

 441

USER INTERFACE DRIVEN SYSTEM DESIGN

Stevan Mrdalj, Eastern Michigan University, stevan.mrdalj@emich.edu
Vladan Jovanovic, Georgia Southern University, vladan@gasou.edu

ABSTRACT

Most of the object-oriented design approaches emphasize Use Cases as a substitute for
functional decomposition and concentrate on conceptual system decomposition into objects in
the early analysis phase resulting in a list of candidate classes. Practice has shown that user
interface design before domain modeling can be used as a systematic basis to identify classes.
This way the initial domain model will contain all the necessary classes and would eliminate
considerable refinement caused by candidate classes. This paper focuses on the user interface
driven system design and presents techniques that assure better consistency than in a typical
design process including a diagram developing procedure as well as diagram balancing
criteria.

Keywords: Object-oriented system design, user interface driven, diagram completeness, UML.

INTRODUCTION

Most of the object-oriented design approaches/methodologies (3,5,7) emphasize system
decomposition into objects in the early analysis phase. The following three techniques are
commonly used in the process of domain modeling: a - Noun phrase (1): b - Conceptual class
category list (6), c - Analysis patterns (2). All three techniques are used to make a list of
candidate classes. Larman states (6), “It is better to over specify a domain model … than to
under specify it” as the usual guidelines in identifying conceptual classes. Approaches like this
require additional effort to identify all the possible classes during the early elaboration phase of
the project and considerable effort to verify if they are indeed needed or if all needed classes are
identified. Consequently, all diagrams that are developed using the candidate classes that need to
be modified or eliminated need to be refined. This verification concludes at the design phase
using detailed User Interface (UI) design.

In order to eliminate considerable refinement caused by candidate classes, our approach
suggests performing detailed UI design before domain modeling and to use it as a basis to
identify classes. This way the initial domain model will contain only the necessary classes. Such
a domain model can be further refined to reflect the various nonfunctional requirements like
performance, expandability, maintainability, etc. In this paper we will use Unified Modeling
Language (UML) diagrams (1) that are the de facto industry-standard modeling notation for
object-oriented development.

USER INTERFACE BASED DESIGN PROCESS

The goal of our approach is to minimize the possibility to overlook UI requirements by
developing them early on in the design process and by using them as a basis for developing all

IACIS 2992 USER INTERFACE DRIVEN SYSTEM DESIGN

 442

other components of the system model. The design process described in this paper recommends
the following steps and criteria to be used:

1. Develop Use Case Model.
2. Design User Interface for each use case.
3. Develop Class diagram (conceptual user model) based on UI.
4. Develop Sequence diagram based on Use Case diagram, UI and the Class Diagram.
5. Develop Collaboration Diagram based on Sequence and Class Diagrams.
6. Develop Statechart diagram based on UI and Class diagram.

The entire system description is a network of interrelated parts/diagrams, as indicated on Figure
1. Therefore, it is necessary to verify that all the dependencies are modeled correctly. This paper
describes some techniques that ensure that modeling diagrams are more completely examined
for consistency than in a typical design process.

There are two basic criteria that we will use for balancing diagrams, and each can be the focus
of a specific balancing task: a - Completeness: A diagram is complete if no required elements
are missing according to the UI; b - Consistency: A diagram is consistent if there are no
contradictions among its elements and the corresponding ones in the dependent diagrams.

USE CASES AND USER INTERFACE PROTOTYPES

A use case description is a formal way to represent how an information systems interacts with
its environment and who are the actors involved in such interactions. There are many ways in
which use case diagrams and their descriptions may be constructed. In conjunction with use
cases we will consider the early availability of the interaction prototype consisting of the User
Interface (screens, dialogs, reports, etc.) and their flows (3); this alternative is consistent with
many of the user-centered approaches (9).

Each use case is associated with its UI prototype. Each UI prototype consists of a central form
and possible sequence of subsequent forms. Each form corresponds to a window/dialog/Web
page/report allowing the access to the functionalities associated with that use case. For the
purpose of this paper, we will consider that the complete UI is available to us. The principles

Use Case Model

Interaction Model

User Interface
Model

State Model Class Model

Collaboration
Model

Figure 1: System Model Dependencies

USER INTERFACE DRIVEN SYSTEM DESIGN IACIS 2002

 443

and process of UI design can be found for example in (9,10). The UI driven approach advocates
developing UI as early as possible and using it as a basis for developing of all other diagrams.

An obvious completeness fault may be the omission of a valid use of the system. This means
that each actor interacting with the use case needs to have an appropriate manner of interaction
represented in the UI prototype, while UI elements not covered by use case descriptions should
also arouse suspicion. Either can cause omission of a large number of required classes and
interactions.

