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Abstract

This study presents a mathematical analysis of a hydromagnetic bound-
ary layer flow, heat and mass transfer characteristics on steady two-
dimensional flow of a micropolar fluid over a stretching sheet embed-
ded in a non- Darcian porous medium with uniform magnetic field in
the presence of thermal radiation. The governing system of partial
differential equations is first transformed into a system of non- linear
ordinary differential equation using the usual similarity transformation.
The resulting coupled non-linear ordinary differential equations are then
solved using perturbation technique. With the help of graphs, the ef-
fects of the various important parameters entering into the problem on
the velocity, temperature and concentration fields within the boundary
layer are separately discussed. The effects of the pertinent parameters
on the wall temperature, wall solutal concentration, skin friction coeffi-
cient and the rate of heat and mass transfer are presented numerically
in tabular form. The results obtained showed that these parameters
have significant influence on the flow.

Keywords: mass transfer, hydromagnetic flow, porous medium, radi-
ation, perturbation technique, heat transfer, stretching sheet

1 Introduction

The study of heat and mass transfer has attracted the interest of numerous
researchers due to it’s application in sciences and engineering problems. Such
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applications include nuclear reactor, MHD generators, geothermal energy ex-
tractions, analyzing the behaviour of exotic lubricant, the flow of colloidal
suspension or polymeric fluid and the boundary layer controlling the field
of aerodynamics. In nature and industrial applications many transport pro-
cesses exist where the transfer of heat and mass takes place simultaneously
as a result of combined buoyancy effects of thermal diffusion and diffusion
of chemical species. In chemical process industries such as food processing
and polymer production, the phenomenon of heat and mass transfer is also
encountered. Rebhi (2007) studied unsteady natural convection heat and
mass transfer of micropolar fluid over a vertical surface with constant heat
flux. The governing equations were solved numerically using McCormack’s
technique and effects of various parameters were investigated on the flow.
Vian et al (2003) studied the unsteady boundary layer flow of a micropolar
fluid, which started impulsively in motion with a constant velocity from rest
near the rear stagnation point of an infinite plane wall. The transformed
non-similar boundary-layer equations were solved numerically using a very
efficient finite-difference method known as Keller-box method. Eldabe and
Ouaf (2006) solved the problem of heat and mass transfer in a hydromagnetic
flow of a micropolar fluid past a stretching surface with ohmic heating and
viscous dissipation using the Chebyshev finite difference method. Keelson
and Desseaux (2001) studied the effect of surface conditions on the flow of a
micropolar fluid driven by a porous stretching surface. The governing equa-
tions were solved numerically. Sunil et al (2006) studied the effect of rotation
on a layer of micropolar ferromagnetic fluid heated from below saturating a
porous medium. The resulted non-linear coupled differential equations from
the transformation were solved using finite-difference method. Rahman and
Sultan (2008) studied the thermal radiation interaction of the boundary layer
flow of micropolar fluid past a heated vertical porous plate embedded in a
porous medium with variable suction as well as heat flux at the plate. The
governing equations were solved numerically by an efficient, iterative, finite –
difference method. Mahmoud (2007) investigated thermal radiation effect on
magneto hydrodynamic flow of a micropolar fluid over a stretching surface
with variable thermal conductivity. The solution was obtained numerically
by iterative, Runge-Kuta order-four method. Magdy (2004) studied unsteady
free convection flow of an incompressible electrically conducting micropolar
fluid, bounded by an infinite vertical plane surface of constant temperature
with thermal relaxation including heat sources. The governing equations were
solved using Laplace transformation. The inversion of the Laplace transforms
was carried out with a numerical method. Chaudhary (2008) investigated the
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effects of chemical reactions on magneto hydrodynamic micropolar fluid flow
past a vertical plate in slip-flow regime. Heat and mass transfer effects on
the unsteady flow of a micropolar fluid through a porous medium bounded
by a semi-infinite vertical plate in a slip flow regime was studied taking into
account a homogeneous chemical reaction of the first order. Finite differ-
ence method was used to obtain solution for the governing equations. Mo-
hammed and Abo-Dahah (2009) investigated the effects of chemical reaction
and thermal radiation on heat and mass transfer in magneto hydrodynamic
micropolar flow over a vertical moving porous plate in a porous medium with
heat generation. The solution was obtained numerically by finite-difference
method. Bayomi et al (2009) consider magneto hydrodynamic flow of a mi-
cropolar fluid along a vertical semi-infinite permeable plate in the presence of
wall suction or injection effects and heat generation or absorption. The ob-
tained self-similar equation were solved numerically by an efficient implicit,
iterative, infinite-difference method. Reena and Rana (2009) investigated
double-diffusive convection in a micropolar fluid layer heated and soluted
from below saturating a porous medium. A linear stability analysis theory
and normal mode analysis method was used. Mohammed et al (2010) studied
magneto hydrodynamic convection with thermal radiation and mass transfer
of micropolar fluid through a porous medium occupying a semi-infinite re-
gion of the space bounded by an infinite vertical porous plate with constant
suction velocity in the presence of chemical reaction, internal heat source,
viscous and Darcy’s dissipation. The highly non-linear coupled differential
equations governing the boundary layer flow, heat and mass transfer were
solved using finite difference method.

