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Abstract. A catalogue of nonlinear vortex structures associ- where the notations are

ated with acoustic-gravity perturbations in the Earth’s atmo- 1y
sphere is presented. Besides the previously known Kelviny = —, y = —— 5, ,
Stewart cat's eyes, dipolar and tripolar structures, new solu- o P \pg dz =2er
tions having the form of a row of counter-rotating vortices, 1 d2p=Y? 1-1/y
; ) X : _ 12909 _ 0
and several weakly two-dimensional vortex chains are given-—- = pg 12 and go = gy 3)
The existence conditions for these nonlinear structures are N [(d/dz) py ]z:zcr

discussed with respect to the presence of inhomogeneities Qfiere, v is the stream function, defined hy = —ey X
the shear flows. The mode-coupling mechanism for the nony g /54, wherew is the fluid velocity. As usualp and p

linear generation of shear flows in the presence of linearlyyre the pressure and density, anty ~ 1.4) is the adiabatic
unstable acoustic-gravity waves, possibly also leading to ingonstant. The subscript “0” denotes the unperturbed quan-
termittency and chaos, is presented. tities, andz = z., is the critical vertical position that will

be defined later. Equations (1) and (2) were derived (Sten-
flo, 1990; Stenflo and Stepanyants, 1995) for low frequency
disturbances in an almost incompressible fllg/py «
3p/po < 1, usually referred to as the anelastic regime. Al-

i recent years there s been a gawing merst in 0 E SeTater G119 s recen o o
nonlinear effects associated with large amplitude acoustic? y P pertu . y
. . ; , short wavelengths and small (but finite) amplitudes, the sys-
gravity perturbations in the Earth’s atmosphere. These ef: . .
. . tem above was used as a simple model to study certain large

forts were motivated by the need to obtain more accurate . S
- . . amplitude phenomena, such as self-organization into coher-
predictions of the dynamics of the atmosphere under various

. . . . . . ent structures. A more rigorous analysis (Jovaoti al.,
meteorological conditions, including different profiles of the 2001) shows that the same equations are also valid in the
pressure and density, as well as the presence of shear flows, . . > equations

. strongly nonlinear regime, in the vicinity of the extremum
The most commonly used model equations for the two-

dimensional,d/dy 0, large amplitude acoustic-gravity 5 Zer Of the background density, where the condition
' = - 2 1/2 ; 3
phenomena have the form (V=po/po)™"* > |V po/ pol is fulfilled.

In the nonlinear regime, the dynamics of the acoustic-
gravity phenomena, as described by Egs. (1) and (2), is dom-
inated by nonlinear convection, and as a consequence, var-

1 Introduction

2 (ey X Vl/f) V| V2 — 1w ious coherent localized vortex structures may arise. The
ot 4H?2 3t e - : -
form of the vortices is determined by the spatial profiles of
= —(ey x Vqo) - Vx, (1)  the background densityo(z) and pressurgpo(z), and by
the zero-order shear flow, etc. The aim of this paper is to
and present a unified theory of acoustic-gravity vortices. Be-

sides providing a catalogue of various vortex modes, whose

description is scattered in the existing literature, we also
[& - (ey x VI/’) ' V} x=0. (2 present several new solutions in the form of weakly two-

dimensional vortex chains. In Sect. 6, we also present a new
Correspondence tdD. Jovanov (djovanov@phy.bg.ac.yu) nonlinear mechanism for the generation of shear flows in the
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atmosphere, based on the modulational instability ofbut permitting the constant& 1 and Gq 1 to take different
acoustic-gravity waves. In the strongly nonlinear phase, thevalues inside and outside of the vortex core. The core is cho-
latter provides the energy source for the vortex chain cresen to be a circle with radiug. Although such a choice
ation. The numerical studies also indicate the possibility of aseems to be very restrictive, it represents a paradigm for vor-
transition to chaos. tices which are characterized by a single region of closed
isolines. Due to their topological constraints, all solitary vor-
tices (including those with more complicated expressions for
F and @) share many common features, resulting from the
fact that they are produced by the nonlinearities acting within
the core, leading to a linear (or weakly nonlinear) evanescent
response in the outer region.

