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Abstract. This paper presents a recent methodology devel-
oped for the analysis of the slow evolution of geophysical
time series. The method is based on least-squares fitting of
continuous line segments to the data, subject to flexible con-
ditions, and is able to objectively locate the times of signif-
icant change in the series tendencies. The time distribution
of these breakpoints may be an important set of parameters
for the analysis of the long term evolution of some geophys-
ical data, simplifying the intercomparison between datasets
and offering a new way for the analysis of time varying spa-
tially distributed data. Several application examples, using
data that is important in the context of global warming stud-
ies, are presented and briefly discussed.

1 Introduction

The linear trend constitutes the most straightforward assess-
ment of the long-term behavior of a time series. However,
real time series are generally not well fitted by a straight line
and the use of other analytical functions always raises diffi-
cult interpretation problems. In practice, many data analysis
start by a subjective inspection of the time series graphic of-
ten revealing important features of the data, such as period-
icities, trends, localized anomalies, localized changes in the
trend or in other statistics that may contribute to an under-
standing of the underlying physics. Linear analysis, such as
linear trend fitting or Fourier analysis, cannot deal with het-
erogeneity in the data, and are blind to many of the features
that may be present.

The detection of heterogeneity is central in many geo-
physical problems, namely in the analysis of Global Change.
Some methods, such as DFA (Detrended Fluctuation Analy-
sis,Peng et al., 1994) divide the times series in fixed inter-
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vals and perform a best fit, in the least squares sense, in each
of the subintervals. By doing so, those methods focus on
local aspects of the time series behavior, emphasizing het-
erogeneity. However, the fitting functions present, in most
cases, strong discontinuities at the interval boundaries and
the method doesn’t offer a global description of the data.

Fourier methods deal well with oscillations in the data and
always produce a global analysis. However, those methods
impose periodicity of the time series and don’t cope well with
discontinuities in the data. One may use powerful spectral
methods to analyze the local behavior of time series in mov-
ing time windows and assess the slow change in the spectra,
as done in the Multi Singular Spectral Analysis (Vautard and
Ghil, 1989; Vautard et al., 1992). The analysis is, though,
rather complex and doesn’t deal with the simplest problems
of the change in trend.

Here, we propose a simple non-linear approach that mim-
ics the subjective analysis of a time series graphic that one
may perform with a pen on a piece of paper, yet using an
objective numerical method that minimizes the mean square
error of the fitting. The method consists in fitting the data
with a set of continuous line segments, where the number of
segments, the location of the breakpoints between segments,
and the slopes of the different segments are simultaneously
optimized. Only the overall fit is non-linear as the result is
made of linear segments. The method was originally moti-
vated by the study ofKarl et al.(2000) on the changing trend
of global warming and constitutes an extension of the method
proposed byTomé and Miranda(2004).

Section2 describes the method, Sect.3 presents some
examples of application, Sect.4 shows that this univariate
method may be useful in the analysis of spatially distributed
climate data, Sect.5 addresses the problem of the statistical
significance of the computed partial trends in the presence of
noise.
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2 The method

Let us consider a generic time series ofn elements,

{y(ti)} i = 1, . . . , n (1)

One wants to fit, in a least-squares sense, an unknown num-
ber of continuous line segments to it. Obviously, connecting
all the data points by a strait line leads to the best, but also
the trivial and useless solution with a null square residual
sum. There need to be some additional conditions imposed
to the solutions. The two most obvious possible conditions
are to limit the number or the length of the line segments.
Let us start with the first possibility. Letm+1 be the number
of line segments,m is therefore the number of data points
where two different line segments of the solution meet. Fol-
lowing the terminology ofTomé and Miranda(2004) we call
it breakpoints. The idea is then to perform the best fit of the
piecewise linear function

y(ti) = c +

mm∑
k=0

(bk − bk+1)Tk + bmm+1ti (2)

mm is chosen such that:mm=0, . . . , m and theti data point
belongs toTmm≤ti≤Tmm+1 of the time series (Eq.1). The
first, and probably the most important, unknown is the value
of m. After knowing m, this function (Eq.2) has 2m+2
unknowns: them time positions of the breakpointsTmm,
mm=1, . . . , m, the m+1 slopes of the line segmentsbk,
k=1, . . ., m+1 and the fitting function value at the origin,c.
For this concise writing of the fitting function we takeT0=0
andTm+1=tn. This non linear fitting can be performed us-
ing, among many others possibilities, the Tensolve package,
a software package for solving systems of nonlinear equa-
tions and nonlinear least squares problems using tensor meth-
ods byBouaricha and Schnabel(1997) and freely available
at http://www.netlib.org/toms/768. Nevertheless, as usual in
non linear algorithms, an initial solution is required and the
convergence process is strongly dependent on that first guess.
An inadequate first guess could lead to an erroneous final so-
lution. The authors have applied this methodology to some
temperature time series of Portuguese station data using as
initial solution the results ofKarl et al.(2000) for the global
mean temperature, with satisfactory results.

The need of a suitable first guess implies that an a priori
study of each time series must be done before computing the
fitting. However, regardless of the approach followed, every
solution of a non linear system of equations is obtained by it-
eratively solving systems of linear equations, until some con-
vergence criterion is attained. So, instead of using a generic
non linear problem solver one can find a more suitable set of
linear systems to solve, in order to obtain the best possible
solution of the non linear problem.

The non linear function (Eq.2) becomes a linear function
if one imposes the values of them breakpoint positions,Tmm,
mm=1, . . ., m. In that case the fitting problem could be put
as a linear over-determined system of equations of the type:

min ||y − As|| , (3)

where s is one ranking matrix solution ofm+2 elements,
s=[b1, b2, . . . , bm, bm+1, c] andA is a constant coefficient
[n×m+2] matrix. The algorithm to build theA matrix is
given byTomé and Miranda(2004).

The solution of the non linear system can then be obtained
by solving the linear problem (Eq.3) for all possible values
of the breakpoint positions and, at the end, by choosing the
solution that minimizes the residual square sum. In this way,
one does not need to establish a convergence criterion. The
price to pay for the simplicity of the approach is the fact that
the number of linear systems to solve increases exponentially
as the numbern of time series elements and the numberm of
breakpoints increase, making the methodology unusable for
long series with many possible breakpoints. In this case, the
non-linear solver is also very expensive.

Fortunately, many relevant problems of low frequency
variability or change in geophysics imply a moderate number
of breakpoints and may be described by a not too large num-
ber of data points. By limiting the number of breakpoints and
the minimum distance between consecutive breakpoints, one
may reduce very substantially the number of times the sys-
tem (Eq.3) has to be solved. That is the case, for example, of
global warming, which is well represented by annual mean
temperature and for which one is interested in oscillations
or trends at the interdecadal or longer time scales. In those
cases, the computational constraints turn out to be irrelevant.

