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Abstract. We describe some spectral representations for a class of non-self-adjoint banded
Jacobi-type matrices. Our results extend those obtained by P.B. Naïman for (two-sided
infinite) periodic tridiagonal Jacobi matrices.
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1. INTRODUCTION

There is a wide literature dealing with classical spectral theory, which was initiated
by von Neumann ([27, 28]), and its various extensions to non-normal operators. One
of the most notable attempts to obtain an adequate spectral analysis of a number
of non-self-adjoint operators was made by Dunford who introduced and investigated
the notion of a spectral operator. The reader is urged to refer to [11] for a survey
of the research on such operators as well as the historical background (see also [9,
10], and the work of Colojoară [7] for a different outlook on the subject). In [14],
Fixman showed that the aforementioned class, although large, does not contain all
non-self-adjoint operators (see also [17]). The theory of spectral operators has been
extended in different directions. One of its developments was initiated in [16] by Foiaş
who introduced a class of so-called decomposable operators (embracing those having
rich spectral properties) which was then extensively investigated in his joint book [8]
with Colojoară (see also the book [32] by Sz.-Nagy and Foiaş). Other extensions can
be found, for example, in the works of Schaefer [29–31]. For an incisive treatment of
spectral operators and spectral measures one should consult [12] (as well as [32]) and
numerous references therein. The bibliography on diverse extensions of the spectral
theory is steadily growing. One can see, for instance, [2] or more recent works [3, 4],
where some integral representations for bounded operators were obtained.
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In the present paper we deal with entirely different spectral representations of
bounded operators acting on a Hilbert space. Our approach originates from that
proposed by Schur for finite matrices (cf. [13, 23]). Schur’s ideas were adopted in the
work [21] by Ljubič and Macaev, where the concept of a separable spectrum was
studied (see also [20, 22]). It should be remarked that the results of [21] can also be
related to the problem of the existence of non-trivial invariant spaces for operators
(cf. [15, 34]). The approach of Ljubič and Macaev was subsequently developed by
Naïman in the paper [26], which is of most interest to us here, where some spectral
representations for non-self-adjoint (two-sided infinite) periodic tridiagonal Jacobi
matrices were given (see also [24, 25] or [18, Chapter 14]). This work inspired us to
obtain reminiscent results for banded Jacobi-type matrices. In contrast to [26], we do
not exploit computationally complex algebraic properties of matrices, but utilize the
notion of the symbol of an operator which enables us to simplify and extend Naïman’s
arguments to an essentially wider class of operators. This is due to the fact that the
spectral properties of banded Jacobi-type matrices can be easily derived from those
of the corresponding symbol. A motivation for our considerations comes from [5] as
well as [6].

The paper is organized as follows. In Section 2 we recall some key definitions
and facts from [26] and clarify the terminology used therein. Our main results are
found in Section 3, where we show that each operator A corresponding to a banded
Jacobi-type matrix is unitarily equivalent to the multiplication operator by an ap-
propriate matrix-valued function whose values are (depending on the case) of the
triangular or diagonal form. Further, we prove that there exists a spectral resolution
or a skew spectral resolution of A, respectively. Moreover, in the second case we obtain
an integral representation of A. In Section 4 we show that these results apply to a
particular class of two-sided infinite periodic Jacobi-type matrices (with finitely many
diagonals). Finally, we point out that this class includes all d-periodic banded Jacobi
matrices of order 1 which were considered by Naïman in [26].

2. SPECTRAL RESOLUTIONS (ABSTRACT FRAMEWORK).
PRELIMINARY RESULTS

Let us consider a finite family of smooth non-intersecting curves on the complex plane.
We enumerate them as Γ1, . . . ,Γd, impose an orientation on each of them, and denote
by α and β the beginning of Γ1 and the end of Γd, respectively. We set Γ◦ = Γ1∪. . .∪Γd
and introduce the order relation ≺ on Γ◦ as follows: for λ, µ ∈ Γ◦, we write λ ≺ µ if
λ and µ are on the same curve, whereas λ lies earlier than µ in accordance with the
fixed orientation, or λ ∈ Γi and µ ∈ Γj for some i < j (i, j = 1, . . . , d). We denote by
Γ the closure of Γ◦ and next in a natural way extend the order ≺ to Γ distinguishing,
to avoid the ambiguity, the points which are simultaneously beginnings and ends of
the corresponding curves.