Heat and mass transfer in a hydromagnetic flow have many applications
in science and engineering. This present model have applications in biomed-
ical and engineering. For instance in the dialysis of blood in artificial kid-
ney, flow in oxygenation, e.t.c. Engineering applications include the porous
pipe design, design of filter, e.t.c. Motivated by the above previous works
and possibly applications, the present paper studies heat and mass transfer
in a hydromagnetic flow of a micropolar fluid over a porous medium using
Boussineq model in the presence of uniform magnetic field. The transformed
non-linear boundary layer equations together with the boundary conditions
are solved analytically using perturbation technique.
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2 Mathematical formulation

We consider a steady, two-dimensional mixed convection flow of an incom-
pressible, electrically conducting micropolar fluid over a stretching sheet. The
fluid flows towards a surface coinciding with the plane y = 0, the flow region
y > 0. The origin is fixed as shown in Fig. 1.

Boundary L ayers

Bo )0,,0( BoB =

Impermeable

stretching sheet

Slit

t

Figure 1: Physical Model

The x-axis is taken in the direction along the sheet and y-axis is taken
perpendicular to it. The flow is generated by the action of two equal and
opposite forces along the x-axis and the sheet is stretch in such a way that
the velocity at any instant is proportional to the distance from the origin
(x=0). The flow field is exposed to the influence of an external transverse
magnetic field of strength B⃗ = (0, B0, 0).

With these assumptions, the continuity equation, momentum equation,
angular momentum equation, energy equation and mass diffusion equation
governing the flow are:

∂u

∂x
+

∂υ

∂y
= 0, (1)

u∂u

∂x
+

v∂u

∂y
=

(
v +

k∗1
ρ

)
∂2u

∂y2
+

k∗1
ρ

∂N

∂y
− vφu

k
− Cb√

k
φu2

− σ

ρ
B2

0u+ gβt (T − T∞) + gβc (c− c∞) ,

(2)
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ρj

(
u
∂N

∂x
+ u

∂N

∂y

)
= γ

∂2N

∂y2
− k∗1

(
2N +

∂u

∂y

)
, (3)

u∂T

∂x
+

υ∂T

∂y
=

1

ρCp

∂

∂y

(
κ
∂T

∂y

)
− 1

ρCp

∂qr
∂y

+
σB2

0

ρCp
u2 +

q111

ρCp
+

u

ρCp

(
∂u

∂y

)2

,

(4)

u
∂c

∂x
+ υ

∂c

∂y
=

D∂2c

∂y2
, (5)

where u and υ are the velocity components along x and y directions, ρ is the
density, T is the temperature of the fluid, Cb is the form of drag coefficient
which is independent of viscosity and other properties of the fluid but is
dependent on geometry of the medium, k is permeably of the porous medium,
Cp is the specific heat at constant pressure, ν is the kinematic viscosity σ is
the electrical conductivity of the fluid, N is the components of micro rotation
or angular velocity whose rotation is in the direction of the x-y plane and
j, γ and k∗1 are the microinertia per unit mass, spin gradient viscosity and
vortex viscosity respectively. The spin gradient viscosity γ, which defines
the relationship between the coefficient of viscosity and microinertia are as
follows:

γ = µ (1 +K/2) j (6)

in which K = k∗1/µ(> 0) is the material parameter. Here all the material
constants, γ, µ, k, j are non-negative and we take j = v/b is taken as a refer-
ence length. The appropriate physical boundary conditions for the problem
under study are given by

u = uw = bx, υ = o, N = −n
∂u

∂υ
at y = 0, (7)