To implement the proposed method one must decide the
number of breakpointsm. Clearly, without additional con-
ditions, the residual square sum diminishes as the numberm

increases and so it cannot be used to computem. Karl et
al. (2000) used Haar Wavelets to locate discontinuities in the
mean global temperature series leading directly to the linear
system (Eq.3). Alternatively, we propose a rather simple ap-
proach, which has the advantage of giving a clear meaning to
the breakpoints, and consists in selecting the set ofm break-
points that best fits the data, in the least squares sense, and
satisfies two simultaneous conditions: a minimum time dis-
tance between breakpoints and a minimum trend change at
each breakpoint. In terms of the algorithm, this latter condi-
tion does not require any special process, but only the rejec-
tion of the solutions of the equations system (Eq.3) that do
not lead to a minimum change of the trend at the breakpoint.

The minimum interval between two consecutive break-
points is the essential free parameter of the method. This
interval, which is the minimum time window of the trend
analysis, acts as a low-pass filter. The size of the window
is optional, but, in principle, it is desirable that most of the
breakpoint solutions stay apart by a value larger than the win-
dow size. If not, the window size is probably too small and
one should be careful in interpreting the breakpoint distri-
bution as reflecting the low frequency behavior of the time
series.

Another important issue in partial trend analysis is the
occurrence of end effects in the fitting process (Soon et
al., 2004; Mann, 2004). In the proposed methodology it is
straightforward to relax the condition on the minimum dis-
tance between consecutive breakpoints at the series bound-
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Fig. 1. Continuous linear trends for the NAO index. The mini-
mum amount of change at breakpoints is 0.1/decade. 20 years is
the minimum allowed interval between breakpoints, and 5 years the
minimum length allowed for the first and last segment.

aries. By doing so, one allows the method to adjust smaller
linear segments at both ends, avoiding significant artificial
constrains on the adjacent segments. The small end segments
are, though, poorly constrained.

3 Application Examples

3.1 The North Atlantic Oscillation Index

During the last decade the North Atlantic Oscillation Index
(NAO) has been the subject of several studies (e.g. Hurrell
(1995), Jones et al (1997), Ostermeier and Wallace (2003)),
some of which evaluated overall trends, trends for limited
periods and decadal trends. The significant correlation of the
NAO index with precipitation in some regions of Europe and
the existence of low frequency variability in the index have
made it a target for many studies aiming to either explore
its potential for seasonal forecasting or to understand recent
climate change.

Figure 1 presents the NAO index from 1865 till 2002,
together with the linear fit and the continuous line segments
obtained by the proposed method. The latter were obtained
by imposing a minimum change at breakpoints of 0.1/decade
in the NAO index partial trend, and a minimum trend dura-
tion of 20 years, except at the end segments where the mini-
mum was put at 5 years. Fig. 2 shows different fitting solu-
tions, for different values of minimum length of the individ-
ual segments, always imposing a minimum of 5 years for the
length of the end segments. When one allows segments with
10 years or more, the NAO time series is best approximated
by segments near the shortest accepted length, with a change
in trend sign at all breakpoints, except in the period between
1968 and 1992 where the index revealed a sustained positive
trend. Those breakpoints in the series evolution seem ro-
bust as they are detected by the method in all solutions with
minimum segment lengths up to 25 years. Above that value

Fig. 2. Fitting of continuous linear segments to the NAO index, for
different choices of the minimum trend duration.

the imposed condition on the segment length is incompatible
with the location of those two breakpoints. The anomalous
behavior of the index in the period 1968 to 1992, already no-
ticed by Ostermeier and Wallace (2003) using a completely
different method, is the main conclusion of this analysis. On
the other hand, the recent downward trend of NAO in the last
dozen years is an important fact to keep in mind when ana-
lyzing the recent evolution of climate in the North Atlantic
sector, as shown below. It is also worth mentioning that the
fastest rate of NAO evolution, excluding the shorter end pe-
riods, happens in the period 1968 till 1992.

The strong overall increase of the NAO index from 1968
until 1992 has been one of the reasons that justified the
prominent role of this index in recent discussions of global
warming. However, unlike mean temperature, which in
principle can increase continuously, the NAO index is con-
strained by atmospheric mass conservation and so it is bound
to oscillate around some mean value, whether its variation is
internally generated or anthropogenicaly forced.

In spite of some agreement among several authors on the
“anomalous” behavior of NAO index in the last decades,
there is still an ample debate about the statistical support for
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those conclusions. The reason is apparent in Fig. 1, consid-
ering the fact that the mean decadal change of the NAO in-
dex is quite small in view of its large interannual variability.
In §5 it will be shown that the methodology here proposed
can recover partial trends from synthetic series, defined in
its simplest sense as monotonous changes over some time
interval, in the presence of significant levels of noise. It will
also be shown that the critical point in the performance of the
method is the location of the breakpoints and that once these
are known, the partial trend values are not much affected by
the amplitude of noise.

The breakpoints of NAO presented in figures 1 and 2 differ
slightly from those presented by Tomé and Miranda (2004)
because in that study end effects were not considered. In that
study, a change of sign was always imposed at breakpoints
but that didn’t affect the solution in this particular case.

The simultaneous imposition of limits for the segment
length and for the change in trend at breakpoints seems a
sensible way of constraining the fitting. In the case shown,
the imposed minimum segment size allowed a maximum of
7 breakpoints, but the condition of minimum trend change
reduced it to 4 breakpoints.

3.2 The Northern Hemisphere Temperature record

The Climate Research Unit (CRU), University of East
Anglia, produces and frequently updates a database of
the global temperature that has been the basis of many
global warming studies. The data is freely available
at http://www.cru.uea.ac.uk/cru/data/ and is
described in Jones et al (1999) and Jones and Moberg
(2003). Figure 3 shows the mean Northern hemisphere tem-
perature between 1865 and 2002, together with the linear fit
and the fit with continuous line segments with a minimum
trend change at breakpoints of 0.2 0C/decade and a minimum
of 20 years between breakpoints, except at the end segments
where a minimum length of 5 years is allowed.

The long term change of NH temperature is estimated
as 0.63 0C (0.046 0C/decade), whereas the corresponding
estimate by the proposed fitting method is slight higher at
0.75 0C (0.054 0C/decade). More importantly, the non-linear
fit captures important information on the interdecadal evo-
lution of surface temperature, detecting two cooling peri-
ods (1865-1917 and 1939-1976) and two warming periods
(1917-1939 and 1976-2002), with a good visual fit to the
data. A remarkable result, in the context of the climate
change debate, is the high trend value in the most recent
warming period (0.25 0C/decade). This results are compa-
rable with those obtained by Karl et al (2000) for the global
world temperature.

