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Abstract: The performance of the continuous stirred tank reactor (CSTR) for the in-situ production of hydrogen
gas (H ) integrated with a polymer electrolyte membrane fuel cell (PEMFC) was investigated. Facultative2

anaerobe fermentation of Enterobacter aerogenes ADH-43 was conducted into CSTR 50 rpm of agitation speed,
37°C of temperature, 6.3 of pH and 0.15; 0.3; 0.45; 0.60 hG  of dilution rate. Bio-H  produced was assessed after1

2

inserting it into a fuel cell to generate electricity and measuring voltages. The system was integrated with a
ceramic membrane having 0.2 µm pore size for recycling the retentive cell into reactor and separating the
permeate supernatant during the fermentation. The obtained H was purified from CO  by absorption in Ca(OH)2    2    2

solution prior to feed to PEMFC. The CSTR was initially operated on batch basis to increase the bacterial cell
density to ensure the production of sufficient H  and develop a feeding culture strategy for continues operation2

mode. The result showed that the highest H production achieved at continuous system resulted in 0.30 hG2 
1

of optimum dilution rate. The maximum H  volume of 9.76 l H /l sugar, the yield of 1.84mol H /mol sugar and2     2       2 

the flow rate of 115 ml H /min were obtained. Furthermore, colony count of 9.81 log cfu/ml, pH of 5.73, maximum2

electrical current of 0.38 Ampere, electrical power of 2.20 Watt and electrical voltage of 5.75 volt after given
resistance using LED of 25 ohm was also obtained.

Key words: H  production % E. aerogenes % Molasses % CSTR % Ceramic membrane % PEMFC2

INTRODUCTION between the use of dry biomass such as wood and the

The future form of energy might be H , which is a of domestic waste, agro-industrial wastes and slurries and2

highly attractive clean energy carrier especially when wastewater [3, 4].
mentioned as an everlasting energy source. Another Currently South East Asian countries such as
advantage would be having water as a by-product from Malaysia, Indonesia, Thailand, etc. produces substantial
hydrogen combustion to get the energy thus reducing the amount of biomass in the form of agricultural wastes [5].
pressing greenhouse issues raised from fossil fuel usage Rather than the current practice of disposing these bio
[1]. The insecurity in fossil energy prices and sources waste via open burning that can aggravate the
further heightens the demand for an alternative, environmental issues, these biomass can be converted
sustainable and clean energy carrier. Furthermore, all into H . However, the public is still very unfamiliar with
renewable energy sources is ultimately based on solar the idea of H  as an energy source [6]. Moreover, any
energy that is made available to us through photovoltaic production route emitting carbon dioxide that starts from
cells, wind energy or stored as chemical energy in biomass ensures zero net carbon emission as the carbon
biomass [2]. The latter will play a major role as a feedstock dioxide released is taken up by the plants to perform
for sustainable production of electricity as well as photosynthesis, the idea of using hydrogen to produce
gaseous and liquid biofuels. A distinction can be made energy is indeed attractive [7].

use of wet biomass sources such as the organic fraction

2

2
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 The difficulty of storing and transporting bio- H after given a resistance using a LED of 15 ohm (Data are2

limits its commercial application. This problem can be not reported).
solved by combining the bio- H  -producing system with The main objective of present work was to2

fuel cell system for electricity generation [8, 9]. The investigate the effect of dilution rate to biohydrogen
possibility of converting H  into electricity via fuel cells production in continuous stirred tank reactor (CSTR)2

makes the application of H  energy very promising [10]. system. The produced biohydrogen was directly inserted2

However, there is little information in the literature referred into a fuel cell to generate electricity.
to direct fuel cell electricity generation from bio- H  In this2

study, the bio- H  produced inserted directly to a home- MATERIALS AND METHODS2

made proton-exchange-membrane fuel cell (PEMFC) for
electricity generation. Microorganism and Culture Condition: H  producing

Potential of various pure cultures had been exploited bacteria of E. aerogenes ADH-43 was obtained by
to produce H  using a variety of substrates. Fermentation classical mutagenesis working and was maintained at -2

of bacterium based on the used substrates in batch 80°C with 15 % glycerol. A synthetic medium used in this
culture leads to the highest production yield of H  as contained (per liter) was included as follows: 7.0g K HPO ,2

follows: 3.31 mol H / mol glucose by E. cloacae DM 11 1.0 g (NH )  SO , 0.25g MgSO .7H O, 0.021g CaCl .2H O,2 