−k
∂T

∂y
= qw = Do

(x
l

)2
, −D

∂c

∂y
= mw = D1

(x
l

)2
at y = 0, (8)

u → 0, N → 0 as y → ∞, (9)

T → T∞C → C∞ as y → ∞, (10)

where l is the characteristic length, Tw is the wall temperature of the fluid
and T∞ is the temperature of the fluid far away from the sheet, Cw is the wall
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concentration of the solute and C∞ is the concentration of the solute far away
from the sheet, Do, D1 are constant and k = k∞ (1 + εθ(η) [Chiam(1998)].
n is a constant such that 0 ≤ n ≤ 1. The case when n = 0, is called
strong concentration, which indicates N = 0 near the wall represents con-
centrated particle flows in which the micro-elements close to the wall surface
are unable to rotate [Mathur(1981)]. The case when n = 1/2 indicates the
vanishing of anti-symmetric part of the stress tensor and denotes weak con-
centrations where as n = 1 is used for modelling of turbulent boundary layer
flows [Ahamed (1976)]. It is worth mentioning that k = 0 describes the
classical Navier-Stokes equation for a viscous and incompressible fluid. The
non-uniform heat source/sink q111 is given by

q′′′ =
kUw

xv

[
A∗ (Tw − T∞) f ′ +B∗ (T − T∞)

]
, (11)

where A∗ and B∗ are the coefficients of space and temperature - dependent
heat source/sink, respectively. The case A∗ > 0 and B∗ > 0 corresponds to
internal heat generation while A∗ < 0 and B∗ < 0 corresponds to internal
heat absorption.

We use the following similarity variables and dimensionless steam function
to transform equation (2) and (3)

U = bxf(η), v =
√
bνf(η), η =

√
b

ν
y, N = bx

(
b

ν

)1/2

g(η). (12)

Substituting (12) into equation (2) and (3), we have

f ′2 − ff ′′ = (1 +K)f ′′′ −Da−1f ′ − af ′2 +Kg′ −Ha2f ′ +Gtθ +Gcϕ, (13)

f ′g − fg′ =

(
1 +

K

2

)
g′′ −K(2g + f ′′), (14)

where α = Cbϕx√
k

is local inertia coefficient parameter [Mustafa(2006)],Da−1 =

ϕv
kb is inverse Darcy number, Ha =

√
σ
ρbB0 is the Hartmann number, Gt =

gβt(T−T∞)
b2

is local temperature Grashof number, Gc = gβc(C−C∞)
b2

is local

concentration Grashof number and K =
k∗1
µ is material parameter.

The appropriate boundary conditions (7) and (9) now become

f(η) = 0, f ′(η) = 1, g(η = −nf ′′(η) at η = 0, (15)

f ′(η) → 0, g(∞) → 0 as η → ∞,
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where n = 1/2. If we take g (η) = −1
2f

′′, then combining (13) and (14), these
two will reduce to a single non-linear ordinary differential equation as

f ′2 − ff ′′ = (1 +
K

2
)f ′′′ −Da−1f ′ − af ′2 −Ha2f ′ +Gtθ +Gcϕ, (16)

subject to the appropriate boundary conditions

f(η) = 0, f ′(η) = 1 at η = 0, f ′(η) → 0 as η → ∞. (17)

Following Rosseland approximation [Brewster(1972)] radiative heat flux
qr is modeled as

qr = −4σ∗

3k∗
∂T 4

∂y
, (18)

where σ∗ is the Stefan – Boltzman constant and k∗ is the mean absorption
coefficient. Assuming that the difference in temperature within the flow are
such that T 4 can be expressed as a linear combination of the temperature.
We expand T 4 in Taylor series about T∞ as follows

T 4 = T 4
∞ + 4T 3

∞ (T − T∞) + 6T 2
∞ (T − T∞)2 + . . . (19)

Neglecting higher order terms beyond the first degree in (T − T∞), we have

T 4 ≈ −3T 4
∞ + 4T 3

∞T . (20)

Differentiating equation(18) with respect to y and using(20) we obtain

∂qr
∂y

= −16T 3
∞σ∗

3k∗
∂2T

∂y2
. (21)

Substituting equation(21) into equation(4), we have

U
∂T

∂x
+ V

∂T

∂y
=

1

ρCp

∂

∂y

[(
K + 16

T 3
∞σ∗

3k∗

)
∂T

∂y

]

+
σB2

0U
2

ρCp
+

q′′′

ρCp
+

µ

ρCp

(
∂U

∂y

)2

.