FROM USER INTERFACE TO CLASS DIAGRAMS

The UI forms are essential in capturing data requirements. Therefore, we can use the UI
prototype as a source for developing class diagrams. The existence of a field on a dialog/Web
page /report means that the data must either be an attribute of some object, the result of some
operation on an object or series of objects, or be calculated from some object(s) attributes.
Existence of the data about different objects on the same user interface means that dose objects
are related to each other and results into an association between classes in the class diagram.
Initial multiplicities for such associations might be detected by the occurrences of the related
objects. Figure 3 shows how the key objects, attributes and relationships can emerge from the
user interface prototype.

The union of all classes appearing in all UI forms represents a set of classes necessary to support
that UI. Consequently, the union of all attributes for a given class that appear on all UI forms
represents a set of necessary attributes for that class. The union of all associations among classes
represents a set of required associations to support the given UI. Such an essential class diagram
might be further improved to satisfy other requirements like accessibility, reusability,
scalability, etc. The use of UI forms and reports to capture requirements for database design was
also demonstrated in (4).

FROM USER INTERFACE TO SEQUENCE DIAGRAMS

Developing sequence diagrams is heavily influenced by the UI prototype, especially in
understanding the different steps in a scenario or the sequence of scenarios. In our approach, the
sequence diagrams are used to formally describe UI navigation. Note also that the ICONIX
methodology (7) recommends the use of stereotyped class diagrams as an additional

 Retail Application
File Help Data Entry

Enter Customer
CUSTOMER INFORMATION

Name
Address
Phone ()

OK CANCEL

Use Case Model

Figure 2: Use Case vs. User Interface Diagrams

IACIS 2992 USER INTERFACE DRIVEN SYSTEM DESIGN

 444

intermediate step between use cases and sequence diagrams. Our approach is fully consistent
with such a possibility.

Each form of interaction with the use case needs to have the appropriate representation in the
sequence diagram. In other words, each interface prototype is associated with a central view
class (Main Menu object in Figure 4) and each window/dialog corresponds to a view class like
CustomerInfo in Figure 4. At the same time, the existence of each form means that there needs

to be a view class in the view class model. We use the view class/model name to avoid
confusion with interface classes from UML. Menu options or buttons on screens typically

«business»
::Customer

Name
Address

«business»
::Order

Number
SalesTax
S&H

«business»
::StockItem

Code
Description
Price

«business»
::OrderItem

Quantity
/Total

*

1

1..*

*

Computers 4 U
444 Hard Drive
IntelCity, PC 44545

P.O. NUMBER: 12345
To: Bytes ‘N Bits

123 S. State
Compcity, MM 98765

QTUNIT PRICE DESCRIPTION TOTAL

 1 KB-123 102-Keyboard $ 75.00 $ 75.00

 3 HD-2G Hard disk $ 225.00 $ 675.00

 2 MO-33 Mouse $ 45.00 $ 90.00

 SUBTOTAL $ 840.00

SALES TAX $ 33.60

SHIPPING & HANDLING $ 12.00

TOTAL $ 885.60

PURCHASE
ORDER

Figure 3: User Interface to Class Diagram

:Main
Menu

:Customer

:CustomerInfo
Dialog

select Enter Customer
create

select OK push Button
create

select Data Entry

enter name

enter address

enter phone

Retail Application
File Help Data Entry

Enter Customer

CUSTOMER INFORMATION
Name
Address
Phone ()

OK CANCEL

Figure 4. User Interface prototype to Sequence Diagram

USER INTERFACE DRIVEN SYSTEM DESIGN IACIS 2002

 445

trigger events sent either to the subsequent screen/dialog or to the application. Omission of any
of these classes can cause omission of a large number of required operations for these classes.

The screen/dialog flows can lead to the definition of the interactions in the sequence diagram.
For each screen/dialog all events generated through its buttons and menus need to be captured
by the appropriate messages/events in a Sequence diagram.

If a sequence diagram covers the interaction among business classes, then each business class in
a sequence diagram has to exist in the class diagram, see Figure 5. The fact that the object of one
class sends a message to the object of another class means that there needs to be an association
between these classes. The exception to this rule is the procedural relationship described in the
next part. Simultaneously, each message received by some object in a sequence diagram has to
be an operation for the corresponding class in the class diagram.

FROM USER INTERFACE TO COLLABORATION DIAGRAMS

Because sequence and collaboration diagrams arrive from the same information in UML’s meta-
model (1), these diagrams are semantically equivalent. As a result, a collaboration diagram can
be directly derived from a given sequence diagram(s), see Figure 6.