Once again, one may conclude that the condition on the
minimum trend change is an important constraint on the
number of breakpoints. For this time series the chosen win-
dow size allows for 7 breakpoints but the conditions of a
minimum trend change of 0.2 0C/decade reduce that num-
ber down to 3 breakpoints. In this case, the solution obtained
for three breakpoints without additional conditions for the

Fig. 3. Fitting of Northern Hemisphere temperature anomaly with
continuous line segments. The minimum amount of trend change at
breakpoints is 0.2

0C/decade, and 20 years is the minimum allowed
interval between breakpoints (5 years for end segments).

minimum trend change is not the same as presented in Fig 3,
although it is quite close. The unconstrained set of 4 line seg-
ments that best fits the time series has breakpoints at 1912,
1943 and 1975, with partial trends of −0.043, 0.15, −0.053
and 0.24 0C/decade, respectively. This solution was not se-
lected in the first place because both at 1912 and 1943 the
changes in trend are smaller than 0.2 0C/decade. However,
the two solutions coincide if one chooses a minimum trend
change of 0.15 0C/decade at the breakpoints. In these cases,
slightly different values of breakpoint positions can lead to
a slightly better fit, and the user has to choose the preferred
solution.

3.3 A case with a large number of data points: Hemispheric
Multi-proxy Temperature Reconstructions

The proposed methodology requires a huge computation
time whenever the time series contains a large number of
data points. In those cases, it is possible to make the prob-
lem treatable by carefully subdividing the time series into a
small number of overlapping sub intervals in order to find
the breakpoint positions in the time series. After finding the
breakpoint positions, one only needs to solve the over de-
termined system linear equations (3). It is important that the
beginning of a sub interval coincides with a breakpoint found
in the previous subinterval. Preferably, the breakpoint chosen
for interval boundary should be sufficiently away from the
boundaries and other breakpoints by a distance larger than
the minimum allowed interval.

There are many large geophysical time series that one
could choose as an example to illustrate the above men-
tioned workaround. We will use the historical reconstruction
of the Northern hemisphere temperature by Mann and Jones
(2003).
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interval between breakpoints (5 years for end segments).
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down to 3 breakpoints. In this case, the solution obtained for
three breakpoints without additional conditions for the min-
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The proposed methodology requires a huge computation
time whenever the time series contains a large number of
data points. In those cases, it is possible to make the prob-
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the minimum allowed interval.

There are many large geophysical time series that one
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http://www.cru.uea.ac.uk/cru/data/
http://www.cru.uea.ac.uk/cru/data/
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Fig. 4. Fitting of the Northern Hemispheric temperature anomalies, based on 1961-1990 instrumental reference period, with continuous line
segments. (a) 200 years minimum distance between breakpoints, and change of trend sign at breakpoints. (b) As (a), but the last interval was
allowed to have a minimum length of 150 years and the change in trend at breakpoints is not less than 300%.

Figure 4(a) presents a fit to a series of 1781
years of hemispheric multi-proxy temperature evalu-
ated by Mann and Jones (2003), freely available at
ftp://ftp.ngdc.noaa.gov/paleo. In this case, the
best fit was obtained, for a condition of change in the trend
sign at breakpoints and a minimum of 200 years between
breakpoints, with breakpoints at the years of 546, 1031 and
1666 AD. The preprocessing of the time series in 3 sub-
intervals led to a reduction of computing time by a factor
of 106 (from almost half a century, virtually impracticable in
a single computer, to less than half and hour in a Pentium IV
PC).

The best fit of the proxy temperature data estimates a de-
crease of the mean temperature in the first 346 years (200 till
546 ac.) at a rate of −0.014 0C/century, followed by a tem-
perature increase at a rate of 0.022 0C/century until 1031,
then a very long period, more than 6 centuries, of contin-
uous temperature decrease at a rate of −0.032 0C/century.
The large rate of warming after 1666, 0.073 0C/century, has
already been able to compensate the previous 6 centuries of
cooling and the last segment attains temperature values above
the local maximum at 1031, at the centre of the warm me-
dieval period AD 800-1400 (Mann and Jones (2003)).

In spite of the relatively good overall fit presented in fig-
ure 4(a), the large single oscillation present in the end of the
proxy temperature time series suggests that one may be un-
derestimating the latter partial trend, due to an end effect re-
lated with the minimum of 200 years of trend duration. Fig.
4(b) presents an alternative fit of the same data of Fig. 4(a)
with the following modification of the optimization condi-

tions: sign change or a minimum relative variation of 300%
in the trend value is imposed at the breakpoints, and a min-
imum length of 150 years is allowed for the last line seg-
ment. The main difference from the result in Fig. 4(a) is
a last trend beginning at 1830 at a faster warming rate of
0.17 0C/century, much higher than elsewhere in the series,
but still below estimates based on thermometer data in the
last century.

4 A spatial aggregation technique

The proposed methodology is clearly a univariate time series
analysis technique. However, it defines for a given time se-
ries a new set of parameters, the breakpoints, that can be used
to perform spatial aggregation of a time varying field. The
idea was proposed by Miranda and Tomé (2005) and applied
to the NASA/GISS surface temperature dataset (Hansen et al
(1999)), leading to the conclusion that the spatial distribu-
tion of the temperature breakpoints in the last 50 years is a
coherent large scale field, that may be relevant for the under-
standing of the slow evolution of the climate system in that
period.

To illustrate the potential use of the method as a spa-
tial analysis tool we will apply it to a different climate
database, namely the NCEP/NCAR 2m reanalysis temper-
ature (Kalnay et al (1996)), available from 1950 onwards
and obtained through the assimilation of meteorological ob-
servations by a state of the art numerical weather prediction
model. Reanalysis data has been used for climate change
studies (Kalnay and Cai (2003)) but is generally discarded

Fig. 4. Fitting of the Northern Hemispheric temperature anomalies, based on 1961-1990 instrumental reference period, with continuous line
segments.(a) 200 years minimum distance between breakpoints, and change of trend sign at breakpoints.(b) As (a), but the last interval was
allowed to have a minimum length of 150 years and the change in trend at breakpoints is not less than 300%.

Figure 4a presents a fit to a series of 1781 years of
hemispheric multi-proxy temperature evaluated byMann
and Jones(2003), freely available atftp://ftp.ngdc.noaa.gov/
paleo. In this case, the best fit was obtained, for a condition
of change in the trend sign at breakpoints and a minimum of
200 years between breakpoints, with breakpoints at the years
of 546, 1031 and 1666 AD. The preprocessing of the time
series in 3 sub-intervals led to a reduction of computing time
by a factor of 106 (from almost half a century, virtually im-
practicable in a single computer, to less than half and hour in
a Pentium IV PC).