Let H be a Hilbert space. We denote by B(H) the set of all bounded linear op-
erators from H into H. We say that an operator-valued function E : Γ → B(H) is a
resolution of the identity if:
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(i) for each λ ∈ Γ, E(λ) is an orthogonal projection,
(ii) E(α) = 0 and E(β) = I.

Take an operator A ∈ B(H) (which, in general, is non-self-adjoint). Assume hence-
forth that σ(A) = Γ, where σ(A) stands for the spectrum of A. We provide the follow-
ing definitions (cf. [26]). A resolution of the identity E is called a spectral resolution
of the operator A ∈ B(H) if:

(i) for each λ ∈ Γ, the space E(λ)H is invariant for A,
(ii) for each λ ∈ Γ,

σ(AE(λ)) = {µ ∈ Γ : µ ≺ λ} and σ(A(I − E(λ))) = {µ ∈ Γ : λ ≺ µ}.

The latter can be regarded as the separability condition of the spectrum of A. It
turns out that not all non-self-adjoint operators, contrary to self-adjoint ones, possess
this property. It may even happen that a non-self-adjoint operator restricted to each
non-trivial invariant subspace always has the same spectrum. An example of an such
operator, arising from harmonic analysis, can be found in [21].

In the spectral theory of non-self-adjoint operators resolutions with orthogonal
values play an important role, however those with non-orthogonal values are also
widely considered. An operator-valued function F : Γ → B(H) is said to be a skew
resolution of the identity if:

(i) for each λ ∈ Γ, F (λ) is a projection (i.e. F 2(λ) = F (λ)),
(ii) F (α) = lim

λ ↓α
F (λ) = 0 and F (β) = lim

λ ↑ β
F (λ) = I,

(iii) F (λ)H ⊂ F (µ)H and (I − F (µ))H ⊂ (I − F (λ))H for all λ, µ ∈ Γ such
that λ ≺ µ,

(iv) there exist positive real numbers m and M such that for each g ∈ H and each
division {∆1, . . . ,∆s} of Γ on open intervals ∆k = {λ ∈ Γ : αk ≺ λ ≺ βk}
(αk, βk ∈ Γ), k = 1, . . . , s, we have

m

s∑
k=1

‖F (∆k)g‖2 ≤ ‖g‖2 ≤M
s∑

k=1

‖F (∆k)g‖2, (2.1)

where F (∆k) := F (βk)− F (αk).

Remark that projections in (i), in general, are not assumed to be orthogonal. (iii) can
be regarded as the monotonicity condition for a family of subspaces of H. Condition
(iv), in turn, is a continuous version of the sufficient discrete condition for the existence
of the Riesz basis in H (see [19, p. 320] or [35, p. 32]). By a division of Γ, here and
throughout, we understand a finite family {∆1, . . . ,∆s} whose members are pairwise
disjoint and the closure of their sum gives the whole Γ. It is easily seen that

each F (∆k) is a projection (on the closed subspace F (βk)H∩(I−F (αk))H
of H), and F (∆k)F (∆j) = 0 if ∆k ∩∆j = ∅ (k, j = 1, . . . , s). (2.2)
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A skew resolution of the identity F is called a skew spectral resolution of A ∈ B(H) if:

(i) for each λ ∈ Γ, the spaces F (λ)H and (I − F (λ))H are invariant for A,
(ii) for each λ ∈ Γ,

σ(AF (λ)) = {µ ∈ Γ : µ ≺ λ} and σ(A(I − F (λ))) = {µ ∈ Γ : λ ≺ µ},

(iii) for each ε > 0 there exists δ > 0 such that for each interval ∆ ⊂ Γ of length less
than δ, and all f ∈ F (∆)H and λ ∈ ∆, we have

‖Af − λf‖ < ε. (2.3)

Suppose now that A possesses a skew spectral resolution F . For a fixed ε > 0,
we consider a division {∆1, . . . ,∆s} of Γ satisfying the above condition (iii). Let λk
be chosen from ∆k (k = 1, . . . , s). Take f ∈ H. Then, since each space F (∆k)H is
invariant for A, it follows that AF (∆k)f − λkF (∆k)f = F (∆k)hk for some hk ∈ H.
After summing up both sides over k, we get Af−

∑s
k=1 λkF (∆k)f =

∑s
k=1 F (∆k)hk.

Next, we apply the right-hand side inequality of (2.1) to g =
∑s
k=1 F (∆k)hk, take into

account the properties (2.2), use the inequality (2.3), and finally utilize the left-hand
side inequality of (2.1) to g = f . As a consequence, we can deduce that∥∥∥Af − s∑

k=1

λkF (∆k)f
∥∥∥ ≤√M

m
ε‖f‖.