2 Stationary solutions

We look for a solution of Egs. (1) and (2) that is station-
ary in the reference frame travelling with a constant ve-
locity u along thex axis, i.e. which is dependent only on
the vertical coordinate and the coordinate — ut. Using

.1 Dipol
d/0t = —u(d/dx) and the properties of the vector product, 3 poles
Egs. (1) and (2) are readily integrated to The acoustic-gravity solitary vortices that propagate relative
dz dF (Y +uz) to the surrounding fluid have the form of dipoles. They
2 _
VY + ”/ a2 T4 W tuz) GW+uz). (4 \ere described previously (Stenflo, 1987; Stenflo and Stepa-

nyants, 1995). From the asymptotic considerations, it is ob-
vious that for a non-zero vortex velocity, the simple ex-
x=F W +uz), (5)  pression (6) can be satisfied in the outer region only when the
unperturbed quantitiegp(z) andgo(z) are linear functions,
while H is constant and linL 1 ¥0(z) = 0. Such atmo-
spheric conditions may be realized only approximately for
small vortices (i.e. the vortices that are much smaller than the
characteristic length of the density and pressure inhomogen-

and

whereF andg are arbitrary functions of the nonlinear char-
acteristicy + uz. We are particularly interested in nonlinear
solutions that are localized, i.e. which vanish fet z) —
+o00. For the localized solutions, substituting the unper-
turbed valuego(z), po(z) andy(z) into Egs. (4) and (5) we :
can readily evaluate the asymptotic forms of the functigns 11€S)- _

andg. Since they are continuous functions, their asymptotic_ Fr the linear functions- andg, Egs. (4) and (5) are read-
forms are applicable along all the nonlinear characteristicd!Y intégrated asx = xo(z) — (wg/u) ¥ and

¥ (x, z)+uz = const. that extend to infinity in the, z plane.

There may exist finite regions, usually referred to as vortex M r>ro
cores, in which the characteristics are closed lines, wifere , — _ K3 (uro) 7
) _ urgCost 1 5" 3 2 (7)
andg may take completely different forms, provided that the pet S r pt Jikr) <70
physical boundary conditions across the vortex core edge are k2 ro k2 J1(kro) B

satisfied. Obviously, the full nonlinear problem is impossi-
ble to solve in the general case, since that would involve thevherer = (x”% + z%)Y/2, 6 = arctanix”/z), x” = x — ut,
inversion of the unknown function& andg along sepatri- andu? = 1/(4H?) — wZ/u?, and where the characteristic
ces between the regions of open and closed characteristicé/ave numbek is calculated from the nonlinear dispersion
whose actual shape is also not known in advance. Furtherelation that is due to the appropriate boundary conditions at
more, such a complex problem often does not have a uniqué = 0
solution. The eventu_al stationary state (if an_y!) to which o (k7o) K> (uro)
the system saturates in the evolution, as described by the fuili(j *0) K1 (iro) =
Egs. (1) and (2), depends very sensitively on the initial con- 1hero HARLIHTO
ditions and fine details, many of which are not included in Here, the constambf, = —(1/u)(d/dz) xo(z) is the squared
our Egs. (4) and (5). Metaphorically, it is often said that the Brunt-Vaisala frequency, and; and K; are the Bessel and
state of the atmosphere is determined by the flapping of anodified Bessel functions of the orderigfrespectively. For
butterfly's wing at some distant past. typical atmospheric conditions, the vortex core radigiss
Naturally, analytical solutions are available only if the of the order of 10-1000 m in the equatorial atmosphere. The
functions# andg have sufficiently simple forms, which are, vortex velocityu is close to the sound speed, except for tem-
in turn, permitted only for some specific profiles of the un- perature gradients corresponding to the instability threshold,
perturbed quantitieso(z), po(z) andyo(z) . w, ~ 0, when the vortex speed may be much lower. For
details, we refer the reader to a previous paper (Stenflo and
Stepanyants, 1995).