The best fit of the proxy temperature data estimates a de-
crease of the mean temperature in the first 346 years (200
till 546 ac.) at a rate of−0.014◦C/century, followed by a
temperature increase at a rate of 0.022◦C/century until 1031,
then a very long period, more than 6 centuries, of continu-
ous temperature decrease at a rate of−0.032◦C/century. The
large rate of warming after 1666, 0.073◦C/century, has al-
ready been able to compensate the previous 6 centuries of
cooling and the last segment attains temperature values above
the local maximum at 1031, at the centre of the warm me-
dieval period AD 800–1400 (Mann and Jones, 2003).

In spite of the relatively good overall fit presented in
Fig. 4a, the large single oscillation present in the end of the
proxy temperature time series suggests that one may be un-
derestimating the latter partial trend, due to an end effect re-
lated with the minimum of 200 years of trend duration. Fig-
ure4b presents an alternative fit of the same data of Fig.4a
with the following modification of the optimization condi-
tions: sign change or a minimum relative variation of 300%
in the trend value is imposed at the breakpoints, and a mini-
mum length of 150 years is allowed for the last line segment.
The main difference from the result in Fig.4a is a last trend

beginning at 1830 at a faster warming rate of 0.17◦C/century,
much higher than elsewhere in the series, but still below es-
timates based on thermometer data in the last century.

4 A spatial aggregation technique

The proposed methodology is clearly a univariate time series
analysis technique. However, it defines for a given time se-
ries a new set of parameters, the breakpoints, that can be used
to perform spatial aggregation of a time varying field. The
idea was proposed byMiranda and Toḿe(2005) and applied
to the NASA/GISS surface temperature dataset (Hansen et
al., 1999), leading to the conclusion that the spatial distribu-
tion of the temperature breakpoints in the last 50 years is a
coherent large scale field, that may be relevant for the under-
standing of the slow evolution of the climate system in that
period.

To illustrate the potential use of the method as a spa-
tial analysis tool we will apply it to a different climate
database, namely the NCEP/NCAR 2 m reanalysis temper-
ature (Kalnay et al., 1996), available from 1950 onwards and
obtained through the assimilation of meteorological obser-
vations by a state of the art numerical weather prediction
model. Reanalysis data has been used for climate change
studies (Kalnay and Cai, 2003) but is generally discarded for
this application because of time dependent biases in the data
that is used by reanalysis, namely in what concerns satellite
data (Basist and Chelliah, 1997; Hurrell and Trenberth, 1998;
Santer et al., 1999, 2000; Stendel et al., 2000). However, it is
ideally suited for our current purpose as it has a global cov-
erage, without the missing data that often hinders the use of
direct observations.

ftp://ftp.ngdc.noaa.gov/paleo
ftp://ftp.ngdc.noaa.gov/paleo
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Fig. 5. year of change in sign of local temperature tendency. Blank
in regions with no breakpoint.

for this application because of time dependent biases in the
data that is used by reanalysis, namely in what concerns
satellite data (Basist and Chelliah (1997), Hurrell and Tren-
berth (1998), Santer et al (1999), (2000), Stendel et al
(2000)). However, it is ideally suited for our current pur-
pose as it has a global coverage, without the missing data
that often hinders the use of direct observations.

Considering the evolution of mean world temperature one
would expect one single breakpoint in the period 1950-2002
with a cooling period followed by warming. For mean world
temperature that breakpoint should be around 1975 as shown
by Karl et al (2000). However, a point by point analysis
of the reanalysis time series shows that the breakpoint year
varies from place to place in a rather consistent way. Figure 5
shows the breakpoint distribution in the North American re-
gion, from a best fit of the NCEP/NCAR 2m temperature re-
analysis field where only two line segments are allowed and
a change in trend sign is imposed at the breakpoint. White
regions in the figure are places of monotonous temperature
change, mostly sustained warming, where a breakpoint with
a trend sign change cannot be defined. Ten years was the
minimum allowed length for each of the sub intervals.

The North American region is where we find a larger dis-
crepancy between estimates of long term change in temper-
ature given by a linear trend without breakpoint and by the
linear trend with one breakpoint. In this region, the linear
trend gives, in some places, strong negative values that are
not supported by the integrated segments, as the linear fit in
the temperature time series is obviously inadequate.

Fig. 6 presents the net change in temperature in the North
American region, estimated by linear regression and by the
integration of the two fitted segments. While the simple lin-
ear fit leads to large net cooling, especially over Greenland
and Baffin Bay and in a large sector of the USA territory,
the broken line approach suggests moderate net cooling in
most places, with recent warming compensating for previous
cooling in many regions, namely in half of Greenland.

An important feature of the breakpoint map shown in Fig.
5 is the fact that the observed breakpoints span the entire
four decades range in a spatially consistent way, as one could
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Fig. 6. Temperature variation of the mean surface temperature, in
0C: upper figure linear variation, lower figure two continuous line
best fit

expected by the spatial correlation of the reanalysis fields.
However, Miranda and Tomé (2005) obtained a similar pat-
tern with GISS data and suggested that this is a signature of
a slow evolution of the climate heat transfer engine in the
region, associated with the NAO evolution in the same pe-
riod. The spatial coherency of the breakpoint distribution,
with neighboring grid points experiencing similar tempera-
ture changes, also suggests the spatial aggregation of regions
with similar breakpoint locations, as done by Miranda and
Tomé (2005). Other time varying geophysical fields may be
analyzed with the same methodology.

5 Statistical Significance

An important and unavoidable issue is the statistical signif-
icance of the breakpoints and/or the partial trends. At first
glance, one may be tempted to test the individual partial
trends for significance using some of the many techniques
that have been proposed by several authors in the last decades
(e.g. Gordon (1991), Bloomfield (1992), Bloomfield and
Nychka (1992), Visser and Molenaar (1995), Zheng et al.
(1997)) and consider as statistical significant those results
above a given threshold of the confidence interval. However,
in spite of the huge effort put in the analysis of the signifi-
cance of the simple linear trend model, a simple and objec-
tive method has not yet obtained general consensus, and the
different models lead to different conclusions, not just in the

Fig. 5. Year of change in sign of local temperature tendency. Blank
in regions with no breakpoint.

Considering the evolution of mean world temperature one
would expect one single breakpoint in the period 1950–2002
with a cooling period followed by warming. For mean world
temperature that breakpoint should be around 1975 as shown
by (Karl et al., 2000). However, a point by point analysis
of the reanalysis time series shows that the breakpoint year
varies from place to place in a rather consistent way. Figure5
shows the breakpoint distribution in the North American re-
gion, from a best fit of the NCEP/NCAR 2m temperature re-
analysis field where only two line segments are allowed and
a change in trend sign is imposed at the breakpoint. White
regions in the figure are places of monotonous temperature
change, mostly sustained warming, where a breakpoint with
a trend sign change cannot be defined. Ten years was the
minimum allowed length for each of the sub intervals.