(22)

The thermal boundary conditions for solving (22) depend on the type of
heating process considered. Now, the non-dimensional temperature θη) and
concentration ϕη) are defined (in PHF case) as

θ (η) =
T − T∞
Tw − T∞

, ϕ (η) =
C − C∞
Cw − C∞

, (23)
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where

T − T∞ =
D0

K∞

(x
l

)2
√

ν

b
θ (η) and Tw − T∞ =

D0

K∞

(x
l

)2
√

ν

b
, (24)

C − C∞ =
D1

D

(x
l

)2
√

ν

b
ϕ (η) and Cw − C∞ =

D1

D

(x
l

)2
√

ν

b
. (25)

Using equation (23) in equation (22), yields

(1 +Nr + ϵθ)θ′′ + Pr(fθ
′ − f ′θ) + ϵθ2 + PrHa2Esf

′2

(1 + ϵθ)(Af ′ +Bθ) + PrEsf
′′2 (26)

subject to the boundary conditions

θ(η) =
1

1 + ϵ
at η = 0, θ(η) → 0 as η → ∞. (27)

Using equation (23) in equation (5), we have

ϕ(η) = Sc(ϕ′′f − 2ϕf ′) = 0 (28)

and the corresponding thermal boundary condition is

ϕ(η) = − 1

1 + ϵ
, ϕ(η) → 0 as η → ∞, (29)

where Nr = 16T 3σ∗

3K∗K∞
is thermal radiation parameter, Pr =

µCp

K∞
is Prandtl

number, Es = ECK∞

√
b
ν is the scaled Eckert number, EC = b2l2

D0Cp
is the

Eckert number and Sc =
ν
b is the Schmidt number.

3 Method of solution

Equation (16), (26) and (28) are highly coupled non-linear ordinary differen-
tial equation and since ε << 1, we assume a perturbation of the form

f = 1 + εf1 + ε2f2, (30)

θ = − 1

1 + ε
+ εθ1 + ε2θ2, (31)

ϕ = − 1

1 + ε
+ εϕ1 + ε2ϕ2, (32)
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where f0 = 1, θ0 = − 1
1+ε , ϕ0 = 1

1+ε . Invoking equation (30)-(32) into equa-

tion (16), (26) and (28) and neglecting terms of O(ε3) and higher, we acquire
the following sets of equations:

(
1 +

K

2

)
f ′′′

1 + f ′′
1 −

(
Da−1 +Ha2

)
f ′
1 = −Gtθ1 −Gcϕ1, (33)

(1 +Nr)θ1
′′ + Prθ1

′ +Bθ1 = − B

(1+)2
, (34)

ϕ1
′′ + Scϕ1

′ = 0, (35)

(
1 +

K

2

)
f2

′′′ + f2
′′ − (Da−1 +Ha2)f2

′ =

f1f1
′′ + f1

′2 − αf1
′′2 −Gtθ2 −Gcϕ2, (36)

(1 +Nr) θ2
′′ + Prθ2

′′ +Bθ2 =
1

(1 + ε)
θ1

′′ − Prf1θ1
′ − 2

(1 + ε)
Prf1

′2

− PrHa2Esf1
′2 −Af1

′2 +
2

(1 + ε)
θ1,

(37)

ϕ2
′′ + Scϕ′

2 = −Scϕ′
1f1 −

2

(1 + ε)
Scf1

′2. (38)

Solving equations (33)-(38) with the boundary conditions lead to expressions
for velocity, temperature and concentration distributions as follows:

f (η) = 1 + ε
(
A3 +A4e

−m2η +A6e
−m1η +A7e

−Scη
)

+ ε2(A25 +A26e
−m2η +A27ηe

−m2η +A28e
−2m2η

+A29e
−(m1+m2)η +A30e

−(Sc+m2)η +A31e
−m1η

+A32e
−2m1η +A33e

−(Sc+m1)η +A34e
−Scη +A35e

−2Scη),

(39)
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θ (η) =− 1

(1 + ε)
+ ε

(
A2e

−m1η − 1

(1 + ε)2

)
+ ε2(A17e

−m1η

+A18ηe
−m1η +A19e

−(m1+m2)η +A20e
−2m1η +A21e

−(Sc+m1)η (40)

