
 178

DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS

Vladan Jovanovic, Georgia Southern University, vladan@gasou.edu
Stevan Mrdalj, Eastern Michigan University, stevan.mrdalj@emich.edu

ABSTRACT

This paper outlines viewpoints of interest in the design of software components for software
intensive information systems. Applicability of a standard for design representation is discussed
indicating usage of standard languages for such representation. Additionally, a unifying meta-
model for software component design is presented.

Keywords: software component, design description, design language, UML.

CONCEPTUAL MODEL FOR SOFTWARE COMPONENT DESIGN

The purpose of this paper is to explore a standardized software component design description.
Our focus is on designing components to be used in component-based development (CBD) for
complex information systems. In contemporary software design practices (1,2,3,4,5,6,7,8,9) it is
common to use various representations during the design of complex information systems. It is
because no single view can accommodate various stakeholders and their legitimate concerns, nor
can it cover all aspects of design. All this is especially true for the design of the software
components, even though the use of components reduces the complexity for larger systems.

Our focus is on the design description of individual components and not how components are
discovered. Since there is no universally recognized definition for CBD or Component, we will
work from a very general notion encompassing implementation and executable level components
including executable programs, static and dynamic libraries, source code files and similar
binaries. For examples we may quote J2EE and .NET as two most popular implementation
technologies based on components.

We begin by providing a summary of concepts and terms used in the context of software
component design descriptions as a conceptual meta-model in the form of a UML class diagram
(Figure 1). The top portion represents a classification of component design elements in terms of
what a component might be. It also shows a composition pattern for components. The design
description is shown at the bottom portion of Figure 1 as a composition of several viewpoints
each representing the involved design entity with its attributes and relationships. Next, this paper
summarizes software component design in terms of design descriptions using various viewpoints
(see Table 1). Design viewpoints are the means to organize the Software Design Description
(SDD), to satisfy the requirements of each stakeholder, to promote a separation of concerns, and
to provide a comprehensive description of a system from all relevant aspects.

This paper then describes what makes nominated viewpoints ‘required’ or why those elected are
to be covered in a well-documented design for individual software components. For each
required viewpoint, we indicate a usage of the expected standardized description techniques for
describing that viewpoint. A rational requirement for the selection of representational

DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS IACIS 2003

 179

technologies is that they should be properly defined and commonly accessible, in other words
standardized.

Pattern Template Framework Function Class

CompositeComponent

1* 1*

SDD
1

1

1

1

Viewpoint*1 *1

Requirement
*

*

*

* *
1..*

*
1..*

DesignEntityAttribute
1..*1 1..*1

DesignRelationshipDesignEntity

** ** ** **

Figure 1: Conceptual Meta-Model for Software Component Design

REQUIRED VIEWPOINTS FOR COMPONENT DESCRIPTIONS

The draft of the IEEE 1016 (11) Standard for Software Design Descriptions lists ten viewpoints
as required for the description of general software designs. We found that six of them apply
when the scope of design is a single software component. Additional viewpoints can be defined
per stakeholders needs or even imposed contractually. Contemporary development practice
recognizes, see the IEEE Recommended Practice for Architectural Descriptions of Software
Intensive Systems (10), that the viewpoint declaration is an explicit activity.

In order to design non-trivial software components it is indeed necessary to fully describe their
design from several viewpoints. As Table 1 shows, there are six required viewpoints applicable
for every system component, and while in each actual case there may be additional viewpoints of
interest, they are not common for all components. For example, a human computer interface is of
interest only for externally visible components with humans as direct operators. The most
important viewpoint for software components is the explicit interface. Beside the interface, at
minimum, the following viewpoints are expected: the decomposition of components into
software objects, their dependencies, the dynamics of state changes, the interaction among
collaborating objects, and the allocation of methods to various objects the component is
comprised of, and methods’ internal (procedural) logic.

Traditionally, for high-level designs various forms of informal box and arrow diagrams were
used, for detail design structure charts were common, and for physical architecture systems
diagrams were used. Instead, this paper summarizes standardized design languages of interest for
components design for each viewpoint in Table 1. In addition, a unifying concept of the UML
Package serves as a general visual representation (a folder) for grouping and organizing elements
of various descriptions as well as a visual enclosure for a component itself (see Figures 2-5).

Documentation of components may go beyond the design description to include the performance
of component realization, instructions for use etc. Our focus is on design even to the exclusion of

IACIS 2003 DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS

 180

test related information. This may change in the near future, since testing is increasingly
becoming a part of the design process or it is used methodologically “instead of a design” in
Extreme Programming and Test Driven Development approaches (7).