The North American region is where we find a larger dis-
crepancy between estimates of long term change in temper-
ature given by a linear trend without breakpoint and by the
linear trend with one breakpoint. In this region, the linear
trend gives, in some places, strong negative values that are
not supported by the integrated segments, as the linear fit in
the temperature time series is obviously inadequate.

Figure 6 presents the net change in temperature in the
North American region, estimated by linear regression and
by the integration of the two fitted segments. While the sim-
ple linear fit leads to large net cooling, especially over Green-
land and Baffin Bay and in a large sector of the USA territory,
the broken line approach suggests moderate net cooling in
most places, with recent warming compensating for previous
cooling in many regions, namely in half of Greenland.

An important feature of the breakpoint map shown in
Fig.5 is the fact that the observed breakpoints span the entire
four decades range in a spatially consistent way, as one could
expected by the spatial correlation of the reanalysis fields.
However,Miranda and Toḿe (2005) obtained a similar pat-
tern with GISS data and suggested that this is a signature of
a slow evolution of the climate heat transfer engine in the
region, associated with the NAO evolution in the same pe-
riod. The spatial coherency of the breakpoint distribution,
with neighboring grid points experiencing similar tempera-

6 A. R. Tomé and P. M. A. Miranda: Continuous Partial Trends

180˚

180˚

150˚W

150˚W

120˚W

120˚W

90˚W

90˚W

60˚W

60˚W

30˚W

30˚W

0˚

0˚

0˚ 0˚

30˚N 30˚N

60˚N 60˚N

90˚N 90˚N

1950 1960 1970 1980 1990 1995

180˚

180˚

150˚W

150˚W

120˚W

120˚W

90˚W

90˚W

60˚W

60˚W

30˚W

30˚W

0˚

0˚

0˚ 0˚

30˚N 30˚N

60˚N 60˚N

90˚N 90˚N

Fig. 5. year of change in sign of local temperature tendency. Blank
in regions with no breakpoint.

for this application because of time dependent biases in the
data that is used by reanalysis, namely in what concerns
satellite data (Basist and Chelliah (1997), Hurrell and Tren-
berth (1998), Santer et al (1999), (2000), Stendel et al
(2000)). However, it is ideally suited for our current pur-
pose as it has a global coverage, without the missing data
that often hinders the use of direct observations.

Considering the evolution of mean world temperature one
would expect one single breakpoint in the period 1950-2002
with a cooling period followed by warming. For mean world
temperature that breakpoint should be around 1975 as shown
by Karl et al (2000). However, a point by point analysis
of the reanalysis time series shows that the breakpoint year
varies from place to place in a rather consistent way. Figure 5
shows the breakpoint distribution in the North American re-
gion, from a best fit of the NCEP/NCAR 2m temperature re-
analysis field where only two line segments are allowed and
a change in trend sign is imposed at the breakpoint. White
regions in the figure are places of monotonous temperature
change, mostly sustained warming, where a breakpoint with
a trend sign change cannot be defined. Ten years was the
minimum allowed length for each of the sub intervals.

The North American region is where we find a larger dis-
crepancy between estimates of long term change in temper-
ature given by a linear trend without breakpoint and by the
linear trend with one breakpoint. In this region, the linear
trend gives, in some places, strong negative values that are
not supported by the integrated segments, as the linear fit in
the temperature time series is obviously inadequate.

Fig. 6 presents the net change in temperature in the North
American region, estimated by linear regression and by the
integration of the two fitted segments. While the simple lin-
ear fit leads to large net cooling, especially over Greenland
and Baffin Bay and in a large sector of the USA territory,
the broken line approach suggests moderate net cooling in
most places, with recent warming compensating for previous
cooling in many regions, namely in half of Greenland.

An important feature of the breakpoint map shown in Fig.
5 is the fact that the observed breakpoints span the entire
four decades range in a spatially consistent way, as one could
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Fig. 6. Temperature variation of the mean surface temperature, in
0C: upper figure linear variation, lower figure two continuous line
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expected by the spatial correlation of the reanalysis fields.
However, Miranda and Tomé (2005) obtained a similar pat-
tern with GISS data and suggested that this is a signature of
a slow evolution of the climate heat transfer engine in the
region, associated with the NAO evolution in the same pe-
riod. The spatial coherency of the breakpoint distribution,
with neighboring grid points experiencing similar tempera-
ture changes, also suggests the spatial aggregation of regions
with similar breakpoint locations, as done by Miranda and
Tomé (2005). Other time varying geophysical fields may be
analyzed with the same methodology.

5 Statistical Significance

An important and unavoidable issue is the statistical signif-
icance of the breakpoints and/or the partial trends. At first
glance, one may be tempted to test the individual partial
trends for significance using some of the many techniques
that have been proposed by several authors in the last decades
(e.g. Gordon (1991), Bloomfield (1992), Bloomfield and
Nychka (1992), Visser and Molenaar (1995), Zheng et al.
(1997)) and consider as statistical significant those results
above a given threshold of the confidence interval. However,
in spite of the huge effort put in the analysis of the signifi-
cance of the simple linear trend model, a simple and objec-
tive method has not yet obtained general consensus, and the
different models lead to different conclusions, not just in the

Fig. 6. Temperature variation of the mean surface temperature, in
◦C: upper figure linear variation, lower figure two continuous line
best fit.

ture changes, also suggests the spatial aggregation of regions
with similar breakpoint locations, as done byMiranda and
Tomé (2005). Other time varying geophysical fields may be
analyzed with the same methodology.

5 Statistical significance

An important and unavoidable issue is the statistical signif-
icance of the breakpoints and/or the partial trends. At first
glance, one may be tempted to test the individual partial
trends for significance using some of the many techniques
that have been proposed by several authors in the last decades
(e.g.Gordon, 1991; Bloomfield, 1992; Bloomfield and Ny-
chka, 1992; Visser and Molenaar, 1995; Zheng et al., 1997)
and consider as statistical significant those results above a
given threshold of the confidence interval. However, in spite
of the huge effort put in the analysis of the significance of the
simple linear trend model, a simple and objective method has
not yet obtained general consensus, and the different models
lead to different conclusions, not just in the value and statisti-
cal significance of a trend, but also in the validity of the trend
model itself.