[11], 0.73 mol H / mol xylose in batch culture, 6.0 mol H / 0.029g Co(NO ) .6H O, 0.039g Fe(NH )  SO .6H O, 0.172mg2         2

mol sucrose by E. cloacae II-BT-08 [12], 9.95 mmol H / Na Se0 , 0.02 mg NiCI , 0.5g MnCl .4H O, 0.1g H BO ,2

COD in starch by C. acetobutylicum CGS 2 [13], 2.2 mol 0.01g AlK(SO ) .12 H O, 0.001g CuCl . 2H O, 0.5g
H / mol chitinous waste by C. puraputripicum M-21 [14], Na EDTA.2H O and 2.0mg nikotenic acid [21]. A complex2

2.3 mol H / mol glucose in cellulosic biomass by C. medium was prepared by adding 2% of reducing sugar of2

thermocellum 27405 [15] and 1.12 mol H / mol glycerol in molasses or equal to 4% of total sugar to synthetic2

biodiesel waste by E. aerogenes HU-101 [16]. On the medium.
other hand, maximum H  production in continuous culture A  modified  hungate  technique  combined  with2

was 3.5 mol H /mol sugar in molasses by E. aerogenes E- serum bottle technique [22] was used to culture the2

82005 [17] and 3.0 mol H /mol lactose by C. thermolaticum bacterium anaerobically. The medium without molasses2

[18]. and  phosphate  buffer  boiled  for   20   minutes,  cooled
Members of Clostridium and Enterobacter were on  ice  with  continuous bubbling of N  gas, dispersed

most widely used as inoculums for fermentative H into  serum bottles sealed with black butyl rubber2

production. Species of Clostridium are Gram negative, rod stoppers  and  then sterilized (18 min, 121°C). Molasses
shaped strict anaerobes and endospore formers whereas and  phosphate  buffer  autoclaved  separately and
Enterobacter are Gram negative and rod shaped injected  into  serum bottle. After the inoculation of 10 %
facultative anaerobes [19]. In most of studies, pure of seed culture into serum bottles and adjustment of the
cultures of bacteria were used for fermentative H pH to 6.8, the bottles were incubated at 37°C with 50 rpm2

production. These experiments were conducted in batch of agitation [23]. Seed culture was obtained by 40 ml of
and glucose was used as substrate, however H pre-culture of E. aerogenes ADH43 (OD = ± 0.82) before2

production from organic wastes is more desirable as it is the end of logarithmic growth phase was inoculated into
feasible process for industrialization to realize the goal of 400 ml complex medium supplemented with 2 g/l total
waste reduction and energy production. Thus, sugar of cane molasses and then incubated at 37°C, 120
fermentative H  production by pure cultures using organic rpm, 8 hours of temperature, agitation time and2

wastes is widely recommended [20]. fermentation time.
In our previous study, the vial bottles fermentation of

E. aerogenes ADH43, sugarcane molasses used as carbon Analysis: The number of bacterial colonies was measured
sources. It was shown that by feeding 0.5 l 4 % (v/v) of by the method of total plate count (TPC). Gas volume
sugar cane molasses into 3 l of working volume of batch measurements made using respirometer connected with
reactor at 5 and 12 hrs fermentation, the flow rate and the holes on the top of the fermentor. Gas of CO and H
yield of H  production increased nearly 1, 3-fold and 1.5- were formed and flowed through the hose into the2

fold compared to batch reactor, respectively. It also Erlenmeyer containing a solution of Ca(OH) . Gas of CO
indicated, that a maximum current of 0.40, electrical power reacted with Ca(OH)  to form CaCO , while H  got into the
of 2.42 Watt and a maximum electrical voltage of 6.03 volt respirometer containing a saturated NaCl as follows:

2
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CO (g) + Ca(OH) (l) 6 CaCO  + H (g) (1) The cells were cultivated anaerobically by replacing the2   2   3  2

 The amount of H  produced is shown by the were cultivated anaerobically. The initial pH was adjusted2

difference in volume between the cylinders in a NaCl to 6.8. The temperature and agitation rate were maintained
solution (small cylinder) with the outer cylinder (large 37°C and 40 rpm, respectively. After 6 h of incubation in
cylinder) on the respirometer. A volume of H  is calculated batch culture, continuous cultivation was initiated by2

based on the difference in volume that occurs due to gas feeding sterilized fresh medium. The flow rate was sharply
pressure cylinder H  between the large and small increased in order to have the dilution rate of 0.15; 0.30;2

cylinders. The concentration of CO and H  were 0.45; 0.60 h G  (in sequence) with a peristaltic pump under2  2

determined by gas chromatography (GC 8A, Shimadzu anaerobic conditions. Evolved gas and effluent liquid
Kyoto) equipped with a thermal conductivity detector were discharged from the top of the reactor. A quasi-
[24]. Total sugar (TS) and reducing sugars (RS) were steady state was confirmed based on a constant H
measured by phenol sulfuric method [25]. evolution rate and the amount of evolved electricity. The