©)

3 Solitary vortices

Solitary vortices can be constructed analytically when the3-2  111POIES

functionsF andg are adopted as linear, i.e. . . . . .
F g P Tripoles are known to emerge in two-dimensional incom-

FE)=Fy+ F1-&, GE)=Go+G1-¢&, (6) pressible flows. Stable tripolar vortices were observed in
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the Earth’s atmosphere (Pingree and Le Cann, 1992) andnd we have used the notation$ = —G(li"), 20 = (w+
produced in the rotating tank experiments (van Heijst andu)/(2wey), z” = z + zo, r = (x"2 + 22 and§ =
Kloosterziel, 1989). Their theoretical explanation was pre-arctar(x”/z”). Our solutions (15) and (16) must satisfy the
sented first in the context of plasma physics (Jovameti  standard physical boundary conditions across the edge of the
al., 1998), and recently, they were also constructed for theortex core. We require that the functigris continuous and
acoustic-gravity mode (Jovanéwet al., 2001). that its argumen{ + uz is constant at = rg. As a conse-
Tripoles can also be analytically constructed using thequence, the stream functiah is also continuous across the
simple expressions (6), but in contrast to the dipoles, theycore edge, providing the finiteness of the flow velocity. In
do not propagate relative to the surrounding fluid, i.e. theyaddition, we require that the flow velocity, and consequently,
are carried by a zero-order flow. The solution of the basicthe radial derivativeéd/dr)svr, is also continuous. Eliminat-
Egs. (4), (5), and (6), in the form of a tripole, can be obtaineding the amplitudes;, 8:, (i = 0, 2) from the corresponding
only in the presence of a sheared flow with a linear velocity continuity relations, we obtain the nonlinear dispersion rela-
dependence, linearly inhomogeneous inverse square lengtion
1/H?, and paraboli¢-dependence of the quantitigs and

qo, i.e. 2 (p? 1) = U2 (3/0r0)J2 (ko)

, ) ro \ k2 K2 Jo (kro)
X:éx—wg’(,(z—i-exz), 9)

(8/9ro) K2 (uro) (18)

v=sv+w(zte?), (10) K2 (uro)

) It is worth noting that this dispersion relation is related only
q0 = 2+ €427, (11)  to the second harmonic.
and

1 1 4 \ortex chains

m = F(l"r‘ZEHZ), (12)

Hy Vortex chains, with various forms, may arise in ordinary flu-
where the perturbationsy andsy are vanishing foz — ids and plasmas in the presence of sheared flows, as a result
+00, and wherew, o, w, Ho, €;, €y, €;, andey are con- of the nonlinear saturation of the Kelvin-Helmholtz instabil-
stants, satisfying ity. They typically appear in more complicated geometries,
y e in which the asymptotic form of the functiah in Eq. (4) is
- (13)  nonlinear.

W €x Several analytical and semi-analytical vortex chain solu-
and tions have been constructed so far from a simplified version

5 of Eg. (4) in the form of the Liouville equation
€y €y €\ _ ,52%0 €q

(&G -2)-m2(-2) 0 s @9
Under these conditions, the outer solution is readily ex-Obviously, Eq. (19) is applicable to acoustic-gravity phe-
pressed in terms of the modified Bessel functidfis K,,  homena only if the quantitied andqo are related through

of the zeroth and second order, as u/ dz +q dF (Y +uz) 0 (20)

0 =0
89" = BoKo (uur) + BaK2 (jur) COS D). (15) 4H? d (Y +uz)

Likewise, from the requirement that the terms which are lin- TiS condition may be imposed in advance (i.e. indepen-
ear inz must cancel out, we obtaifi™ = F©  and the dently of the solution for/, which is still unknown) only
solution is. therefore ' 1 o if 7 is a linear function on the entivg z plane. The slope of

such a linear function is readily obtained from the asymptotic

sy = agJy (k1) + aaJo (kr) COS D version of Eq. (5). Thus,
1 2, 2\N(2 .2 (out) (in) dF (Y + uz) dpo (zer)
— — |wey (1°+x7) (2" = 25) + Gy — Gy g2 2RO =Ly, EP0 Zer)
KZ [ ( ) ( ) ] d (¥ +uz) Po (Zer) dzer
2 2
+ G wey (U +k7), (16) 1 1/y 17y
P ( ) - lim Po (Zer) _ Do (zo) — const, (21)
z—>F00 g+ uz P0 (Zer) 00 (z0)

whereG{"" = 2wey, the e-folding numbe is determined
by wherey(z) is the unperturbed stream function, anpds de-
) fined byyo(zo) +uzo = 0. Noting that in the zero-amplitude
1 uey  “e0€x%q 17) limit, the unperturbed stream function also satisfies Eq. (19),
Wey 4H02 wey, and using the quadratures, we obtain the following implicit