Karl et al.(2000) applied standard significance tests to dis-
cuss the trend computed for the last segment in a broken-line
fitting of the mean world temperature. It is not possible to
extend that approach to the full problem, which includes the
computation of the number of breakpoints, its location and
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Fig. 7. Performance of the broken-line fitting as a function of the
error level. Bars (left axis): Percentage of breakpoints recovered
without error. Lines (right axis): Frequency of errors in the partial
trends above different thresholds, for the cases where the breakpoint
inversion was successful. The level of noise (low axis) is given by
the standard deviation of the white noise.

value and statistical significance of a trend, but also in the
validity of the trend model itself.

Karl et al (2000) applied standard significance tests to dis-
cuss the trend computed for the last segment in a broken-line
fitting of the mean world temperature. It is not possible to
extend that approach to the full problem, which includes the
computation of the number of breakpoints, its location and
the evaluation of partial trends, with a condition of continuity
of the fitting function at the breakpoints. If, as in the case of
DFA (Peng et al (1994)), one specifies the subinterval range
and then applies unconstrained linear fit, without a condition
of continuity at the subinterval boundaries, one could test for
the individual significance of each of the individual partial
trends. Yet, in that case, one should be aware of the biased
conclusions on significance due to the sub interval chosen,
because in that particular case the warnings about the signifi-
cance of the trend value formulated by Percival and Rothrock
(2005) are especially pertinent and should be taken into ac-
count.

While a general test is difficult to obtain, one can easily
check the ability of the proposed method to cope with the
difficulties of real data, by the analysis of a large number of
simulations with synthetic time series. For that purpose we
have computed 10000 non-dimensional time series, of 100
data points each, made of random continuous line segments
with a minimum length of 15 data points and a minimum
change in trend of 0.1/datapoint at breakpoints. The trend
values were in the range [0,1]/datapoint. With these condi-
tions the random series could have at most 6 line segments
(5 breakpoints). Situations with only one line segment (zero
breakpoints) were also allowed. As expected, the method
was able to recover all the breakpoints (or its absence) and
corresponding trend values from this series. In the next step
we added to these random series white noise of varying am-
plitude.

Figure 7 shows the results of the inversion of the 10000

Fig. 8. Results of the inversion of one of the series used in figure 7
for different noise levels.

random series, for different values of the noise level. When
there is no noise, the inversion works at 100%, recovering
all breakpoints at the right location and computing all partial
trends at round-off error. In the presence of significant noise
(with standard deviations from 0.5 to 1.8 in non-dimensional
units) the frequency of misfits increases steadily with the
noise level, as shown in the figure. However, for the frac-
tion of cases where the breakpoints were found within 2 dat-
apoints of their right location, which are considered to have
been well located, the maximum relative error in the partial
trends remains within reasonable bounds, even when the er-
ror level is such that the fraction of misfits is above 50%.
This means that if the breakpoint location is known the par-
tial trends are not too sensitive to the noise. On the other
hand, most of the cases that present larger relative errors in
the partial trends happen in the last segment, because it is the
least constrained.

Figure 8 shows an example of the inversion of a series with
1 breakpoint, taken from the set used in figure 7. The top line
corresponds to the series without any added noise, which is
perfectly inverted. The series with 0.7 and 1.0 noise also lead
to successful inversions, in spite of the large random oscilla-
tions present in the series. However, when the noise standard
deviation attains 1.6, the method proposes the maximum al-
lowed number of breakpoints. An eye inspection of this re-
sult suggests, though, that the proposed fitting is not at all
unrealistic.

Fig. 7. Performance of the broken-line fitting as a function of the
error level. Bars (left axis): Percentage of breakpoints recovered
without error. Lines (right axis): Frequency of errors in the partial
trends above different thresholds, for the cases where the breakpoint
inversion was successful. The level of noise (low axis) is given by
the standard deviation of the white noise.

the evaluation of partial trends, with a condition of continu-
ity of the fitting function at the breakpoints. If, as in the
case of DFA (Peng et al., 1994), one specifies the subinter-
val range and then applies unconstrained linear fit, without
a condition of continuity at the subinterval boundaries, one
could test for the individual significance of each of the indi-
vidual partial trends. Yet, in that case, one should be aware
of the biased conclusions on significance due to the sub inter-
val chosen, because in that particular case the warnings about
the significance of the trend value formulated byPercival and
Rothrock(2005) are especially pertinent and should be taken
into account.

While a general test is difficult to obtain, one can easily
check the ability of the proposed method to cope with the
difficulties of real data, by the analysis of a large number of
simulations with synthetic time series. For that purpose we
have computed 10 000 non-dimensional time series, of 100
data points each, made of random continuous line segments
with a minimum length of 15 data points and a minimum
change in trend of 0.1/datapoint at breakpoints. The trend
values were in the range [0,1]/datapoint. With these condi-
tions the random series could have at most 6 line segments
(5 breakpoints). Situations with only one line segment (zero
breakpoints) were also allowed. As expected, the method
was able to recover all the breakpoints (or its absence) and
corresponding trend values from this series. In the next step
we added to these random series white noise of varying am-
plitude.

Figure7 shows the results of the inversion of the 10 000
random series, for different values of the noise level. When
there is no noise, the inversion works at 100%, recovering
all breakpoints at the right location and computing all partial
trends at round-off error. In the presence of significant noise
(with standard deviations from 0.5 to 1.8 in non-dimensional
units) the frequency of misfits increases steadily with the
noise level, as shown in the figure. However, for the frac-
tion of cases where the breakpoints were found within 2 dat-
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Fig. 7. Performance of the broken-line fitting as a function of the
error level. Bars (left axis): Percentage of breakpoints recovered
without error. Lines (right axis): Frequency of errors in the partial
trends above different thresholds, for the cases where the breakpoint
inversion was successful. The level of noise (low axis) is given by
the standard deviation of the white noise.

value and statistical significance of a trend, but also in the
validity of the trend model itself.

Karl et al (2000) applied standard significance tests to dis-
cuss the trend computed for the last segment in a broken-line
fitting of the mean world temperature. It is not possible to
extend that approach to the full problem, which includes the
computation of the number of breakpoints, its location and
the evaluation of partial trends, with a condition of continuity
of the fitting function at the breakpoints. If, as in the case of
DFA (Peng et al (1994)), one specifies the subinterval range
and then applies unconstrained linear fit, without a condition
of continuity at the subinterval boundaries, one could test for
the individual significance of each of the individual partial
trends. Yet, in that case, one should be aware of the biased
conclusions on significance due to the sub interval chosen,
because in that particular case the warnings about the signifi-
cance of the trend value formulated by Percival and Rothrock
(2005) are especially pertinent and should be taken into ac-
count.