+A22e
−2m2η +A23e

−(Sc+m2)η +A24e
−2Scη,

φ (η) =− 1

(1 + ε)
+ εA1e

−Scη + ε2(A9e
−Scη +A10ηe

−Scη

+A11e
−(Sc+m2)η +A12e

−(Sc+m1)η +A13e
−2Scη (41)

+A14e
−2m2η +A15e

−(m1+m2)η +A16e
−2m1η,

with

m1 =
Pr +

√
Pr2 − 4 (1 +Nr)B∗
2 (1 +Nr)

,

m2 =
1 +

√
1 + 4

(
1 + K

2

)
(Da−1 +Ha2)

2
(
1 + K

2

) ,

A1 = − 1

1 + ε
; A2 = − 1

1 + ε
+

1

(1 + ε)2
,

A6 =
−GtA2

−
(
1 + K

2

)
m3

1 +m2
1 + (Da−1 +Ha2)m1

,

A7 =
−GcA1

−
(
1 + K

2

)
Sc3 + Sc2 + (Da−1 +Ha2)Sc

,

A4 =
−1 + ScA7 +m1A6

m2
,

A3 = −(A4 +A6 +A7),

A10 =
Sc2A1A3

3Sc
,

A11 =
(1 + ε)Sc2A1A4 − 4Sc2m2A4A7

(1 + ε)
(
(Sc+m2)

2 − Sc (Sc+m2)
) ,

A12 =
(1 + ε)Sc2A1A6 − 4Sc2m1A6A7

(1 + ε)
(
(Sc+m1)

2 − Sc (Sc+m1)
) ,
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A13 =
(1 + ε)Sc2A1A7 − 2Sc3A2

7

(1 + ε) 2Sc2
,

A14 =
−2Scm2

2A
2
4(

4m2
1 − 2Scm2

) ,
A15 =

−4Scm1m2A4A6

(1 + ε) ((m1 +m2)
2 − Sc (m1 +m2)

,

A16 =
−2Scm2

1A
2
6

(1 + ε)
(
4m2

1 − Scm1

) ,
A9 = −

(
1

1 + ε
+A11 +A12 +A13 +A14 +A15 +A16,

)
,

A18 =
A2m

2
1 + (1 + ε)PrA2m1A3

1 + ε
,

A19 =
(1 + ε)PrA2m1A4 − 2Pr + (1 + ε)PrHa2Es− (1 + ε)A∗

(1 + ε)
(
(1 +Nr) (m1 +m2)

2 − Pr (m1 +m2) +B∗
) ,

A20 =
(1 + ε)PrA2m1A6 − 2Prm2

1A
2
6 + (1 + ε)PrH2

aEsm2
1A

2
6 − (1 + ε)Am2

1A
2
6

(1 + ε)
(
(1 +Nr) 4m2

1 − 2Prm1 +B∗
) ,

A21 =
(1+ε)PrA2m1A6−4PrScm1A6A7+(1+ε)2PrEsH2

am1A6A7−2(1+ε)Am1A6A7

(1+ε)((1+Nr)(Sc+m1)
2−Pr(Sc+m1)+B∗)

A22 =
−2Prm2

1A
2
4 − (1 + ε)PrH2

aEsm2
2A

2
4 + (1 + ε)Am2

2A
2
4

(1 + ε)
(
(1 +Nr) 4m2

2 − 2Prm2 +B∗
) ,

A23 =
−2m2A4ScA7

(
2Pr + (1 + ε)PrH2

aEs− (1 + ε)A∗
)

(1 + ε)
(
(1 +Nr) (m2 + Sc)2 − Pr (m2 + Sc) +B∗

) ,

A24 =
−Sc2A2

7

(
2Pr + (1 + ε)PrH2

aEs− (1 + ε)A∗
)

(1 + ε) ((1 +Nr) 4Sc2 − PrSc+B∗)

A17 = −
(

1

1 + ε
+A19 +A20 +A21 +A22 +A23 +A24

)
,

A27 =
−A3A4m

2
2(

1 + K
2

)
3m2

2 − 2m2 − (Da−1 +H2
a)

,

A28 =
A2

4m
2
2 + (α− 1)