This argument shows that, given f , the Riemann-type sums
∑s
k=1 λkF (∆k)f are

convergent to Af . Regarding the integral below as their limit, we can write

Af =

∫
Γ

λdF (λ)f, f ∈ H.

This explains how the integral representation of A proposed by Naïman in [26, The-
orem 6] should be understood.

3. SPECTRAL RESOLUTIONS FOR LAURENT OPERATORS

Here and throughout, Cd×d stands for the set of all d× d complex matrices (d ∈ N).
The usual norms in all spaces Cd and Cd×d are denoted by the same symbol | · |. By
l2(Z,Cd) we mean the Hilbert space of all Cd-valued sequences u = (un)n∈Z, un ∈ Cd
(n ∈ Z), such that

‖u‖l2(Z,Cd) :=
(∑
n∈Z
|un|2

) 1
2

<∞.

Let A : l2(Z,Cd)→ l2(Z,Cd) be a Laurent operator defined by

(Au)n =

∞∑
j=−∞

Ajun−j , n ∈ Z, (3.1)
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for u = (un)n∈Z ∈ l2(Z,Cd), where Aj ∈ Cd×d (j ∈ Z) and
∞∑

j=−∞
|Aj | <∞. (3.2)

Let T = {ζ ∈ C : |ζ| = 1}. With regard to the terminology used in [1], the
matrix-valued function

A(ζ) =

∞∑
k=−∞

Akζ
k, ζ ∈ T, (3.3)

is called the symbol of the operator A.
In what follows, let us assume that

σ(A) = Γ, where Γ is the closure of a finite sum of curves as in Section 2. (3.4)

We will show that a spectral representation of A can be derived from that of the
symbol A(ζ). We will consider two cases: first a more general one, when the symbol
A(ζ) is triangularizable, and then a particular one, when it is diagonalizable.

3.1. SPECTRAL RESOLUTION FOR A LAURENT OPERATOR

For a fixed ζ ∈ T, A(ζ) is a d × d complex matrix (whose entries are well-defined
owing to (3.2)), so we can employ the Schur theorem ([23, pp. 25–26], see also [33,
pp. 124–125]) to construct a triangular matrix T (ζ) and a unitary matrix U(ζ) such
that

A(ζ) = U(ζ)T (ζ)(U(ζ))∗. (3.5)
A careful look at the proof of the Schur theorem (in [23]) reveals that if
λ1(ζ), . . . , λd(ζ) are the eigenvalues of A(ζ), then we can find orthonormal (column)
vectors ϕ(1)(ζ), . . . , ϕ(d)(ζ) ∈ Cd such that

A(ζ)ϕ(k)(ζ) = λk(ζ)ϕ(k)(ζ) +

k−1∑
l=1

µkl(ζ)ϕ(l)(ζ), k = 1, . . . , d,

where µkl(ζ) ∈ C (k = 2, . . . , d and l = 1, . . . , d − 1) and ϕ(1)(ζ) is the eigenvec-
tor corresponding to λ1(ζ). These vectors form the Schur orthonormal basis in Cd.
Moreover, we have

T (ζ) =


λ1(ζ) µ21(ζ) · · · µd1(ζ)

0 λ2(ζ) · · · µd2(ζ)
...

...
. . .

...
0 0 · · · λd(ζ)

 (3.6)

and

U(ζ) =


ϕ

(1)
1 (ζ) ϕ

(2)
1 (ζ) · · · ϕ

(d)
1 (ζ)

ϕ
(1)
2 (ζ) ϕ

(2)
2 (ζ) · · · ϕ

(d)
2 (ζ)

...
...

. . .
...

ϕ
(1)
d (ζ) ϕ

(2)
d (ζ) · · · ϕ

(d)
d (ζ)

 , (3.7)
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where ϕ(k)
r (ζ) is the r-th coordinate of ϕ(k)(ζ) ∈ Cd (ζ ∈ T, k, r = 1, . . . , d). Remark

that all λk, µkl, and ϕ(k) above can be chosen to be continuous as functions of a
variable ζ ∈ T.