While a general test is difficult to obtain, one can easily
check the ability of the proposed method to cope with the
difficulties of real data, by the analysis of a large number of
simulations with synthetic time series. For that purpose we
have computed 10000 non-dimensional time series, of 100
data points each, made of random continuous line segments
with a minimum length of 15 data points and a minimum
change in trend of 0.1/datapoint at breakpoints. The trend
values were in the range [0,1]/datapoint. With these condi-
tions the random series could have at most 6 line segments
(5 breakpoints). Situations with only one line segment (zero
breakpoints) were also allowed. As expected, the method
was able to recover all the breakpoints (or its absence) and
corresponding trend values from this series. In the next step
we added to these random series white noise of varying am-
plitude.

Figure 7 shows the results of the inversion of the 10000

Fig. 8. Results of the inversion of one of the series used in figure 7
for different noise levels.

random series, for different values of the noise level. When
there is no noise, the inversion works at 100%, recovering
all breakpoints at the right location and computing all partial
trends at round-off error. In the presence of significant noise
(with standard deviations from 0.5 to 1.8 in non-dimensional
units) the frequency of misfits increases steadily with the
noise level, as shown in the figure. However, for the frac-
tion of cases where the breakpoints were found within 2 dat-
apoints of their right location, which are considered to have
been well located, the maximum relative error in the partial
trends remains within reasonable bounds, even when the er-
ror level is such that the fraction of misfits is above 50%.
This means that if the breakpoint location is known the par-
tial trends are not too sensitive to the noise. On the other
hand, most of the cases that present larger relative errors in
the partial trends happen in the last segment, because it is the
least constrained.

Figure 8 shows an example of the inversion of a series with
1 breakpoint, taken from the set used in figure 7. The top line
corresponds to the series without any added noise, which is
perfectly inverted. The series with 0.7 and 1.0 noise also lead
to successful inversions, in spite of the large random oscilla-
tions present in the series. However, when the noise standard
deviation attains 1.6, the method proposes the maximum al-
lowed number of breakpoints. An eye inspection of this re-
sult suggests, though, that the proposed fitting is not at all
unrealistic.

Fig. 8. Results of the inversion of one of the series used in Fig.7
for different noise levels.

apoints of their right location, which are considered to have
been well located, the maximum relative error in the partial
trends remains within reasonable bounds, even when the er-
ror level is such that the fraction of misfits is above 50%.
This means that if the breakpoint location is known the par-
tial trends are not too sensitive to the noise. On the other
hand, most of the cases that present larger relative errors in
the partial trends happen in the last segment, because it is the
least constrained.

Figure8 shows an example of the inversion of a series with
1 breakpoint, taken from the set used in Fig.7. The top line
corresponds to the series without any added noise, which is
perfectly inverted. The series with 0.7 and 1.0 noise also lead
to successful inversions, in spite of the large random oscilla-
tions present in the series. However, when the noise standard
deviation attains 1.6, the method proposes the maximum al-
lowed number of breakpoints. An eye inspection of this re-
sult suggests, though, that the proposed fitting is not at all
unrealistic.

The random series considered in Fig.7 were rather dif-
ficult to invert due to the small relative size of its shorter
line segments and the small changes of trend allowed at each
breakpoint. If either of these parameters is increased, the
method is able to cope with much larger noise levels. Fig-
ure9 shows the results of 3 other sets of 10 000 random se-
ries, similar to those used in Fig.7 but with at least 20, 25
and 30 datapoints per segment, respectively. As the mini-



458 A. R. Toḿe and P. M. A. Miranda: Continuous partial trends
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Fig. 9. Same as figure 7 but the 10000 random series were gener-
ated with a minimum of 0.1 trend change at breakpoint and (a) 20
datapoints as minimum length (b) 25 datapoints as minimum length
(c) 30 datapoints as minimum length.

The random series considered in figure 7 were rather dif-
ficult to invert due to the small relative size of its shorter
line segments and the small changes of trend allowed at each
breakpoint. If either of these parameters is increased, the
method is able to cope with much larger noise levels. Figure
9 shows the results of 3 other sets of 10000 random series,
similar to those used in figure 7 but with at least 20, 25 and
30 datapoints per segment, respectively. As the minimum
size of the segments increases, the performance of the inver-
sion improves substantially. If one looks at the noise level
corresponding to 50% of successful breakpoint locations, it

goes from about 1.1 (for a minimum size of 15 datapoints
per segment) to about 5 (for 30 datapoints). Again, one finds
that, even at very large noise levels, once the breakpoints are
rightly located most inversions lead to small errors in the par-
tial trends. It is interesting to note, in a visual comparison
between figure 7 and the 3 panels of figure 9, that there is
a strong similarity between the different curves, suggesting
that the allowed noise levels scale with the size of the mini-
mum segment size.

On a second set of sensitivity experiments one will now
look to the effect of trend variations at the breakpoint. Fig-
ure 10 shows results of the inversion for 2 sets of 10000 ran-
dom series where the minimum trend change at each break-
point has been set to 0.3 and 0.6/datapoint, respectively, with
a minimum segment size of 25 datapoints. As expected, an
increase in the trend differences between segments improves
the performance of the method, allowing for increased noise
levels by a factor that, again, scales with the change in trends.

The previous sensitivity experiments indicate that the
method behaves in a sensible way as a function of its con-
straints. While we are not in a position to propose a general
objective procedure to analyze the statistical significance of
the breakpoints, one can perform simulations similar to those
shown here to test specific geophysical series by comparison
with large sets of random series.

The results presented in fig 7, 9 and 10 refer to the cases
where all breakpoints were found. On a breakpoint by break-
point basis results are substantially better, event at large noise
levels. However, it is easy to understand that once one break-
point is lost in the inversion process, it leads to large errors
in the adjacent partial trends.

To conclude, one may say that, in spite of recent advances
in trend analysis, the statistical and physical significance of
trends is still an open discussion. The methodology here
proposed adds another problem to that discussion: how to
test the significance of breakpoints in the fitting of a series
by continuous line segments? The approach followed in this
section tried to show the feasibility of the algorithm proposed
and its relative robustness in the presence of significant noise.
However a more general significance test, able to deal with
other stochastic data models besides white noise, would cer-
tainly contribute to the usefulness of the methodology.