(
m2

2A
2
4 +GtA22 +GcA14

)(
1 + K

2

)
8m3

2 − 4m2
2 − (Da−1 +Ha2) 2m2

,
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A29 =
A4A6

(
m2

2 +m2
1 + 2 (α− 1)m1m2

)
+GtA19 +GcA15(

1 + K
2

)
(m1 +m2)

3 − (m1 +m2)
2 − (Da−1 +Ha2) (m1 +m2)

,

A30 =
A4A7

(
m2

2 − Sc2 − 2 (α− 1)m2Sc
)
+GtA23 +GcA11(

1 + K
2

)
(Sc+m2)

3 − (Sc+m2)
2 − (Da−1 +H2

a) (Sc+m2)
,

A31 =
A6A3m

2
1 −GtA17(

1 + K
2

)
m3

1 −m2
1 − (Da−1 +Ha2)m1

,

A32 =
A2

6m
2
1 (1 + (α− 1)) +GtA20 +GcA16(

1 + K
2

)
8m3

1 + 4m2
1 + 2 (Da−1 +Ha2)m1

,

A33 =
A6A7(m

2
1 + Sc2 + 2m1 (α− 1) +GtA21 +GcA12(

1 + K
2

)
(Sc+m1)

3 − (Sc+m1)
2 + (Da−1 −H2

a) (Sc+m1)
,

A34 =
A7A3Sc

2 +GcA9(
1 + K

2

)
Sc3 − Sc2 + (Da−1 −Ha2)Sc

,

A35 =
A2

7Sc
2(1 + (α− 1) +GtA24 +GcA13(

1 + K
2

)
8SC3 + 4Sc2 + (Da−1 +Ha2) 2Sc

,

A26 =
1 + 2m2A28 + (m1 +m2)A29 + (Sc+m2)A30 +m1A31

m2

+
2m1A32 + (Sc+m1)A33 + ScA34 + 2ScA35

m2
,

A25 = − (A26 +A28 +A29 +A30 +A31 +A32 +A33 +A34 +A35) .

The physical quantities of most interest in science and engineering are the
skin-friction coefficient Cf , Nusselt number Nu and Sherwood number Sh

which are defined by the following relations:

Cf =
τw

ρU2
w/2

, (42)

whereas the skin-friction on the plate τw is given by

τw = {(µ+ k∗1)
∂u

∂y
}y=0. (43)
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Substituting equation (12) in (42) and using (43), we have

CfRe1/2x = (1 +K) f ′′, (44)

where Rex = Uwx/ν is the local Reynolds number.
The local Nusselt number is given by

Nu =

{
∂T
∂y

}
y=0

(Tw − T∞)
√

b
ν

= −θ′(0) (45)

and the local Sherwood number reads

Sh =

{
∂C

∂y

}
y=0

(Cw − C∞)

√
b

ν

= −φ′(0). (46)

Figure 2: Variation of f ′ for different values of Ha when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, P r = 5.0, Da−1 = 0.5, Nr = 3.5, Gt = 6.0, Gc =
5.0, ε = 0.01, α = 0.1.
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4 Results and discussion

The formulation of the hydromagnetic boundary layer flow, heat and mass
transfer characteristics on steady two-dimensional flow with uniform mag-
netic field in the presence of thermal radiation of a micropolar fluid over a
porous medium has been performed in the preceding sections. In order to
understand the physical situation of the problem and hence the manifesta-
tion of the various parameters entering the problem, we have carried out the
numerical calculations for distribution of velocity, temperature and concen-
tration across the boundary layer for different values of the parameters. In
this present study we have chosen A∗ = 0.01, B∗ = 0.01,K = 0.2, Es =
0.05, ε = 0.01 while Ha,Gt,Gc,Da−1, α,Nr, Pr and Sc are varied over a
range being listed in figures legends.

Figure 3: Variation of f ′ for different values of Gt when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, P r = 5.0, Da− 1 = 2.0, Nr = 3.5, Ha = 0.1, Gc =
0.1, ε = 0.01, α = 0.1.