Throughout what follows, we write ψr for the r-th coordinate (r = 1, . . . , d) of
the vector-valued function ψ ∈ L2(Z,Cd). Clearly, by L2(T,Cd) we mean the Hilbert
space of all measurable Cd-valued functions ψ on T such that

‖ψ‖L2(T,Cd) :=
(∫

T
|ψ(ζ)|2dm

) 1
2

<∞,

where m is the normalized Lebesgue measure on T.
Next, we consider the operator T : L2(T,Cd)→ L2(T,Cd) defined by

(Tψ)(ζ) = T (ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T. (3.8)

We call T a canonical operator of A.
Our objective is to construct a spectral resolution E of T (compare with [26,

p. 148]). Let Γk := {λk(ζ) : ζ ∈ T} (k = 1, . . . , d) be a curve on the complex plane,
where λk : T 3 ζ 7→ λk(ζ) ∈ C is a continuous function. Note that σ(T ) is the closure
of Γ1 ∪ . . . ∪ Γd. Set ζ0 = 1 ∈ T. In what follows, for η ∈ T, by (ζ0η) we mean the
subset {eit : 0 < t < tη} of T, where tη ∈ (0, 2π) is such that η = eitη , and by [ζ0η]
we denote the closure of (ζ0η) in C. Now let us consider a few cases.
Case 1. First we suppose that for each ζ ∈ T all values λk(ζ) (k = 1, . . . , d) on the
main diagonal of the matrix T (ζ) are distinct.
Case 1.1. Assume that all λk’s are injective as functions. Then we obtain exactly d
disjoint non-self-intersecting curves Γk (k = 1, . . . , d). For a fixed λ ∈

⋃d
k=1 Γk, there

exist l ∈ {1, . . . , d} and ξ ∈ T such that λ = λl(ξ). Then, for ψ(ζ) = (ψk(ζ))dk=1 ∈
L2(T,Cd), we set

E(λ)ψ(ζ) =



ψ1(ζ)
. . .
ψl−1(ζ)
ψl(ζ)χ(ζ0ξ)(ζ)
0
. . .
0


.

Case 1.2. Assume that at least one function λk is not injective. For simplicity, assume
that the only such function is λ1. We can choose η ∈ T such that λ1 is injective on
[ζ0η] and Γ1 = {λ1(ζ) : ζ ∈ [ζ0η]}. Then, for a fixed λ and each ψ as in Case 1.1, we
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set

E(λ)ψ(ζ) =



ψ1(ζ)χ(ζ0η)(ζ)
ψ2(ζ)
. . .
ψl−1(ζ)
ψl(ζ)χ(ζ0ξ)(ζ)
0
. . .
0


.

Case 2. Suppose that the matrix T (ζ) has multiple eigenvalues for some ζ ∈ T. To
simplify the writing, we confine our attention to the case of d = 2 only. Let

T (ζ) =

[
λ1(ζ) µ(ζ)
0 λ1(ζ)

]
.

Case 2.1. Assume that the function λ1 is injective. Then, for a fixed λ ∈ Γ1, there
exists ξ ∈ T such that λ = λ1(ξ). For ψ = (ψk(ζ))2

k=1 ∈ L2(T,C2), we set

E(λ)ψ(ζ) =

[
ψ1(ζ)χ(ζ0ξ)(ζ)
ψ2(ζ)χ(ζ0ξ)(ζ)

]
.

Case 2.2. If λ1 is not injective, then we take η as in Case 1.2. For a fixed λ ∈ Γ1, there
exists ξ ∈ [ζ0η] such that λ = λ1(ξ). Then E can be defined by the same formula as
in Case 2.1.
We are in a position to conduct a construction of E in full generality. Namely, we can
define the values of E(λ) on the elements of L2(T,Cd) as column vectors whose entries
are chosen according to the following rules. If some λk’s coincide (k = 1, . . . , d), then
the corresponding entries are given as in Case 2.1 (resp. Case 2.2) whenever such
repeated functions are (resp. are not) injective. Next, we call upon Case 2.2 to get
the entries corresponding to pairwise distinct functions λk which are not injective.
Finally, we derive the reminder entries from Case 1.1. The construction is complete.

We now prove a generalization of Theorem 7 of [26] for the operator A. The
arguments are in a sense similar to those given by Naïman.

Theorem 3.1. Let A : l2(Z,Cd)→ l2(Z,Cd) be a Laurent operator defined by (3.1),
A(ζ) its symbol, and T (ζ) a Schur triangularization (3.6) of A(ζ) (ζ ∈ T). Then the
operator A is unitarily equivalent to the canonical operator T : L2(T,Cd)→ L2(T,Cd)
defined by (3.8).