MZ — Ggout) —
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relation between/g and the asymptotic form of the corre- 5 Weakly two-dimensional vortex chains
sponding functiorg;
The exact analytical vortex chain solutions (23) and (24) have

_ Vo—uz dclo ¢ d iz 22 been obtained only for the very specific density, pressure and
°= / ¢ / §G® ’ (22) shear flow profiles described in Sect. 4. Naturally, nonlinear
structures with similar topologies are expected to exist in a

4.1 Kelvin-Stewart cat's eyes much broader variety of atmospheric configurations. As an

example, in this Section, we will construct several weakly 2-
D (two-dimensional) chains, withy/dz > dy/dx. How-
ever, the overall picture of the generation of vortex chains is
still not clear, and additional extensive studies are necessary.
In the presence of a shear flow in the unperturbed state,
whose stream functiotg satisfies the Liouville equation

For the acoustic-gravity problem, the Kelvin-Stewart cat's
eyes solution of the Liouville Eq. (19) was found previously
(Stenflo, 1994; Shukla and Shaikh, 1998). It has the form

1/2
v =—uz+ Aln [coshkz + (1 - ﬂ‘2> coskx”] . (23)

where A, k and 8 are arbitrary constants. Introducing the ¥+ uz = Go (Yo + uz), (30)

above expression into Eq. (19), one readily obtains the cor- . i :
responding expression and for the density and pressure profiles that satisfy the con-

dition

Ak? 2 dz dF (¢ +uz

&) =" eXp<_X)' CO [ g T o, @D

The cat's eyes may be visualized as a row of identical vor-ywe may rewrite our basic Eq. (4) as

tices, with the typical spatial scaler2k, which are driven

by an anti-parallel shear flow. From Egs. (20), (21), and (23)<V2 — a) (Y — o) =G (¥ +uz) — Go(Wo+uz), (32)

one can see that such a solution is possible only when the un- _ _

perturbed quantitiepo, po andvg (vo = —do/dz) asymp- whereGy (§) = G (§) — a&, anda is an arbitrary constant.

totica”y, for |arge|z|' behave as ObViOUSly, a localized SOlUtiom’ — Yo for |z] - oo is ob-
1y tained if the functiorj; behaves asymptotically as ljm, y,

vo—u~ 2 PO onst G1(f +uz) = Go (Yo + uz).

0 lzI” |zl po ’ Two different solutions of Eq. (32), found numerically in

the context of plasma physics, can be applied here to the

acoustic-gravity problem.

and
1/2 ~1/2
IOO/ (dZ/dZZ) :00 /
(d/dz) py "

~ const (25) 5.1 Tearing and bending modes

First, we assume that in the unperturbed state there exists a

4.2 Row of counter-rotating vortices shear flow in the: direction, whose velocity, vo(z) is given

The solution in the form of a row of counter-rotating vortices by

I vo (z) = u — Ak, tanhk,z, (33)
V=—uz+A arctanhw, (26) ) )
kx coshe;z which corresponds to
is obtained from Eq. (19) whefi is adopted as Yo = —uz + A In coshe.z, (34)
_Ar o o K

Gg¢) = 2 (Kz - kx) smh? (27) and
which is possible only under the following asymptotic con- Gq (§) = AKZZ exp<—2—s> . (35)
ditions for|z| — oo A

1y We proceed by adopting; = Gg in Eq. (32), and look for a
vo=u., PO~ const, (28)  weakly 2-D solution in the form

£0
and 8y =Y — Yo =8vo0(2) + 5y (z) CcoSkyx, (36)

Y2 (12,0.2) ,~1/2 with 8o > 8v1. This permits us to rewrite Eq. (32) as two

Po’” (d*/dz?) py ~ const (29) coupled equations faryg andsvry

(d/dz) py "

d2
Although the nonlinear structure in the form (26) is known (@ - a) )
in the literature for the ordinary fluids and plasmas (see, e.g.