6 Conclusions

Fitting continuous line segments to time series provides a
new and alternative way of analyzing non-monotonic and
non-periodic time series. The method is able to identify sen-
sible changes in the low frequency evolution of the time se-
ries and is therefore far richer than simple linear trend anal-
ysis. The method is also much simpler and easier to inter-
pret than most non-linear function fitting. In many cases it
leads to results that are similar to subjective curve analysis,
while keeping a least squares based approach constrained by
a small number of sensible conditions. Because the method
gives a continuous fit of the data it always provides a global

Fig. 9. Same as Fig.7 but the 10000 random series were generated
with a minimum of 0.1 trend change at breakpoint and(a) 20 data-
points as minimum length(b) 25 datapoints as minimum length(c)
30 datapoints as minimum length.

mum size of the segments increases, the performance of the
inversion improves substantially. If one looks at the noise
level corresponding to 50% of successful breakpoint loca-
tions, it goes from about 1.1 (for a minimum size of 15 dat-
apoints per segment) to about 5 (for 30 datapoints). Again,
one finds that, even at very large noise levels, once the break-
points are rightly located most inversions lead to small errors
in the partial trends. It is interesting to note, in a visual com-
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Fig. 10. Same as figure 9(b) but the 10000 series random were
generated in the top panel with a minimum of 0.3 trend change at
breakpoint and in the bottom panel with a minimum of 0.6 trend
change at breakpoints.

analysis. However, if the conditions are carefully chosen, it
adjusts itself to sharp changes in the series, highlighting im-
portant episodes in the series history that may be more im-
portant than its overall trend. One question remains, unfor-
tunately, without an appropriated answer: how to rightfully
choose the conditions?

The output of the proposed method includes, together with
an estimate of the slow change in the data, a set of break-
points that may be used for different purposes in the analy-
sis. The breakpoints constitute a small set of parameters that
characterize the slow evolution of the geophysical system be-
ing analyzed. It was shown that they may help in the analysis
of time varying and spatially distributed geophysical series.

The method implementation was based on solving, sev-
eral times, in the least squares sense, L2-norm, a linear over
determined equation system (equation 3). Nevertheless, this
modular approach allows one to choose other measures of the
error, as for instance the absolute residual sum, L1-norm, the
absolute maximum departure, L∞-norm, or even other more
complex departure measures.

The results of the method depend mostly on the minimum
allowed distance between breakpoints, and also on the mini-
mum trend change. The option on a minimum trend change
gives an objective meaning to the breakpoints and is the ker-

nel for determining the number of line segments to fit. Sen-
sitivity tests with a large number of series, made of line seg-
ments with random sizes and slopes and white noise of vary-
ing amplitude, indicated that the methods is able to recover
the right position of breakpoints and the values of the partial
trends even for relatively large values of the noise. Those re-
sults also showed that the location of breakpoints is the criti-
cal issue in the performance of the method.

As happens with other methods dealing with non-periodic
and non-monotonic time series, the end effects are a prob-
lematic issue. The option to minimize these effects was to
allow, at the beginning and at the end of the record, shorter
segment lengths. Once again, if the first or the last break-
point happens near the minimum allowed position the result
should be looked upon with some suspicion.

The method was implemented in a FORTRAN 90
program. The source code can be downloaded at
http://www.dfisica.ubi.pt/˜artome/linearstep.html or can
be requested by mail from AT.
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parison between Fig.7 and the 3 panels of Fig.9, that there
is a strong similarity between the different curves, suggest-
ing that the allowed noise levels scale with the size of the
minimum segment size.

On a second set of sensitivity experiments one will now
look to the effect of trend variations at the breakpoint. Fig-
ure10shows results of the inversion for 2 sets of 10 000 ran-
dom series where the minimum trend change at each break-
point has been set to 0.3 and 0.6/datapoint, respectively, with
a minimum segment size of 25 datapoints. As expected, an
increase in the trend differences between segments improves
the performance of the method, allowing for increased noise
levels by a factor that, again, scales with the change in trends.

The previous sensitivity experiments indicate that the
method behaves in a sensible way as a function of its con-
straints. While we are not in a position to propose a general
objective procedure to analyze the statistical significance of
the breakpoints, one can perform simulations similar to those
shown here to test specific geophysical series by comparison
with large sets of random series.

The results presented in Figs.7, 9 and10refer to the cases
where all breakpoints were found. On a breakpoint by break-
point basis results are substantially better, event at large noise
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levels. However, it is easy to understand that once one break-
point is lost in the inversion process, it leads to large errors
in the adjacent partial trends.

To conclude, one may say that, in spite of recent advances
in trend analysis, the statistical and physical significance of
trends is still an open discussion. The methodology here
proposed adds another problem to that discussion: how to
test the significance of breakpoints in the fitting of a series
by continuous line segments? The approach followed in this
section tried to show the feasibility of the algorithm proposed
and its relative robustness in the presence of significant noise.
However a more general significance test, able to deal with
other stochastic data models besides white noise, would cer-
tainly contribute to the usefulness of the methodology.

6 Conclusions

Fitting continuous line segments to time series provides a
new and alternative way of analyzing non-monotonic and
non-periodic time series. The method is able to identify sen-
sible changes in the low frequency evolution of the time se-
ries and is therefore far richer than simple linear trend anal-
ysis. The method is also much simpler and easier to inter-
pret than most non-linear function fitting. In many cases it
leads to results that are similar to subjective curve analysis,
while keeping a least squares based approach constrained by
a small number of sensible conditions. Because the method
gives a continuous fit of the data it always provides a global
analysis. However, if the conditions are carefully chosen, it
adjusts itself to sharp changes in the series, highlighting im-
portant episodes in the series history that may be more im-
portant than its overall trend. One question remains, unfor-
tunately, without an appropriated answer: how to rightfully
choose the conditions?

The output of the proposed method includes, together with
an estimate of the slow change in the data, a set of break-
points that may be used for different purposes in the analy-
sis. The breakpoints constitute a small set of parameters that
characterize the slow evolution of the geophysical system be-
ing analyzed. It was shown that they may help in the analysis
of time varying and spatially distributed geophysical series.

The method implementation was based on solving, several
times, in the least squares sense,L2-norm, a linear over de-
termined equation system (Eq.3). Nevertheless, this modular
approach allows one to choose other measures of the error, as
for instance the absolute residual sum,L1-norm, the absolute
maximum departure,L∞-norm, or even other more complex
departure measures.

The results of the method depend mostly on the minimum
allowed distance between breakpoints, and also on the mini-
mum trend change. The option on a minimum trend change
gives an objective meaning to the breakpoints and is the ker-
nel for determining the number of line segments to fit. Sen-
sitivity tests with a large number of series, made of line seg-
ments with random sizes and slopes and white noise of vary-
ing amplitude, indicated that the methods is able to recover

the right position of breakpoints and the values of the partial
trends even for relatively large values of the noise. Those re-
sults also showed that the location of breakpoints is the criti-
cal issue in the performance of the method.

As happens with other methods dealing with non-periodic
and non-monotonic time series, the end effects are a prob-
lematic issue. The option to minimize these effects was to
allow, at the beginning and at the end of the record, shorter
segment lengths. Once again, if the first or the last break-
point happens near the minimum allowed position the result
should be looked upon with some suspicion.

The method was implemented in a FORTRAN 90 pro-
gram. The source code can be downloaded athttp://www.
dfisica.ubi.pt/∼artome/linearstep.htmlor can be requested by
mail from AT.
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