Proof. We first show that the operator U defined on L2(T,Cd) by

(Uψ)(ζ) = U(ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T, (3.9)

is unitary. In view of (3.7), for ζ ∈ T, we obtain

U(ζ)ψ(ζ) =

( d∑
k=1

ϕ(k)
r (ζ)ψk(ζ)

)d
r=1

, ψ ∈ L2(T,Cd).
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By this and the fact that the vectors ϕ(k)(ζ) (k = 1, 2, . . . , d) form the orthonormal
basis in Cd, we can perform the following calculations for ψ ∈ L2(T,Cd):

d∑
r=1

∫
T

∣∣(U(ζ)ψ(ζ)
)
r

∣∣2 dm =

d∑
r=1

∫
T

∣∣∣∣ d∑
k=1

ϕ(k)
r (ζ)ψk(ζ)

∣∣∣∣2 dm
=

d∑
r=1

∫
T

d∑
k,l=1

(
ψk(ζ)ψl(ζ)ϕ(k)

r (ζ)ϕ
(l)
r (ζ)

)
dm

=

∫
T

d∑
k,l=1

(
ψk(ζ)ψl(ζ)

)( d∑
r=1

ϕ(k)
r (ζ)ϕ

(l)
r (ζ)

)
dm

=

∫
T

d∑
k,l=1

ψk(ζ)ψl(ζ) · 〈ϕ(k)(ζ), ϕ(l)(ζ)〉Cd dm

=

d∑
k=1

∫
T

|ψk(ζ)|2 dm = ‖ψ‖2L2(T,Cd) <∞.

As a consequence, we deduce that Uψ ∈ L2(T,Cd) and

‖Uψ‖L2(T,Cd) = ‖ψ‖L2(T,Cd).

Since, for each ζ ∈ T, the matrix U(ζ) is invertible, a direct calculation shows that
the operator U−1 on L2(T,Cd) given by

(U−1ψ)(ζ) = (U(ζ))−1ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T, (3.10)

is the inverse of U . What is more, since (U(ζ))−1 = (U(ζ))∗ for each ζ ∈ T, the reader
will have no trouble verifying that U−1 = U∗.

Next, consider the operator Â : L2(T,Cd)→ L2(T,Cd) defined by

(Âψ)(ζ) = A(ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T. (3.11)

In view of (3.11), (3.10), (3.8), (3.9) and (3.5), we get

Â = UTU∗. (3.12)

In accordance with the theory of Laurent operators ([1, pp. 48–49]), the operators
A and Â are unitarily equivalent. Namely, we have

A = GÂG∗, (3.13)

where G : L2(T,Cd)→ l2(Z,Cd) is a unitary operator given by

(Gψ)(ζ) =

(
1

2π

∫
T

ψ(ζ)ζ−n dm

)
n∈Z

, ψ ∈ L2(T,Cd), ζ ∈ T, (3.14)
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and G∗ : l2(Z,Cd)→ L2(T,Cd) is of the form

G∗(u) =

∞∑
n=−∞

unζ
n, u = (un)n∈Z ∈ l2(Z,Cd), ζ ∈ T.

As a conclusion, by (3.12) and (3.13), we get

A =
(
GU
)
T
(
GU
)∗
, (3.15)

which completes the proof.

Suppose now that the assertion of Theorem 3.1 holds. Let E be a spectral reso-
lution of T (whose construction was described before Theorem 3.1). From (3.15) and
the fact that the operators U and G are unitary (so, in particular, σ(A) = σ(T )) we
infer that the operator-valued function E given by

E(λ) =
(
GU
)
E(λ)

(
GU
)∗
, λ ∈ σ(A), (3.16)

is a spectral resolution of A. In this way, we arrived at the following generalization of
Theorem 8 of [26] for A.

Theorem 3.2. Let A and T be as in Theorem 3.1. Then the operator-valued function
E defined by (3.16) is a spectral resolution of A.

It should be noted that not all Laurent operators A satisfy condition (3.4), and
hence do not fall within the scope of Theorem 3.2 even in the case when all matrices
Aj (j ∈ Z) in (3.1) are non-zero. An example of such an operator is given below.

Example 3.3. Consider a Laurent operator A acting on the space l2(Z,C2) corre-
sponding to the symbol (3.3), where

A0 =

[
2 1
0 2

]
, Ak =

[
0 2−|k|

0 0

]
, k ∈ Z \ {0}.

Obviously, the symbol of A can be expressed explicitly as

A(ζ) =

[
2 3ζ(2− ζ)−1(2ζ − 1)−1

0 2

]
, ζ ∈ T.

Clearly, its spectrum consists of only one point, and so A does not have a spectral
resolution.