 Table 1: Summary of viewpoints for software component design description.
Component Design Viewpoint Expectation Design Languages
Software Interface required UML Component Diagram

UML Object Constraint Language (OCL)
Static structure required UML Class Diagram
Dynamic or state changes required when applicable UML Statechart, Petri Net
Interaction required UML Sequence Diagram,

UML Collaboration Diagram
Dependency required UML Component Diagram

UML Package, UML OCL
Algorithmic or detail logic required for safety-critical, and

when applicable for general
purpose components

Fault Tree Diagram, Decision Table,
programming language (like C++),
UML Activity Diagram, UML OCL

SOFTWARE INTERFACE VIEWPOINT

The component interface description is intended to serve software architects, acquirers,
designers, programmers and testers of components, as well as independent testers. It includes the
details of external interfaces. This viewpoint deals with software interfaces and not with human
computer interfaces, which have a separate viewpoint typically not in the scope of an individual
component design. This viewpoint consists of a set of interface specifications for a component as
a design entity shown in Figure 2. For each component, it provides a reference to the detailed
description via the identification attribute. The component interface description should contain
everything another designer or programmer needs to know to develop software that interacts
with that component. The attribute descriptions for identification, type, purpose, function, and
subordinates should be included in this design view. Design relationships include ‘composition’
and ‘clientship’. For a commercial component, a design relationship may include ‘ownership’
and ‘warranty’ when those characteristics are available. It is worth nothing that the viability of
the component-based technology depends on all characteristics that customers may be interested
in, not just technical connectivity.

Account
view

Component Based Application

Figure 2: Interfacing in CBD

The interface description serves as a binding contract among designers, programmers, customers,
and testers. It provides them with an agreement needed before proceeding with the detailed
design of objects, systems or components. In addition, the interface description may be used by
technical writers to produce customer documentation or it may be used directly by customers.

DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS IACIS 2003

 181

STATIC STRUCTURE VIEWPOINT

Every non-trivial system has its parts, subsystems, components, modules or units that it is
comprised of. That is particularly obvious in CBD’s practice of reusing components. Buyers,
maintainers and developers of complex components all need a ‘bill of materials,’ see Figure 3.
Those needs are described in a static structure viewpoint.

A static structure represents a component level structure in terms of classes, associations
(including aggregation and composition), generalization, interfaces and objects as design entities.
The purpose is to conveniently represent design abstractions including invariant-static properties
as aggregates of data/object groupings together with functions operating upon them. A
standardized representation language used for the static structure is the UML class diagram.

Figure 3: Static Structure Viewpoint

DYNAMIC OR STATE TRANSITION VIEWPOINT

This viewpoint is mainly of interest for reactive real-time and similar systems. Design entities
are classes, components, states, events and transitions. The concurrency, timing and
synchronization may be additional issues warranting extensive notation. Contemporary design
languages for this viewpoint are UML Statechart Diagrams (Figure 4) and Petri-nets. Sometimes
UML collaboration diagrams are used, too. Although most business components do not
necessarily have very interesting state changes, there is significant number of the theoretical
results available in this area.

Account
Open Closed

<<implement>>

Figure 4: State Transition Viewpoint

INTERACTION VIEWPOINT

From the interaction viewpoint we will only treat the situation of developing a component using
the object-oriented technology where objects collaborate in order to perform the service of a
component. The assignment of responsibilities is the key issue in this viewpoint. The UML
Sequence and Collaboration Diagrams are commonly used for documentation of this viewpoint.
Designers frequently use design patterns and analysis of responsibilities to develop such
diagrams.

IACIS 2003 DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS

 182

This design viewpoint defines the strategies for interactions among design entities and provides
the information needed to easily perceive how, why, where, and at what level actions occur.
General software design and component design do not differ here in the technology used but
rather in the level of rigor exercised in the evaluation of alternatives. As a component is basically
a server with its internal interactions hidden, such an interaction may be documented using
sequence diagrams (Figure 5). When interactions are derived from design patterns then
collaboration diagrams are commonly used.

Figure 5: Interaction Viewpoint represented with a sequence diagram

Among component users this viewpoint is not prominent, since seeing into the black-box violates
the principle: open for designers, closed for users. Contrary, for component designers it is one
with the biggest challenge, where design skills and diligence come to the forefront. This is also
an area where professionals traditionally trained on procedural software designs have the most
difficulties with and where experience in the object-orientation and design patterns shows its
value.

DEPENDENCY VIEWPOINT

The dependency description specifies the relationships among the component’s entities.
Components may need services from the environment or from other well-known components.
Such a description identifies the dependent entities, describes their coupling, and identifies the
required resources. It also may specify the types of relationships that exist among the entities, as
shown in Figure 3, with the implied order of implementation. The dependency relationships
among packages and components might be stereotyped as ‘reside’, ‘derive’, ‘implement’ and
‘uses’ as per Figures 3 and 4. The dependency description provides an overall picture of how the
component works from the outside (as opposed to, for example, an interaction diagram showing
how it works inside) in order to assess the impact of requirements and design changes. It can
help maintainers to isolate external entities causing component failures or resource bottlenecks.
It can aid in producing the system integration plan by identifying the entities that must be
developed first. This description can also be used by integration testing to aid in the production
of integration test cases.

