
 611

ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM

Stevan Mrdalj, Eastern Michigan University, stevan.mrdalj@emich.edu
Vladan Jovanovic, Georgia Southern University, vladan@gasou.edu

ABSTRACT

Computer Information System and related programs are expected to produce students who
possess a broad and contemporary understanding of analysis and design for information
systems. An empirical analysis of the state of practice in systems analysis and design education
revealed an emphasis on structured design in the majority of schools. The opportunity to
transition to object-oriented analysis and design, in the CIS curriculum, is based on the use of
the Unified Modeling Language (UML) standard. A roadmap for such advancement is presented
by a comparison of concepts and tasks in modeling web applications using various diagrams
offered by conventional structured methods and by UML.

Keywords: systems analysis and design, curriculum, object-oriented, UML, structured design.

INTRODUCTION
UML has clearly become the specification language of choice for systems analysis and design in
the industry (1). According to a review of eighteen empirical studies (8), the majority found the
object-oriented design (OOD) approach superior to the classical structured design (CSD). The
supporters of OOD claim many advantages, including greater user satisfaction, improved
modularity, maintainability and adaptability. Nearly all studies, where negative results were
obtained, come from the use of inexperienced students as subjects. Many claim to be teaching
OOD. According to a study by Hardgrave and Douglas (6), 51% of the schools are teaching at
least one OOD method (n=106). In reality, very few programs seem to use UML and teach OOD.
In our study we examined the web based syllabi for systems analysis and design courses at 125
programs. For this purpose we started with the AASCB directory of accredited CIS programs.
We discovered that only 16% are teaching using UML and only 4.8% teach both CSD and OOD.
By further examination of the books used in those courses that teach OOD, we discovered that
some (4) have replaced data flow diagrams with use cases and entity-relationship diagrams with
class diagrams ignoring or lightly covering many other very important representation diagrams
or they use professional books (10). Other most frequently used books (7,9,14) have one chapter
describing all UML diagrams. There is only one book (12) that we are aware of that successfully
covers in parallel both SD and OOD with UML. At the same time, the study by Hardgrave and
Douglas (6) reveals that 84% of the programs teach at least one OO language. Such commitment
to OO programming (5) also reveals that the larger picture of system design is being neglected,
indicative of the educational content that is no longer appropriate.

In order to advance the systems analysis and design curriculum content, we need to examine
CSD and UML and to analyze the conceptual content that provides the basis for producing better
systems. As most of the problems with the CSD are evident in developing web applications, we
decided to perform a comparison in the framework of web applications. This decision was also
influenced by Wells who pointed out (13) that web applications and eBusiness will
fundamentally alter the methods, techniques, and tools within the system development life cycle.
Thus, an overview of diagrams used in both CSD and OOD is presented in respect to system
complexity, structure, behavior, user interface navigation and architecture.

IACIS 2003 ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM

 612

COMPLEXITY CONTROL

A standard technique of mastering a complex system is to decompose the system into smaller
and smaller parts until each part becomes small enough to be understood. When the system is
decomposed into modules, each carrying out a major step in the overall process, we are using the
top-down structured design. When the system is decomposed into usage profiles, each carrying
out a major interaction between actors and the system, we are using use case modeling.

The most frequently used diagramming
technique for top-down system
decomposition is the data flow diagram
(DFD). System models represented by DFDs
capture the flow of control among processes
and demonstrate how data get modified as
they flow throughout the system. Another
decomposition method is to decompose the
system into use cases, Figure 1. Booch (1)
describes a use case as a description of a set
of sequences of actions, including variants,
which a system performs to yield an
observable result to an end-user. A use case
diagram (UCD) captures the intended
behavior of the system without having to specify how that behavior is implemented.

Perhaps the most serious weakness of DFD is that it uses a single function at the top, a dubious
requirement for many modern event-driven systems. Defining web applications in terms of a
single top-level function is artificial and yields overly complex and non-adaptive architectures.
Top-down function-based design also has scalability limitations that become apparent when
developing and maintaining large systems. The customer-centered, event driven and interaction
based approaches in deriving requirements for web applications make DFDs difficult to use in
the analysis phase (13).

Contrary to the hierarchical structure of functions, use cases represent independent interactions
that can be initiated at any time, in any order, and they are well suited for all interactive GUI and
web based applications. This approach yields system decomposition into a set of use cases with
the ability to incrementally grow from a reliable small system into a more complex one (1).