3.2. SKEW SPECTRAL RESOLUTION FOR A LAURENT OPERATOR

We now move on to considering a particular situation when, for each ζ ∈ T, A(ζ) has
all simple eigenvalues λk(ζ) (k = 1, . . . , d). Then, owing to Theorem 4.15.11 of [33],
each matrix A(ζ) is diagonalizable. More precisely, for ζ ∈ T, we can find a diagonal
matrix D(ζ) and an invertible matrix V (ζ) such that

A(ζ) = V (ζ)D(ζ)(V (ζ))−1. (3.17)
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It is worth noting that the matrix V (ζ) may not be unitary. An analysis of the proof
of this result (in [33]) shows that

D(ζ) =


λ1(ζ) 0 . . . 0

0 λ2(ζ) . . . 0
...

...
. . .

...
0 0 . . . λd(ζ)

 (3.18)

and

V (ζ) =


φ

(1)
1 (ζ) φ

(2)
1 (ζ) · · · φ

(d)
1 (ζ)

φ
(1)
2 (ζ) φ

(2)
2 (ζ) · · · φ

(d)
2 (ζ)

...
...

. . .
...

φ
(1)
d (ζ) φ

(2)
d (ζ) · · · φ

(d)
d (ζ)

 , (3.19)

where φ(k)(ζ) =
(
φ

(k)
r (ζ)

)d
r=1

(k = 1, . . . , d) are the eigenvectors corresponding to
λk(ζ) (k = 1, . . . , d). Next, denote by ϑ(k)(ζ) (k = 1, . . . , d) the eigenvectors of the
matrix (A(ζ))∗ corresponding to its eigenvalues λk(ζ). As noticed in [26, pp. 148–149],
we may assume that these eigenvectors are chosen in such a way that

(V (ζ))−1 =


ϑ

(1)
1 (ζ) ϑ

(1)
2 (ζ) · · · ϑ

(1)
d (ζ)

ϑ
(2)
1 (ζ) ϑ

(2)
2 (ζ) · · · ϑ

(2)
d (ζ)

...
...

. . .
...

ϑ
(d)
1 (ζ) ϑ

(d)
2 (ζ) · · · ϑ

(d)
d (ζ)

 . (3.20)

We show that the operator V defined on L2(T,Cd) by

(V ψ)(ζ) = V (ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T, (3.21)

is bounded and invertible. Indeed, since V (ζ) is of the form (3.19) for ζ ∈ T, it follows
that

V (ζ)ψ(ζ) =

( d∑
k=1

φ(k)
r (ζ)ψk(ζ)

)d
r=1

, ψ ∈ L2(T,Cd).

Then, by using the inequality

∣∣∣ d∑
r=1

xr

∣∣∣2 ≤ d d∑
r=1

|xr|2, x1, . . . , xd ∈ C,
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for ψ ∈ L2(T,Cd), we get

d∑
r=1

∫
T

∣∣(V (ζ)ψ(ζ)
)
r

∣∣2 dm =

d∑
r=1

∫
T

∣∣∣∣ d∑
k=1

φ(k)
r (ζ)ψk(ζ)

∣∣∣∣2 dm
≤ d

d∑
r=1

∫
T

d∑
k=1

|ψk(ζ)|2 |φ(k)
r (ζ)|2 dm

= d2
d∑
k=1

∫
T

|ψk(ζ)|2 dm

= d2‖ψ‖2L2(T,Cd) <∞.

Hence V ψ ∈ L2(T,Cd) and

‖V ψ‖L2(T,Cd) ≤ d‖ψ‖L2(T,Cd),

so V is a bounded operator. Since, for each ζ ∈ T, (V (ζ))−1 is the inverse of V (ζ),
from a direct calculation we immediately conclude that the operator V −1 given by

(V −1ψ)(ζ) = V −1(ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T, (3.22)

is the inverse of V . As (V (ζ))−1 is of the form (3.20) for ζ ∈ T and ϑ(k)(ζ) =

(ϑ
(k)
r (ζ))dr=1, k = 1, . . . , d, we have

(V (ζ))−1ψ(ζ) =

( d∑
r=1

ϑ
(k)
r (ζ)ψr(ζ)

)d
k=1

, ψ ∈ L2(T,Cd).