Stirred Tank Reactor and Fuel Cell Installation: Amount H O were analyzed using Gas Chromatography. The
of 7l stirred tank reactor with a working volume of 4l was purification unit consists of absorber filled with zeolites,
used for the continuous culture. A volume of 400 ml seed silica and calcium hydroxide in order to decrease H O and
culture was inoculated into 3.6 l fermentation media CO contents. After passing through purification system,
containing  sterile  complex  medium  supplemented with 99 % purity of H was achieved. While the flow rate
4 g/l total sugar of cane molasses. The ceramic membrane reached in steady state, the next dilution rate was
with 0.2 µ pore size was also set together for recycling of selected.  The  total  running  period  for the culture was
retentive cell into reactor and separating of permeate 2 days. The changing of dilution rate was performed by
supernatant  such  as  acids  and  alcohols  when  the peristaltic pump. Flow rate of pump can be estimated from
batch   and    continuous    culture    were    carried   out. the dilution rate with the Eq. (2):

gas phase with N  gas at the start of the culture and cells2

1

2

gases which contained 60% of H  and 40 % of CO , N  and2     2  2

2

2

2 

2 

Fig. 1: Schematic diagram for biohydrogen production process and its application in PEM fuel cell stack
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D(hG ) = Flow rate of pump (l/h) / Working volume (l) (2)1

Measurements were performed on optical density,
viable cell count, H  production, pH, sugar reduction, total2

sugar. The H  produced was introduced into PEMFC,2

voltage was assessed after given resistance using LED of
25 ohm. The described experiment was reproduced for
three times.

FC performance needs a High humidity of H  but2

water flooding may affect. Thus, water management inside
fuel cell stack should be controlled not too high as FC Fig. 2: Changes in Total Colony of E. aerogenes ADH43,
requirement condition [26]. A 4 standard cell of FC was pH, Total Sugar and Reduction Sugar in CSTR
used from Electrochem Co., which is consist of 4 with Varying Dilution Rate
Membrane Electrode Assembly (MEA). The schematic
diagram for biohydrogen production and its application in were described based on the fermentation time. Flow rate
PEM fuel cell stack is shown in Fig. 1. pump changed at minute 400, 600, 800 and 1000 to achieve

RESULTS AND DISCUSSION In pattern 1, with rising of D from 0.15 to 0.30 and finally

Fermentation Performance in Batch Culture System: showed  the  reduction  for  sugar and even when D is
Table 1 shows the growth curve of Enterobacter 0.45 hG , the reduction of sugar is close to zero. It
aerogenes ADH-43 using a batch culture system at the indicated that the sugar perfectly consumed. With an
reactor volume, 4 l, 37°C, 6.8 of pH and 2 % of molasses increase in D, the pH showed an opposite changes from
concentration. As well as gram-negative is growing faster 6.13 to 5.73 associated with increased formation of acetic
than Photosynthetic microorganisms, Phase lag was only acid and lactic acid as well as an increased number of
about 2 hours and H  being produced during the early log colonies from 8.93 to 9.60log cfu/ml. It showed that sugar2

phase is approximately 2 hours. Microorganisms from cane molasses was utilized for cell growth and
enhanced growth along with rising H  production and the produce H , organic acids and alcohol. E. aerogenes2

sugar consumed up to 6 hours of fermentation time. The produces 2,3-butanediol (BD), ethanol and organic acids
pH values of 6.1-6.3 were ideal for the production of H (lactate, acetate and formate) besides H  [16, 17] Organic2

[19]. Fresh 2 % molasses was pumped towards the end of acids produced by E. aerogenes decrease pH of
the log phase of microbial growth, or about 6 hours into fermentation medium.
the fermentation time, at the time stability of the H For the second pattern in which dilution rate was2

production of about 42 ml H /min. increased from 0.45 to 0.60 hG , the amount of sugar2