Use case diagrams offer behavior sharing and variants by specifying <<include>> and
<<extend>> as shown in Figure 1. DFD’s support for reuse, while possible, is not formalized.
The third method of dealing with complexity is through abstraction specified by generalization
relationships in Figure 1. Abstraction is easier and is a more natural part of system
decomposition than functional decomposition methods.

REPRESENTING SYSTEM STRUCTURE

The system structure is described using entity-relationship diagrams (ERD) within CSD and
using class diagrams (CD) within UML. Since ERD is a subset of CD, whatever is possible to
represent using ERD, is also possible to represent with CD. In respect to the physical data base
design, it can be performed the same way using CD as it would be done by using ERD. Table 1

Figure 1: Use Case Diagram

Customer

Place Order

Track Order

Validate
Customer

Rush Order

Validate eMail Validate ID

«include»

«include»

«extend»

ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM IACIS 2003

 613

Class Name Qualifier

Class Name

Operation List

summarizes some features of CD that are not available in ERD, like realization, dependency and
qualification which may significantly help in the process of physical system design.

The essential difference is that a class
consists of the data and all the necessary
operations that manipulate it. Classes are
founded on the basic concepts of
encapsulation, messaging, inheritance and
polymorphism. Encapsulation organizes data
and the corresponding processes which
manipulate that data into a single object. The
data and operations contained in an object
are conceptually related to each other and
distinct from all other objects in a system.
Inheritance allows objects to share attributes
and behaviors without separately duplicating

Table 1: CD extensions to ERD
Operation

Composition
Aggregation
Realization
Dependency
Qualification

the program code that implements them. Polymorphism, perhaps the most powerful feature
together with inheritance, allows the shared code that objects acquire through inheritance to be
tailored to fit the specific requirements of an object. This feature of an object allows for a higher
level of abstraction in the design of software and the construction of the frameworks.

Representing Document Structure
The great distinction of web applications is the usage of enabling technologies. Client-side
enabling technologies are object-oriented and can be quite sophisticated. Regardless of the
underlying philosophy for enabling the client, the technology relies on the Document Object
Model (DOM) framework (2). The DOM is a platform-neutral interface to the browser and the
HTML document. DOM contains user interface classes like window, document, buttons, etc. The
trick to designing a web application is in the understanding of the objects and the interfaces you
have to work with. For example, Figure 3 shows the design for the web page in Figure 2. Since
quite often web applications require the development of business objects at the application server
side, it is necessary to use CD to represent the application server structure. Therefore, the ERD is
an inadequate tool to be used to design both the client and server application structure.

REPRESENTING BEHAVIOR

The main tool for representing behavior in CSD beside DFD is a structure chart (SC). In
developing SCs we employ a top-down decomposition or stepwise refinement by moving from a
general statement about the process involved in solving a problem down towards more and more
detailed statements about each specific task in the process. Since the decomposition only
highlights the functional aspects of the problem, the influence of the data structures on the
problem is lost or is very minimal.

For the purpose of comparison with SC we will use UML’s sequence diagrams (SD) shown in
Figure 4 and collaboration diagrams (CoD) shown in Figure 5. Both diagrams show an
interaction consisting of a set of objects and messages that may be dispatched among them.
Booch (1) describes a SD as a diagram that emphasizes the time ordering of messages and a CoD
as a diagram that emphasizes the structural organization of the objects.

IACIS 2003 ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM

 614

Table 2 describes differences between SC, SD and CoD. While all three diagrams have similar
control structures, SC can only represent hierarchical structure whereas both SD and CoD can
represent a network structure. The SC may create a good software model for the initial
requirements of a system. But as that system changes and new requirements are added to a
relatively fixed tree structure, changes usually require extensive pruning and graphing. Both SD
and CoD have much richer semantics than SC. For example, CoD has links that specify a path
along which one object can dispatch a message to another. Such paths can be stereotyped as
association, self, global and parameter. SD and CoD have message arrow-lines that can represent
call, return, signal, creation and destruction. CoD may represent synchronization and treads.