Since |ϑ(k)| ≤ c (k = 1, . . . , d) for some constant c, arguing in a similar fashion as
above, for ψ ∈ L2(T,Cd), we get

d∑
k=1

∫
T

∣∣((V (ζ))−1ψ(ζ)
)
k

∣∣2 dm =

d∑
k=1

∫
T

∣∣∣∣ d∑
r=1

ϑ
(k)
r (ζ)ψr(ζ)

∣∣∣∣2 dm
≤ d

d∑
k=1

∫
T

d∑
r=1

|ψr(ζ)|2
∣∣∣ϑ(k)

r (ζ)
∣∣∣2 dm

≤ d2c2
d∑
r=1

∫
T

|ψr(ζ)|2 dm

= (cd)2‖ψ‖2L2(T,Cd) <∞.
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Hence V −1ψ ∈ L2(T,Cd) and

‖V −1ψ‖L2(T,Cd) ≤ cd‖ψ‖L2(T,Cd),

so V −1 is a bounded operator.
Furthermore, let D : L2(T,Cd)→ L2(T,Cd) be the operator given by

(Dψ)(ζ) = D(ζ)ψ(ζ) =
(
λk(ζ)ψk(ζ)

)d
k=1

, ζ ∈ T, (3.23)

where ψ(ζ) =
(
ψk(ζ)

)d
k=1
∈ L2(T,Cd), and Â : L2(T,Cd)→ L2(T,Cd) be the opera-

tor given by (3.11). A combination of (3.11), (3.22), (3.23), (3.21) and (3.17) reveals
that

Â = V DV −1. (3.24)

Recall that A stands for the Laurent operator with the corresponding symbol A(ζ)
(ζ ∈ T). Then, in view of (3.24) and (3.13), we obtain

A = WDW−1,

where
W := GV (3.25)

and G : L2(T,Cd) → l2(Z,Cd) is the operator from the proof of Theorem 3.1 given
by (3.14). Then, clearly, σ(A) = σ(D). Next, we define the operator-valued function
F by

F(λ) = WF (λ)W−1, λ ∈ σ(A), (3.26)

where F is a spectral resolution of D. (Remark that F can be defined in exactly
the same way as E in Subsection 3.1.) It easily checked that F is a skew spectral
resolution of A. By this and the discussion made at the end of Section 2, A possesses
an integral representation with respect to F .

The above discussion enables us to formulate the following generalization of The-
orems 9 and 10 of [26] for the operator A.

Theorem 3.4. Let A : l2(Z,Cd) → l2(Z,Cd) be a Laurent operator defined by (3.1)
and A(ζ) (ζ ∈ T) its symbol. Suppose that for each ζ ∈ T the matrix A(ζ) has simple
eigenvalues only. Then:

(i) A is similar to the operator D : L2(T,Cd) → L2(T,Cd) defined by (3.23) (more
precisely, A = WDW−1, where W : L2(T,Cd) → l2(Z,Cd) is an invertible
bounded operator given by (3.25)),

(ii) the operator-valued function F defined by (3.26) is a skew spectral resolution
of A,

(iii) A has an integral representation

Af =

∫
Γ

λ dF(λ)f, f ∈ l2(Z,Cd).
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4. APPLICATIONS TO PERIODIC JACOBI-TYPE MATRICES

Our next aim is to show that the results of Section 3 apply to operators associated
with some periodic infinite matrices, which are defined below.

Let us consider a Jacobi-type matrix J = [ap q]p,q∈Z, that is, a complex matrix
whose entries satisfy the following two conditions:

1) there exists k ∈ N such that for all p, q ∈ Z, we have ap q = 0 if |p− q| > k,
2) there exists d ∈ N such that for all p, q ∈ Z, we have ap+d q+d = ap q.

Remark that if additionally ap q 6= 0 for all p, q ∈ Z such that |p − q| = k, then J
is called a d-periodic banded Jacobi matrix of order k. Such a class of matrices for
k = 1 was considered by Naïman in [26]. Here, however, we do not confine ourselves
to this particular case. For l ∈ Z, we denote by Al a complex d×d-matrix with entries
(Al)p q = ap q (p = 0, . . . , d − 1 and q = −dl, . . . , d(1 − l) − 1). Note that Al = 0 for
|l| > m, where m = dkde (i.e. m is the smallest integer not less than k

d ). Under the
above notation, J can be converted to the block matrix J̃ of the form

. . . . . . . . . . . . . . . . . . . . .

. . . 0 Am . . . A1 A0 A−1 . . . A−m 0 . . .
. . . 0 Am . . . A1 A0 A−1 . . . A−m 0 . . .

. . . 0 Am . . . A1 A0 A−1 . . . A−m 0 . . .
. . . . . . . . . . . . . . . . . . . . .