Effect of Dilution Rate to Total Colony, pH, Total Sugar reducing sugar in effluent. It is also associated with rising
and Reduction Sugar: In this study, after 6 h of pH to be 5.93 and 8.82 log cfu/ml fall in the number of
incubation in batch culture system, continuous colonies. In the last pattern to retain D at 0.60 hG , the
cultivation was initiated by feeding sterilized sugar cane number of colonies dropped very drastically and the
fresh  medium  at  the  dilution  rate  of 0.15; 0.30; 0.45; effluent pH rose with increased RS and TS. A decrease in
0.60 hG  (in sequence). In Fig. 2, the effect of dilution rate total colony leads to washout at higher dilution rates.1

on total colony of E. aerogenes ADH 43, pH, total sugar According to this figure, in the CSTR, operation at a high
and reduction sugar during fermentation in CSTR system dilution rate or short residence time can lead to washout.

dilution rate of 0.15, 0.30, 0.45 and 0.60 hG , respectively.1

to 0.45 hG , the number of colonies increased. It also1

1

2

2

1

consumed was decreased with increasing total sugar and

1

Table 1: Fermentation growth and production during batch culture of E. aerogenes ADH-43

Time (hr) OD (log CFU/ml) pH RS (%) TS (%) Flow rate H (ml H /min)2  2

0 5.45 6.5 2.0 3.0 0

2 6.5 6.3 1.8 2.9 0

4 7.5. 6.2 1.5 2.8 26

6 7/.6 6.2 1.0 2.0 42
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Fig. 3: Changes in H  flow rate and H  volumetric in CSTR2    2

with varying dilution rate

Fig. 4: Changes in electrical current, voltage and power in
CSTR with varying D

Effect of Dilution Rate in H  Production: Fig. 3 described2

changes in H  production by E. aerogenes ADH 43 in2

continuous culture with varying dilution rate. This figure,
as well as Fig. 1 for pattern 1, with the increase in D from
0.15 to 0.30 and then finally to 0.45 hG , flow rate of H1

2

formation was increased nearly linear from 70 to 110
ml/min and also identical for the volume of H  production.2

Conversely, an increase in D up to 0.60 hG  and1

maintained  it  in  such  away, the washout reached only
10 ml/min, even if production of H continued no longer.2 

Therefore, these disadvantages may cause operational
instability and limit H  production. H  production in a2  2

CSTR  operation  has  some drawbacks. In general, a
CSTR system is very sensitive to environmental changes
(i.e., pH, HRT) [10].

The highest H  production was obtained at dilution2

rate 0.45 hG , resulted a maximum H  volume of 9.76 l H /l1
2     2

sugar  (1.84 mol H /mol sugar), maximum flow rate of2

114.66 ml H /minute.2

Electricity Generation via PEMFC: In this study, the
CSTR H -producing system was combined with PEMFC2

to generate electricity. Levin et al. [15] pointed out that
choosing a PEMFC system to produce electricity from
biohydrogen is based on the idea that the best use of
biohydrogen systems might be as a means of delivering
small, distributed power systems to communities. They
also estimated that if a continuous  biohydrogen  system

can deliver enough H  to power a PEMFC for 24 h for at2

least one year; then, the biohydrogen system could have
a truly useful and potentially commercial application. In
our previous study, biohydrogen production using the
fed-batch system was inserted into PEMFC to generate
electricity. It resulted in a total H  volume of 13.61 l H /l2     2

sugar, total yield H  of 3.84 mol H / mol sugar, flow rate of2    2

39.73 ml H /minute and a maximum current of 0.40,2

electrical power of 2.42 Watt and a maximum electrical
voltage of 6.03 volt after given a resistance using a LED
of 25 ohm. Dark fermentation is known to be the most
promising way of mass production of H , thereby feasible2

for continuous electricity generation via PEMFC [26].
In this CSTR system, H  from respirometer was fed to2

the PEMFC device to generate electricity that turned on
the light on the LED 25 ohm. The highest electricity
generation was obtained at dilution rate 0.30/h, resulted a
maximum electrical current of 0.38A, electrical power of
2.20 Watt and electrical voltage of 5.75 volt after given
resistance using LED of 25 ohm. It could be the highest H2

produced at dilution rate 0.30; so, the higher H  inserted2

into fuel cell, the higher electricity generated.

CONCLUSION

In this paper, we investigated the effect of dilution
rate to biohydrogen production in continuous stirred tank
reactor (CSTR) system. The produced biohydrogen was
directly inserted into a fuel cell to generate electricity. The
maximum H  volume of 9.76 l H /total sugar, the yield of2     2

1.84mol H /mol total sugar and the flow rate of 114.66 ml2

H /minute were obtained at dilution rate 0.30hG .2
1

Furthermore, colony count of 9.81 log cfu/ml, pH of 5.73,
maximum electrical current of 0.38 A, electrical power of
2.20 Watt and electrical voltage of 5.75 volt after given
resistance using LED of 25 ohm were also achieved.
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