Table 2: Comparison of SC, SD and CoD

Feature Structure Chart Sequence Diagram Collaboration Diagram
Process Function Message Message
Data Data couple Object Object
Connection Line Link
Flow of Control Top-down, Left-to-right, Control flag Top-down, Arrow-line Link, Arrow-line, Sequence numbers
Iteration

 * * or *[condition]
Selection [condition] [condition]

With the emergence of the web applications, there are web interfaces issues that pertain to all
web sites and require special consideration during application design (13). The principal strategy
for deploying web applications is to use multi-tier architecture like the one shown in Figure 8.
Each tier contains objects that communicate with each other. For example, the client tier contains
browser related objects, the web server tier contains controller related objects like sessions, and
the application server contains business objects. The UML interaction diagram is an especially
useful tool to represent interaction among those objects. SC and ERD were amenable with the
traditional two tiered client/server architecture, separating the process and data, but they are
insufficient to model modern multi-tiered architectures.

Document Navigation Flow
Most web applications get their work done by navigating from one screen to the next. It is crucial
to design and document expected navigational paths since they represent business logic. Because
of the lack of messaging and objects, SC cannot be used to represent the navigation flow

Customer Registration Form

Button

Text

Document

1

1
Submit

1

1

Cancel

1

1

Name

1

1

Address

Customer Registration Form

Button

Text

Document

1

1
Submit

1

1

Cancel

1

1

Name

1

1

Address

Figure 3: Simple web page design

. . .

 . . .

Figure 2: Customer Registration Web Page

ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM IACIS 2003

 615

Figure 4: Sequence diagram

between screens. Since CSD
does not offer a tool for
representing navigation flow,
some authors use hierarchical
dialog diagrams (HDD) for this
purpose (7). Although such
representation shows all the
screens and their hierarchy, it
does not adequately represent
the dynamic flow between the
screens and related events.
Other authors (3,4) use
Windows Navigation Diagrams
(WND) whose main addition to
HDD is a network structure.
We advocate using SD for
representing object interaction
among tiers like it is shown in
Figure 4.

Representing Business Logic
As we mentioned before, an application
server may contain business objects. The
business logic is accomplished by
messaging between objects. Messages and
objects are independent. That is, the same
message may be sent to more than one
object, each performing its specific tasks
or an object may respond to more than one
type of message. A message to one object
may require that object to send a message
to a third object, and it to a fourth object,
and so on. Changing the business logic of
a system can therefore be accomplished by changing objects or by changing the messaging
structure. Business logic through the messaging among objects is best represented with CoD like
the one shown in Figure 5 in conjunction with the corresponding CD.

Representing Business Rules
The statechart diagrams are one of the UML diagrams for modeling the dynamic aspects of
systems. They can be attached to a class, a use case or even an entire system. For the most part,
they are used for modeling the behavior of reactive objects. In this paper, we will use the
statecharts shown in Figure 6 to formally represent the business rules in user interaction with the
web page, shown in Figure 3, where each independent event like data entry or button click need
to be appropriately modeled as a transitions. This can be modeled using composite states. Such a
level of abstraction is not available in WND or in any other diagram within SCD.

Figure 5: Collaboration Diagram

«user»
:TrackOrder

«business»
:Sale

«business»
:LineItem

«business»
:Product

tot=getTotal()
2 : 2 :

3 *:
st=getSubtotal()

4 :
pr=getPrice()
4 :

create()
1 :
create()
1 :

«user»
:TrackOrder

«business»
:Sale

«business»
:LineItem

«business»
:Product

tot=getTotal()
2 : 2 :

3 *:
st=getSubtotal()

4 :
pr=getPrice()
4 :

create()
1 :
create()
1 :

:Client :HTTP :Web
Server

marshal(rewuest)

:eStore

:Customer

request(url)

resolve(url)

retrieve

display

marshal(response)
response

Customer
navigate

select register

[name selected] enter name

[address selected] enter address

[phone selected] enter phone

IACIS 2003 ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM

 616

REPRESENTING PHYSICAL ARCHITECTURE

When you architect a web application, you have to consider both its logical and physical
dimensions. On the logical side we design classes, interfaces, interactions and states. On the
physical side we design components and their deployment on the set of hardware.

Representing Components and Deployment
In UML all physical things are modeled as components. A component is a physical thing that
confirms to and realizes a set of interfaces. A graphical representation of a component is shown
in Figure 7.