ALGORITHMIC OR DETAILED LOGIC DESIGN VIEWPOINT

This viewpoint contains the details needed prior to implementation of a software component. The
detailed design description can also be used to aid in producing unit test plans. This description
includes meaning and use of a design entity such as the static versus dynamic aspect, whether it

DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS IACIS 2003

 183

is to be shared by transactions, used as a control parameter, used as a value, used as a loop
iteration count, or used as a link field. In addition, data information should include a description
of data validation needed for that process. This level of detail can be stored in a code-base
documentation repository or a data dictionary relegated to the code. More importantly
standardized representations of complex logic can be communicated using decision tables or
programming language itself. Specifically, for safety critical systems, the components
description requirements include fault tree diagrams. Modern Integrated Development
Environments are evolving in the direction of providing increasingly sophisticated support of
code refactoring and analysis so that it makes more and more sense to use the code snippets as
the description of required functionality. This is becoming a common practice at the very
detailed level of description for the individual methods. The development using top-down step-
wise refinement with stubs is getting a new life. The languages like Java and C# are well suited
to be used for detailed logic design.

SOFTWARE COMPONENT COMMERCIALIZATION

In the context of software component design representation, the question of commercialization is
seldom addressed. Figure 6 provides an illustration of a capsule template for defining
commercial components by exposing services beyond the basic functionality. Software
components can be systematically included into reusable libraries only if the metadata and
evaluation kits are standardized with designed self-tests, quality and usage profile data. This
implies a need to standardize additional viewpoints for the design of commercial components.
One such viewpoint would be a Meta Description that includes the component’s qualities and
usage profiles. Another viewpoint would be an Evaluation Kit that includes aspects of
evaluations, similar to hardware boxes’ self-testing capability. This can be an added value
service by third parties.

Figure 6: Component as a commercially reusable asset

As shown in Figure 6, a commercial component package “Component Capsule” will then create
a façade based on both the original software component and the supplementary component
descriptions (including the design description in a manner discussed in this paper). The content
of the Component Capsule may depend on the willingness of a producer to disclose or on the

IACIS 2003 DESIGN DESCRIPTION FOR SOFTWARE COMPONENTS

 184

demand of a real market for components. A potential user can explore the capsule and decide to
include the capsule in its catalog of reusable assets. Entire libraries can be created using the Meta
Description and Evaluation Kit viewpoints. Our hypothesis is that by separating the concerns on
the software component design description and by introducing additional viewpoints, the
suggested structure of commercial components can be implemented in a standardized manner
providing for the automation of the trade in standardized components.

CONCLUSION

Starting from viewpoints and selecting standardized design description languages, we outlined
non-exclusive but predominantly UML based notations for software components. The obtained
description, while not simple, shows why it is not desirable to use a single representation in the
design of software components. For example, a component diagram alone can not represent all
six viewpoints. The focus on requirements for standardized SDD for components allowed us to
ignore issues such as deployment, human interface, even persistent data which may occasionally
surface with reuse of large grained components. Nevertheless, we expect six listed viewpoints to
be of universal interest for all component designers. This paper may also serve as an example of
viewpoint declarations for designers facing situations compelling them to introduce additional
viewpoints.

State of the practice (1, 2, 3, 4, 5, 6, 8, 9) seems to be ahead of academic recognition of CBD in
general and component SDD in particular. It is interesting to note that very little theory can be
currently offered on software component design, specifically for CBD. This gap made us commit
to the study of component SDD rather then CBD itself. The future direction of our work will be
to focus on establishing elements for an underpinning theory and technology for evaluation and
measurement of components and on further standardization of practices for component design
descriptions.

REFERENCES

1. Allen, P. (2001). Realizing e-Business with Components. Addison Wesley.
2. Atkinson, C., et all (2002). Component-based Product Line Engineering with UML. Addison

Wesley.
3. Cheesman, J. and Daniels, J. (2001). UML Components- A Simple Process for Specifying

Component Based Software. Addison Wesley.
4. Clements, P., et all (2003). Documenting Software Architectures. Addison Wesley.
5. D’Souza, D. and Wills A. (1999). Objects, Components, and Frameworks with UML.

Addison Wesley.
6. Heineman, G. and Council, W. (2001). Component-Based Software Engineering. Addison

Wesley.
7. Martin, R. (2003). Agile Software Development. Prentice Hall.
8. Maurer P. (2003). Component-Level Programming. Prentice Hall.
9. Jacobson, I. , Griss, M. and Jonsson, P. (1997). Software Reuse. Addison Wesley.
10. IEEE Draft Std 4.0 1016-2003, IEEE Standard for Software Design Descriptions.
11. IEEE Std 1471-2000, IEEE Recommended Practice for Architectural Descriptions of

Software Intensive Systems.