Mallier and Maslowe, 1993), until now it has not been pro- AICZZ [exp( 28w0> B 1]

posed in the acoustic-gravity context. " Cosfrz =0, (37)
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and The above system of equations was studied in V&aajed
) Jovanovt (1997), where a numerical solution was found in
d_ —k2_y4 the form of two parallel vortex chains, shifted by a half-
dzz2 wavelength relative to each other. The asymptotic behaviour
242 25 of the unperturbed quantities, for— +oo, are determined
Ik exp< 0>:| Sy = (38)  from Egs. (21) and (31) as
costf k.z A 1
/V
Equations (32)—(35) and (37), (38) have been extensively? ~ const, (44)

studied (Vranjg and Jovano@i 1996, 1997). In the linear
limit, Eq. (32) has a stable solution fér < (k2 — 1)/2.
Conversely, a localized nonlinear solution was found from 12 d? _12  F1 (d/dz) Po —y ()
Egs. (37) and (38) if G< «, < 1, i.e. in the parameter range o a2 Po w 1/d 1y
in which the linear solution is unstable. It consists of two d/ Z”)po (Zer)
nonlinear modes, which correspond to the even and odd soNoting that the one-dimensional component of
lutions for§vr1. Physically, these two modes emerge due tothe fluid velocity (Vranj& and Jovanog, 1997),
the tearing/reconnection, and the bending of the stream linesvg = —(d/dz)8v¥o(z), which takes here the role of
respectively. The wavelength of the bending mode is almosthe background shear flow, features three counter-streaming
an order of magnitude larger. flows atz = 0 andz = +a/«; this double vortex chain
We note that the asymptotic dependence of the zero-ordemay be interpreted physically as a combination of two
shear flow (33) is the same as in the case of the Kelvin-Kelvin-Stewart cat’s eyes chains with opposite orientation,
Stewart cat's eyes. The density and pressure profiles thatrought close to each other.
admit this type of vortex chain are determined from Egs. (5)
and (31), with the additional requirement th&tis a linear
function which asymptotically, foy — +o0, yields

and

~ const (45)

6 Nonlinear generation of shear flows

1/y In Sects. 4 and 5, we demonstrated the existence of station-
Po const, (39) ary vortex chains in atmospheric configurations, character-
|zl o ized by the existence of counter-streaming flows, at low and
and high altitudes. A plausible explanation is that such structures

. result from the nonlinear saturation of the Kelvin-Helmholtz
e & iz Rd)dY) g M@z gy stabiity S |
0 420 u (d/dzu)pl 1/y o) IZ] It should be noted that a linear instability of acoustic-

gravity waves also arises in the absence of shear flows, if
From (40) one may conclude that the symmetric (i.e. the tearthe temperature gradient is much larger than the density gra-
ing/reconnection) vortex chain, (37) and (38), has the samdlient, i.e. foro? < 0 (see, e.g. Stenflo, 1990). The nonlin-
physical nature as the Kelvin-Stewart cat's eyes, which areear three-wave interaction of such large amplitude acoustic-
adjusted here to a nonsymmetric atmospheric configurationgravity waves was studied by Axelsson et al. (1996), within
i.e. to different values of the parametey®#? anddqo/dz the framework of the weak-turbulence approximation.

atlow (z — —oo) and high ¢ — +00) altitudes. In this Section, we shall study the modulation instability
of short-wavelength acoustic-gravity waves, and show that it
5.2 Double vortex chain leads to the generation of large-scale horizontal shear flows.
Furthermore, on the short spatial scale, we find the evidence
A chain of a different type is obtained when we adgpt= of a transition to chaos.
Go(uz) =0, and We study the acoustic-gravity phenomena described by
o Egs. (4) and (5) in the absence of shear flows, = 0,
G1(§) = > CoslE (41)  considering a constant characteristic lengthand parabolic
coshe . " .
profiles of the quantitiego(z) and xo(2), i.e.
For a weakly 2-D solution (36), using (41), the basic Eq. (32) 2
breaks down to the following two equations 90(2) = q0 (0) + 07", (46)
2 X =08x+ x0(0) + Q% (47)
o
<@ - a) 8o — > cosh* (80 + uz) =0, (42)  where @ andQ are constants, and for simplicity, we have
chosen the critical altitude to be zem (= 0). We look for
and a stationary solution. From Eqgs. (46) and (47) the asymptotic

