinh(δψ0 + uz)

cosh2 (δψ0 + uz)

]
δψ1 = 0. (43)

The above system of equations was studied in Vranješ and
Jovanovíc (1997), where a numerical solution was found in
the form of two parallel vortex chains, shifted by a half-
wavelength relative to each other. The asymptotic behaviour
of the unperturbed quantities, forz → ±∞, are determined
from Eqs. (21) and (31) as

p
1/γ
0

zρ0
∼ const., (44)

and

ρ
1/2
0

d2

dz2
ρ

−1/2
0 +

F1

u

(d/dz) p
1−1/γ
0 (z)

(d/dzcr) p
1−1/γ
0 (zcr)

∼ const. (45)

Noting that the one-dimensional component of
the fluid velocity (Vranjěs and Jovanović, 1997),
δv0 = −(d/dz)δψ0(z), which takes here the role of
the background shear flow, features three counter-streaming
flows at z = 0 andz = ±a/α; this double vortex chain
may be interpreted physically as a combination of two
Kelvin-Stewart cat’s eyes chains with opposite orientation,
brought close to each other.

6 Nonlinear generation of shear flows

In Sects. 4 and 5, we demonstrated the existence of station-
ary vortex chains in atmospheric configurations, character-
ized by the existence of counter-streaming flows, at low and
high altitudes. A plausible explanation is that such structures
result from the nonlinear saturation of the Kelvin-Helmholtz
instability.

It should be noted that a linear instability of acoustic-
gravity waves also arises in the absence of shear flows, if
the temperature gradient is much larger than the density gra-
dient, i.e. forω2

g < 0 (see, e.g. Stenflo, 1990). The nonlin-
ear three-wave interaction of such large amplitude acoustic-
gravity waves was studied by Axelsson et al. (1996), within
the framework of the weak-turbulence approximation.

In this Section, we shall study the modulation instability
of short-wavelength acoustic-gravity waves, and show that it
leads to the generation of large-scale horizontal shear flows.
Furthermore, on the short spatial scale, we find the evidence
of a transition to chaos.

We study the acoustic-gravity phenomena described by
Eqs. (4) and (5) in the absence of shear flows,ψ0 = 0,
considering a constant characteristic lengthH , and parabolic
profiles of the quantitiesq0(z) andχ0(z), i.e.

q0 (z) = q0 (0)+Qz2, (46)

χ = δχ + χ0 (0)+�z2, (47)

whereQ and� are constants, and for simplicity, we have
chosen the critical altitude to be zero (zcr = 0). We look for
a stationary solution. From Eqs. (46) and (47) the asymptotic
forms ofF andG are then readily found as

F (ξ) =
�

u2
ξ2 and G (ξ) =

1

4H 2
ξ + 2

�Q

u4
ξ3. (48)
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Fig. 1. The horizontal dependence of the first fourkx Fourier com-
ponents of the stream function. The top curve is thekx = 0 mode,
i.e. the stream function of the zonal flow.

We use these asymptotic expressions in the entirex, z

plane, also those nonlinear characteristics that do not extend
to infinity. Such a procedure, in the small but finite ampli-
tude limit yields results that are equivalent to the standard
coupled-mode theory. As a result, from Eq. (5), we obtain
the nonlinear Schrödinger-like equation(

∇
2
⊥

−
1

4H 2

)
ψ

−2
�Q

u4 (ψ + uz)
[
(ψ + uz)2 − u2z2

]
= 0. (49)

Here, Eq. (49) is numerically solved, and the results are
displayed in Figs. 1 and 2 for the nonlinear solutions that
asymptotically (atz → ∞) coincide with a linear acoustic-
gravity wave emitted from the critical surfacez = 0 in the
horizontal direction (i.e. withkx 6= 0 andkz = 0). The
presence of the inhomogeneities (46) and (47) introduces a
weakz-dependence of the effective wave numberkz of the
linear mode. With our choice of parameters, the entire at-
mosphere is transparent to the fundamental mode, with the
turning point of the second harmonic located atztp ≈ 20,
while those of the higherkx harmonics are located at propor-
tionally larger distances fromz = 0.

0 10 20 30
0

5

x

z
Fig. 2. The surface plot of the stream function.

Figure 1 shows that the nonlinearly generated zonal flow
is spatially restricted to the critical region in which the sec-
ond harmonic linear mode is evanescent, i.e. 0< z < ztp.
This result indicates that the modulation instability, which is
responsible for the excitation of the zonal flow in the time
domain, must also involve higher-order nonlinear processes,
such as the coupling with the second harmonic. We also find
that the nonlinear interactions comprising evanescent Fourier
modes with higherkx produce short-scale, nonlinear oscilla-
tions in the direction of thez axis, also restricted to the re-
gion 0 < z < ztp, as can be seen in Figs. 1 and 2. While
the basic configuration of the zonal flow appears to be robust
(see Fig. 1), the distribution of these short-scale (both inx

andz) quasi-modes is very sensitive to the small changes in
the phase of the fundamental wave, and cannot be effectively
controlled by the asymptotic boundary condition. Since they
are also rather slowly converging with largekx , their be-
haviour indicates the possibility of intermittency and chaos
(Stenflo, 1996).

7 Conclusions

In this paper, we have developed a general theory of nonlin-
ear vortex structures associated with acoustic-gravity pertur-
bations in the Earth’s atmosphere. Two classes of such non-
linear structures have been distinguished, the isolated (soli-
tary) vortices and vortex chains. Due to their topological con-
straints, the solitary vortices share many common features,
since they are produced by the nonlinearities acting within
the core leading to a linear (or weakly nonlinear) evanescent
response in the outer region. As typical examples, dipolar
and tripolar solitary vortices have been presented and dis-
cussed in detail. The dipoles move relatively to the sur-
rounding fluid, and they are much smaller than the charac-
teristic length of the density and pressure inhomogeneities.
Conversely, the tripoles are carried by the fluid, and they
emerge in the presence of sheared flows and certain, rather
specific, density and temperature profiles. The vortex chains
have been shown to exist only in the presence of shear flows,
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while their actual form is determined by the unperturbed den-
sity, temperature and velocity profiles. Besides the classi-
cal Kelvin-Stewart cat’s eyes chain, which can be realized
under very restrictive conditions, a family of tearing- and
bending-type vortex chains has been shown to exist under a
broader class of atmospheric conditions. The mode-coupling
mechanism for the nonlinear generation of shear flows in the
presence of linearly unstable acoustic-gravity waves, possi-
bly also leading to intermittency and chaos, is presented.
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