The components we develop or reuse, as part of a web application, must be deployed on some set
of hardware. The UML provides a graphical representation of the node, as Figure 8 shows. A
node should be visualized apart from any specific hardware. Using stereotypes would
accommodate the representation of the specific kind of hardware such as a processor, device etc..
The most common type of a relationship among nodes is an association. Associations may be
stereotyped to indicate a physical type of connection like <<10-T Ethernet>> or <<RS-232>>.
Nodes may be grouped in packages.

CONCLUSION

By raising the level of abstraction from the function-level to the object-level and by focusing on
the real-world aspects of the system, OOD tends to promote cleaner designs that are easier to
implement and provides for better overall communication. The UML diagrams in OOD work
together, as views of the same system, synergistically to produce design solutions that better

 Store
do / Create customer

Cancel selected
/ ^Home Page

Submit selected
[Name + Address + Phone Entered]

 Entering
Name

Customer Data Input

Entering
Address

Entering
Phone

tab

tab click on
 phone

click on
address

 click on
 name

Figure 6: Statechart Diagram

Figure 8: Deployment Diagram

Figure 7: Component Diagram

ADVANCING THE SYSTEMS ANALYSIS AND DESIGN CURRICULUM IACIS 2003

 617

model problem-domain aspects than similar systems produced by CSD. The systems designed
using UML are easier to adapt to changing requirements, easier to maintain, more robust and
promote greater design and code re-use. Using an object-oriented language (e.g. C++, VB, Java
or C#) adds support for OOD and makes it easier to produce more modular and reusable code. Of
course, you can develop a web application using DFD, ERD and SC. By not being able to design
the document structure, document navigation flow, document business rules, system components
and system deployment using SD you trade short-term convenience for long-term inflexibility
and you lose sight of the architecture and sacrifice maintainability.

As the industry continues to adopt web applications, it will actively recruit students who have
received training in OOD with the UML standard. For this reason, CIS and related programs
should make plans for transitioning to object-oriented analysis and design by introducing UML
into their curricula. While some faculty resistance to change is anticipated with this approach,
this paper is also aimed at providing a reasonable roadmap to such change.

REFERENCES

1. Booch, G., Rumbaugh, J. and Jacobson, I. (1998). The Unified Modeling Language User
Guide, Addison-Wesley.

2. Conallen, J. (2003). Building Web Applications with UML, 2nd ed. Addison Wesley.
3. Constantine , L. and Lockwood, L. (1999). Software for Use, Addison-Wesley.
4. Dennis, A., Wixom, B.H. and Tegarden, D. (2002). Systems Analysis and Design: An

Object-Oriented Approach with UML, John Wiley and Sons.
5. Gotwals, J.K., Smith, M.W. (1993). “Bringing Object-Oriented Programming into the

Undergraduate Computer Information Systems Curriculum,” Journal of Information Systems
Education, 9/93, Volume 5, Number 3.

6. Hardgrave, B.C. and Douglas, D.E. (1998). “Trends in Information Systems Curricula:
Object-Oriented Topics, Proceedings of the Fourth Americas Conference on Information
Systems,” August 14-16, Baltimore, Maryland, 686-688.

7. Hoffer, J.A., George, J.F., and Valacich, J.S. (2002). Modern Systems Analysis and Design,
3rd ed. Prentice Hall.

8. Johnson, R.A. (2002). “Object-Oriented Systems Development: A Review of Empirical
Research,” Communications of the Association for Information Systems, Volume 8 Article 4,
65-81.

9. Kendall, K.E. and Kendall, J.E. (2002). Systems Analysis and Design, 5th ed., Prentice Hall.
10. Larman, C. (1988). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design, Prentice Hall.
11. Rosenberg, D. and Scot, .K. (2001). Applying Use-Case Driven Object Modeling with UML-

An annotated e-commerce example, Addison Wesley.
12. Satzinger, J.W., Jackson, R.B., and Burd, S.D. (2002). Systems Analysis and Design in

Changing World, Course Technology.
13. Wells, J.D. (2000). “Systems Analysis and Design for E-Business: Implications for Research,

Proceedings of the Sixth Americas Conference on Information Systems, August 10-13, Long
Beach, California, 253-256.

14. Whitten, J.L., Bentley, L.D. and Dittman, K.C. (2000). Systems Analysis and Design
Methods, McGraw-Hill.