forms of 7 andg are then readily found as

QQ

@9 Fe)= 38 and g = st+ =28 (s

., a sinh(8yo + uz)
Z__k - |8y1=0
|:dz2 74T Cosk (890 + uz) V1
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2k Fig. 2. The surface plot of the stream function.

-15- Figure 1 shows that the nonlinearly generated zonal flow
0 20 40 is spatially restricted to the critical region in which the sec-
ond harmonic linear mode is evanescent, i.e<Q < zp.
15/ This result indicates that the modulation instability, which is
3kx0 responsible for the excitation of the zonal flow in the time
0 domain, must also involve higher-order nonlinear processes,
such as the coupling with the second harmonic. We also find
-15; that the nonlinear interactions comprising evanescent Fourier
0 20 40 modes with highek, produce short-scale, nonlinear oscilla-
tions in the direction of the axis, also restricted to the re-
z gion 0 < z < z;, as can be seen in Figs. 1 and 2. While
the basic configuration of the zonal flow appears to be robust
(see Fig. 1), the distribution of these short-scale (both in
andz) quasi-modes is very sensitive to the small changes in
the phase of the fundamental wave, and cannot be effectively
controlled by the asymptotic boundary condition. Since they
We use these asymptotic expressions in the entire ~ are also rather slowly converging with large, their be-
plane, also those nonlinear characteristics that do not extenflaviour indicates the possibility of intermittency and chaos
to infinity. Such a procedure, in the small but finite ampli- (Stenflo, 1996).
tude limit yields results that are equivalent to the standard
coupled-mode theory. As a result, from Eq. (5), we obtain

Fig. 1. The horizontal dependence of the first fayrFourier com-
ponents of the stream function. The top curve isithe= 0 mode,
i.e. the stream function of the zonal flow.

the nonlinear Sclidinger-like equation 7 Conclusions
<Vf _ %) v In this paper, we have developed a general theory of nonlin-
4H ear vortex structures associated with acoustic-gravity pertur-

Q0 s 9o t_)ations in the Earth’s atmosphere. T_W0 classes_ of such non-
—2— (Y +uz) [(w +uz)c—uz ] =0. (49) linear structures have been distinguished, the isolated (soli-
“ tary) vortices and vortex chains. Due to their topological con-
Here, Eq. (49) is numerically solved, and the results arestraints, the solitary vortices share many common features,
displayed in Figs. 1 and 2 for the nonlinear solutions thatsince they are produced by the nonlinearities acting within
asymptotically (at — oo) coincide with a linear acoustic- the core leading to a linear (or weakly nonlinear) evanescent
gravity wave emitted from the critical surfage= 0 in the response in the outer region. As typical examples, dipolar
horizontal direction (i.e. withk, # 0 andk, = 0). The and tripolar solitary vortices have been presented and dis-
presence of the inhomogeneities (46) and (47) introduces aussed in detail. The dipoles move relatively to the sur-
weak z-dependence of the effective wave numbkegiof the rounding fluid, and they are much smaller than the charac-
linear mode. With our choice of parameters, the entire at-eristic length of the density and pressure inhomogeneities.
mosphere is transparent to the fundamental mode, with th€onversely, the tripoles are carried by the fluid, and they
turning point of the second harmonic locatedzgt ~ 20, emerge in the presence of sheared flows and certain, rather
while those of the highet, harmonics are located at propor- specific, density and temperature profiles. The vortex chains
tionally larger distances from= 0. have been shown to exist only in the presence of shear flows,
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while their actual form is determined by the unperturbed den-Jovanowt, D., Stenflo, L., and Shukla, P. K.: Acoustic gravity tripo-
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