Figure 2. shows the behaviour of velocity profile for different values of
Hartmann numberHa. It is well known that the Hartmann number represents
the importance of magnetic field on the flow. As depicted in figure 2., when
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Figure 4: Variation of f ′ for different values of Gc when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, P r = 5.0, Da−1 = 2.0, Nr = 3.5,Ha = 0.1, ε =
0.01, Gt = 0.2, α = 0.1.

the Hartmann number increases, the velocity profile decreases. This is due
to the fact that the introduction of transverse magnetic field normal to the
flow direction has a tendency to create a drag due to Lorentz force and hence
results in retarding the velocity profile. Thus when the Hartmann number
increases, the Lorentz force also increases due to decrease of velocity profile.
From figure 3. and figure 4., it is observed that the effect of increasing the
value of the thermal Grashof number Gr and concentration Grashof number
Gc is to increase the velocity profile.

Figure 5. illustrates the variation of velocity profile with η for various
values of inverse Darcy number. The plot shows that velocity profile decreases
with increase in the inverse Darcy number which shows the effect of increasing
inverse Darcy number with decrease of the velocity profile. Similar effects
are seen in case of increasing inertia coefficient parameter α as shown in
figure 6. Figure 7. represents the temperature profiles for various values of
thermal radiation parameter Nr in the boundary layer. This figure shows that
the effect of thermal radiations to enhance heat transfer because of the fact
that thermal boundary layer thickness increases with increase in the thermal
radiation. Thus it is pointed out that the radiation should be minimized to
have the cooling process at a faster rate. Figure 8. illustrates the variation of
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Figure 5: Plot of f ′ for different values of Da−1 when K = 0.2, A = 0.01, B =
0.01, Es = 0.05, Nr = 3.5, α = 0.1, ε = 0.01, Gt = 0.2, Gc = 0.1.

Figure 6: Variation of f ′ for different values of α whenK = 0.2, A = 0.01, B =
0.01, Es = 0.05, P r = 5.0,Ha = 0.1, Nr = 3.5, Gt = 6.0, Gc = 5.0, Da−1 =
2.0.
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temperature profile for various values of Prandtl number. It is seen that the
temperature decreases with increasing the values of Prandtl number in the
boundary layer. From this it is evident that temperature in the boundary
layer falls very quickly for large value of the Prandtl number because of the
fact that thickness of the boundary layer decreases with increase in the value
of the Prandtl number. Figure 9. shows the variation of temperature profile
with η for various values of inverse Darcy number Da−1. It depicts that
temperature increases with increase in the value of inverse Darcy number
which is due to the fact that obstruction on the fluid motion is produced by
the presence of porous medium which generates heat and thereby temperature
increases in the thermal boundary layer.

Table 1: Values of f ′′(0), θ(0), ϕ(0) for various different values of
K,Ha,Es,Gt,Gc, Pr,Nr and Da−1 when A = 0.01, B = 0.01 and ε = 0.0.

K Ha Es Gt Gc Nr Pr Da−1 f”(0) θ(0) ϕ(0)

1.0 0.1 0.05 5.0 4.0 3.5 3.0 0.5 1.60434 0.70583 1.31521

2.0 1.32150 0.71848 1.35369

0.2 1.0 1.61046 0.74224 1.36108

2.0 0.79668 0.87770 1.53207

0.05 1.97707 0.71402 1.31493

0.25 1.97922 0.71551 1.31356

6.0 2.12904 0.70855 1.30228

8.0 2.42051 0.69794 1.28087

5.0 2.30513 0.69968 1.27993

7.0 2.89612 0.65795 1.20833

5.0 2.18918 0.83756 1.26950

6.0 2.28906 0.89762 1.25801

4.0 1.82115 0.60911 1.31143

6.0 1.65949 0.50298 1.32867

0.6 1.91600 0.69905 1.30365

2.0 1.39126 0.73491 1.40513

Figure 10. shows that temperature increases with increase in the inertia
coefficient parameter. In Figure 11. there is the plot of concentration dis-
tribution for various values of Schmidt number in the boundary layer. It is
illustrated from the figure that the concentration decreases with increase in
the value of Schmidt number. This is due to the fact that increase in Schmidt
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number causes thinning of the solutal boundary layer thickness. It should
be noted that the present results are in excellent agreement with the results
reported by Abel et al(2008) as well as Dulal and Sewli (2009).