Since a collaboration diagram emphasizes the organization of the objects that participate in an
interaction, as Figure 6 shows, each <<business>> object from a collaboration diagram has a
corresponding class in a class diagram. Next, each link that connects these objects and is not
otherwise stereotyped has to map to an existent association in a class diagram. The role names
for those links and associations need to be the same. There might be exceptions to this rule in a
case of “procedural relationships” (8) in which case there will be no explicit association between
these classes.

Order

place()

OrderItem

add()

StockItem

check()
remove()

Order
Order
Item

Stock
Item

add check

remove

place

Figure 5. Sequence to Class Diagram

IACIS 2992 USER INTERFACE DRIVEN SYSTEM DESIGN

 446

FROM USER INTERFACE TO STATECHART DIAGRAMS

Statechart diagrams are one of the UML diagrams for modeling the dynamic aspects of systems.
They can be attached to a class, a use case or even an entire system. For the most part, they are
used for modeling the behavior of reactive objects. A reactive object is one whose behavior is
best characterized by its response to events dispatched from outside its context. Therefore, any
such business object and almost all view objects may have associated statechart diagrams. In
this paper, we will use statecharts to formally represent user interaction with each form in the
given UI.

Entering
Name

 Store
do / create customer

Cancel Selected
 / Cancel Operation

Customer Data Input

OK Selected
[Name + Address + Phone Entered]

Entering
Address

Entering
Phone

CUSTOMER INFORMATION

Nam e

Address

Phone () -

OK CANCEL

Dialog

CustomerInfo

Name
Address
Phone

OK selected
CANCEL selected
. . .

. . .

+

tab

tab click on
phone

click on
address

click on
name

Figure 7. User Interface Prototype to Statechart Diagram

:Order

of:Stock Item for: Order Item *
{new}

place()

1 : add(item)

1.1: q:=check(item)
1.2: remove(q)

for
of

quantity: INTEGER Order

place()

OrderItem

add(item: Item)

StockItem
check(item:Item): Integer
remove(q: Integer)

for 1.. ∗

of
1

Figure 6. Sequence to Collaboration and Collaboration to Class Diagram

USER INTERFACE DRIVEN SYSTEM DESIGN IACIS 2002

 447

In the case of a statechart diagram for a view class, each independent event like data entry or
button click need to be appropriately modeled as transitions in a statechart. This can be modeled
using composite states as shown in Figure 7. All operations that are listed as part of a transition
specification must also exist in the class diagram for the appropriate class. The same principle
applies for all operations listed as actions or activities for the states. At the same time, role
names used in a state chart must correspond to the appropriate role names in a class diagram.

CONCLUSIONS

The intention of this paper is to help software developers to successfully design information
systems using UML diagrams. Emphasis is given to the use of the user interface as a basis for
developing almost all diagrams. This paper presents the techniques on how to derive the Class,
Sequence, Collaboration and State diagrams from the UI. The experience in using these
techniques is that the larger the project, the more beneficial diagram derivation is.

Despite a growing number of CASE tools that support UML, very few of them emphasize
diagram balancing. Most of the time they make sure that all elements belong to certain concepts
without consideration if those concepts are really related to that diagram or not. This paper
describes some techniques that ensure that modeling diagrams are more completely examined
for consistency than in a typical design process.

The ultimate goal is to incorporate diagram balancing into the design process and that this
evaluation is continuous throughout the design process. For example, as the sequence diagram is
created, the class diagram can be checked to be certain that all messages in the sequence
diagram correspond to associations in the class diagram.

REFERENCES

1. Booch, G. Rumbaugh, J. and Jacobson, I. (1998). The Unified Modeling Language User
Guide, Addison-Wesley.

2. Fowler, M. (1997). Analysis Patterns: Reusable Object models, Addison-Wesley.
3. Gossain, S. (1995) Tracking Requirements in Object Development: Part II, Report on Object

Analysis and Design, (2.3), 18-19,55.
4. Jovanovic, V. and Mrdalj, S. (1990). Three-Layered Approach to the Analysis of Forms and

Transactions, Dallas, TX: Proceedings of the IAMM Conference, 141-148.
5. Kruchten, P. (2000). Rational Unified Process (2nd ed.), Addison-Wesley,
6. Larman, C. (1988). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design, Prentice Hall.
7. Rosenberg D. (1999). Use Case Driven Object Modeling with UML, Addison-Wesley.
8. Rumbaugh, J., (1998). Depending on Collaborations: Dependencies as Contextual

Associations, The Journal of Object-Oriented Programming, (11.4), 5-9.
9. Van Hartman M., editor (2001). Object Modeling and User Interface Design, Addison-

Wesley.
10. Weinschenk, S., Jamar, P. and Yeo. S. (1997). GUI Design Essentials, John Willey & Sons.