 .
(4.1)

It should be noted that this elegant matrix reduction procedure was borrowed from
[5, pp. 139–140]. Next, we consider the operators acting on the spaces l2(Z,C) and
l2(Z,Cd) corresponding to the matrices J and J̃ , respectively, defined as follows:

(Jv)n =

n+k∑
j=n−k

an jvj , n ∈ Z, (4.2)

for v = (vn)n∈Z ∈ l2(Z,C) and

(J̃u)n =

m∑
j=−m

Ajun−j , n ∈ Z, (4.3)

for u = (un) ∈ l2(Z,Cd). Note that, as it does not lead to the ambiguity, these
operators are denoted by the same symbols as the respective matrices. It is plain that

J = IdJ̃I
∗
d , (4.4)

where Id stands for the unitary operator from l2(Z,Cd) to l2(Z,C) given by

Idu = (. . . , v1
−1, . . . , v

d
−1, v

1
0 , . . . , v

d
0 , . . .)
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for u = (un)n∈Z ∈ l2(Z,Cd), un = (v1
n, . . . , v

d
n), n ∈ Z. Suppose that σ(J̃) = Γ, where

Γ is as in Section 2. Consider the symbol of the operator J̃ , which is defined as

J̃ (ζ) =

m∑
k=−m

Akζ
k, ζ ∈ T,

a Schur triangularization TJ̃(ζ) of J̃ (ζ) (ζ ∈ T) (see (3.6)), and the canonical opera-
tor TJ̃ : L2(T,Cd)→ L2(T,Cd) of J̃ given by

(TJ̃ψ)(ζ) = TJ̃(ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T. (4.5)

Now one can repeat the argument of Section 3.1 (putting J̃ and TJ̃ in place of A and
T , respectively) to derive a particular version of combined Theorems 3.1 and 3.2.

Theorem 4.1. Let J̃ : l2(Z,Cd)→ l2(Z,Cd) be a Laurent operator defined by (4.3),
J̃ (ζ) its symbol, and TJ̃(ζ) a Schur triangularization of J̃ (ζ) (ζ ∈ T). Then the
operator J̃ is unitarily equivalent to the canonical operator TJ̃ : L2(T,Cd)→ L2(T,Cd)
defined by (4.5) and it possesses a spectral resolution.

Moreover, if for each ζ ∈ T the matrix J̃ (ζ) is diagonalizable, then denoting by DJ̃(ζ)
its diagonalization (see (3.18)) we can define the operatorDJ̃ : L2(T,Cd)→ L2(T,Cd)
by

(DJ̃ψ)(ζ) = DJ̃(ζ)ψ(ζ), ψ ∈ L2(T,Cd), ζ ∈ T. (4.6)

Finally, mimicking the argument of Section 3.2 (replace J̃ and DJ̃ by A and D,
respectively) we get the following particular version of Theorem 3.4.

Theorem 4.2. Let J̃ : l2(Z,Cd) → l2(Z,Cd) be a Laurent operator defined by (4.3)
and J̃ (ζ) its symbol. Suppose that for each ζ ∈ T the matrix J̃ (ζ) has simple eigen-
values only. Then J̃ is similar to the operator DJ̃ : L2(T,Cd)→ L2(T,Cd) defined by
(4.6) and it possesses a skew spectral resolution FJ̃ as well as a spectral representation

J̃f =

∫
Γ

λ dFJ̃(λ)f, f ∈ l2(Z,Cd).

It should be emphasized that in the above theorems the explicit formulae, which
are skipped here, for a spectral resolution and a skew spectral resolution of the opera-
tor J̃ can be obtained on the basis of Section 3 (consult (3.16) and (3.26), respectively).

It is clear that, owing to (4.4) and the unitarity of the operator Id, the assertions
of Theorems 4.1 and 4.2 hold also for the operator J given by (4.2).
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Let now J = [ap q]p,q∈Z be a d-periodic banded Jacobi matrix of order 1. If we set
ap p−1 = br, ap p = ar, and ap p+1 = cr (p = nd+ r, r = 1, . . . , d, n ∈ Z), then

J =



. . . . . . . . .
...

...

bd ad
... cd

...
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

b1
... a1 c1

...
...

. . . . . . . . .
...

... bd ad
... cd

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
... b1

... a1
. . .

...
...

. . . . . .



.

The assumption that all entries br and cr are non-zero was essential in [26] for the
spectrum of the Laurent operator J to consist of curves irreducible to single points
(which is not the case of Example 3.3). Clearly, this special tridiagonal case of J
investigated by Naïman is embraced by our reasoning above for general Jacobi-type
matrices.
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