Figure 7: Variation of θ for different values of Nr when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, Da − 1 = 0.5, Gt = 6.0,Ha = 0.2, ε = 0.01, α =
0.1, Gc = 5.0

Numerical values of the skin-friction coefficient f ′′(0) the wall tempera-
ture θ(0) and the wall solutal concentration ϕ(0) are tabulated in table 1.
for different values of material parameter K, Hartmann number Ha, Prandtl
number Pr and inverse Darcy number Da−1. The tabular data show that
magnetic field, Prandtl number, inverse Darcy number and the material pa-
rameter reduce the skin-friction coefficient, whereas reverse trend is seen by
increasing the values of Es,Gt,Gc and Nr. It is further observed that wall
temperature increases with increase in K,Ha,Es,Nr and Da−1 whereas op-
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posite effect is seen with increasing the value of Gt,Gc, andPr. The effect of
increasing the values of K,Ha, Pr,Da−1 has the tendency to increase wall
solutal concentration but the other parameters like Es,Gt,Gc and Nr have
the effect of decreasing ϕ(0).

Figure 8: Variation of θ for different values of Pr when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, Nr = 3.5, Da − 1 = 0.5, Gt = 6.0, Gc = 5.0, ε =
0.01, α = 0.1.

Table 2. depicts the numerical values of coefficient of skin friction Cf ,
Nusselt number Nu and Sherwood number Sh for different values of Ha,Nr
and Pr. The tabular data shows that Nusselt number and Sherwood number
decrease with increasing in Hartmann number. On the other hand, Nusselt
number increases as radiation parameter increases while the effect of increas-
ing the value of Prandtl number is to decrease the skin friction coefficient and
mass transfer rate but increase heat transfer rate which is in excellent agree-
ment with Dulal and Sewli (2010) and Srinivasachanya and Ramreddy(2011).
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Table 2: Values of Cf , Nu and Sh with different values of Ha,Nr and Pr
when A = 0.01, B = 0.01,K = 1.0, Es = 0.05, Gt = 5.0, Gc = 4.0, Da−1 =
0.5, ε = 0.01 and ε = 0.1

Ha Nr Pr Cf Nu Sh
0.0 3.5 3.0 1.97683 0.34286 0.47826

1.0 3.5 3.0 1.62968 0.24105 0.46217

2.0 3.5 3.0 0.80966 0.15098 0.41151

0.1 5.0 3.0 2.21928 0.12037

0.1 6.0 3.0 2.32961 0.18692

0.1 7.0 3.0 2.42161 0.24324

0.1 3.5 4.0 1.84265 0.31832 0.20160

0.1 3.5 6.0 1.67848 0.41641 0.11923

0.1 3.5 8.0 1.58619 0.71502 0.01902

Figure 9: Variation of θ for different values of Da−1 when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, P r = 5.0,Ha = 0.1, Nr = 3.5, Gt = 0.2, Gc =
0.1, ε = 0.01.
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Figure 10: Plot of θ for different values of α when K = 0.2, A = 0.01, B =
0.01, Es = 0.05, P r = 5.0,Ha = 0.1, Nr = 3.5, Gt = 6.0, Gc = 5.0, Da−1 =
2.0.

Figure 11: Variation of ϕ for different values of Sc when K = 0.2, A =
0.01, B = 0.01, Es = 0.05, P r = 5.0,Ha = 0.1, Nr = 3.5, Gt = 6.0, Gc =
5.0, Da−1 = 2.0.
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Prenos toplote i mase strujanjem u hidromagnetskom tečenju
mikropolarnog fluida preko porozne sredine

Ova studija predstavlja matematičku analizu tečenja u hidromagnetskom
graničnom sloju, karakteristika prenosa toplote i mase na ravnomerna 2D
strujanja mikropolarne tečnosti preko deformisane površi potopljene u ne-
Darci poroznu sredinu sa ravnomernim magnetnim poljem u prisustvu toplotnog
zračenja. Sistem parcijalnih diferencijalnih jednačina upravljanja je prvo
preveden u sistem nelinearnih običnih diferencijalnih jednačina koristećenjem
uobičajene transformacije sličnosti. Rezultujuće spregnute nelinearne obične
diferencijalne jednačine se zatim rešavaju sredstvima perturbatione tehnike.
Pomoću grafova, uticaji raznih vanih parametra na brzine, temperature i
koncentracije polja u okviru graničnog sloja se posebno raspravljaju. Uticaji
značajnih parametara na temperaturu zida, koncentracije na zidu, površinski
koeficijent trenja, i brzinu promene prenosa toplote i mase su predstavljeni
numerički u tabelarnom obliku. Rezultati su pokazali da ovi parametri imaju
značajan uticaj na tečenje.
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