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Abstract. Inverse problem of recovering masses, coefficients of damping and lengths of the
intervals between the masses using two spectra of boundary value problems and the total
length of the Stieltjes string (an elastic thread bearing point masses) is considered. For the
case of point-wise damping at the first counting from the right end mass the problem of
recovering the masses, the damping coefficient and the lengths of the subintervals by one
spectrum and the total length of the string is solved.
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1. INTRODUCTION

Investigation of spectral problems for damped systems was started in [8]. As far as
we know first results on inverse problems for damped strings were obtain in [2] and
[15,16]. In these papers the left end of the string was supposed to be free and the right
end damped or in other words the right end of the string could move with viscous
friction in the direction orthogonal to the equilibrium position of the string. In these
papers very wide classes of strings were considered. In [2] the class of so-called regular
strings was used, i.e. strings of finite mass and length, while in [15, 16] the class of
so-called S-strings, i.e. strings of finite lengths and finite first momentum of mass
distribution. Conditions necessary and sufficient for a sequence of complex numbers
to be the spectrum of a damped string were given in [2] in implicit form and in [16]
and [15] explicitly. If the string is smooth such that ρ ∈ W 2

2 (0, l) and ρ(s) ≥ ε > 0,
where ρ is the density of the string and l is its length, then one can apply the Liouville
transformation ([5, p. 202]) to reduce the equation of the string to the Sturm-Liouville
equation. The corresponding boundary value problem with the spectral parameter in
the boundary conditions was considered in many publications (see [7, 21, 22, 27] and
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references therein). In [10] and [23] conditions on a sequence of complex numbers were
given necessary and sufficient to be the spectrum of a smooth inhomogeneous string
damped at one end for any value of the damping parameter except for one crucial
value.

The opposite case of extremely nonsmooth, so-called Stieltjes string (i.e. a thread
bearing point masses) was considered in [9] and [14] assuming absence of damping.
The inverse problem, i.e. the problem of recovering the parameters of the string by the
spectrum of its vibrations and by the total length of the string, for Stieltjes strings
of finite number of masses with point-wise (i.e. one dimensional) damping at the
right end and the left end free was solved in [2]. Also this problem can be reduced
to the problem of damped oscillators considered in [29, 30]. Another approach to the
inverse problem for damped finite dimensional systems was developed in [17] where
the given data included not only eigenvalues but also the so-called Jordan pairs. An
inverse problem for a Stieltjes string with damping at the midpoint was solved in [4].
A nice review can be found in [6]. Inverse problems generated by the Stieltjes string
recurrence relations on graph domains were considered in [24,25] and [18].

The case of distributed damping is not investigated in detail. We should men-
tion [31], where it was proved that two spectra of Dirichlet-Dirichlet boundary value
problem (the problem with the Dirichlet boundary conditions at both ends) and
Dirichlet-Neumann boundary problem (the problem with the Dirichlet boundary con-
dition at the left end and the Neumann boundary condition at the right end) uniquely
determine the density and the stiffness of the string if the damping is constant but
the problem with constant damping considered in this paper can be reduced by a
change of the spectral parameter to the case of an undamped string. In [1, 12] the
inverse problems for a damped string were considered on the semi-axis and on the
axis, respectively.

We consider the case of a Stieltjes string with finite number of point masses. In
Section 2 we describe the spectra of a Stieltjes string small transversal vibrations
with the both ends fixed (Dirichlet-Dirichlet boundary value problem) and with the
left end fixed and the right end free (Dirichlet-Neumann boundary value problem).
In Sections 2 and 3 we consider the case where only the mass neighboring the right
end is damped. The Dirichlet-Neumann boundary value problem in this case can be
reduced to the problem considered in [29,30] and [3].

In Section 3 we solve the inverse Dirichlet-Dirichlet problem, i.e. the problem of
recovering the values of masses, of subintervals and of the damping coefficient of the
damped mass by given spectrum, the total length of the string and the length of the
last subinterval at the right end.

It is well known that in the undamped case the eigenvalues of these two prob-
lems interlace. In Section 4 the analogues of the interlacing conditions for the case
of one dimensional damping at the mass neighboring the right end are found. They
appear to be the set of equalities and inequalities involving the Dirichlet-Dirichlet
and Dirichlet-Neumann eigenvalues. In Section 5 the problem of vibrations of the
Stieltjes string is considered for the case where all the masses are damped. The
aim is to recover not only the values of the masses and the lengths of the subin-
tervals but the coefficients of damping also. As the given data the spectra of the
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Dirichlet-Dirichlet and Dirichlet-Neumann problems are used together with the total
length of the string. The conditions on two sequences of complex numbers to be the
spectra of the Dirichlet-Dirichlet and Dirichlet-Neumann boundary value problems
are established. These conditions are given in implicit form: the ratio of the corre-
sponding characteristic polynomials should admit decomposition in continued fraction
of a special type. The decomposition is an analogue to that in [9] based on the results
of [28].

2. DIRECT PROBLEM FOR A DAMPED STIELTJES STRING

Like in [9] we suppose the string to be a thread (i.e. a string of zero density) bearing
a finite number of point masses. Let lk (k = 0, 1, . . . , n) be the lengths of the intervals
of zero density and let mk (k = 1, 2, . . . , n) be the values of the masses separating
the intervals (lk lies between mk and mk+1), the last mass has only one thread at the
left and mk > 0 for k = 1, 2, . . . , n. Let us denote αk ≥ 0 the coefficient of damping
(viscous friction) of the point mass mk. Denote by vk(t) the transversal displacements
of the point masses at the time t.

We impose a Dirichlet boundary condition on the left end, that is, the left end is
fixed and consider the two cases: 1) the right end is fixed (Dirichlet-Dirichlet problem)
and 2) right end is free to move in the direction orthogonal to the equilibrium position
of the string (Dirichlet-Neumann problem).

We assume the thread to be stretched by the stretching force which is equal to 1.
Taking into account that on the intervals of zero density the general solution of the
differential equation is a linear function of s multiplied by a function of t we obtain

vk(t)− vk+1(t)

lk
+
vk(t)− vk−1(t)

lk−1
+mkv

′′
k (t) + αkv

′
k(t) = 0 (k = 1, 2, . . . , n). (2.1)

In this section we assume αk = 0 for k = 1, 2, . . . , n− 1 and αn = α > 0. Substituting
vk(t) = uke

iλt we obtain

uk − uk+1

lk
+
uk − uk−1
lk−1

−mkλ
2uk = 0 (k = 1, 2, . . . , n− 1), (2.2)

un − un+1

ln
+
un − un−1

ln−1
−mnλ

2un + iαλun = 0. (2.3)

For the Dirichlet-Dirichlet problem we suppose the ends of the thread to be fixed,
i.e. v0(t) = vn+1(t) = 0, what means that

u0 = 0, (2.4)

un+1 = 0. (2.5)

For the Dirichlet-Neumann problem we assume that the right end is free and bears
no point mass. Then the boundary condition at the right looks as follows:

un+1 = un. (2.6)
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According to [9] we have

uk = R2k−2(λ2)u1 (k = 1, 2, . . . , n− 1), (2.7)

where R2k−2(λ2) is a polynomial of degree 2k− 2 obtained by (2.2) and by definition

R2k−1(λ2) =
R2k(λ2)−R2k−2(λ2)

lk
.

Due to (2.2) the polynomials Rk satisfy the recurrence conditions:

R2k−1(λ2) = −λ2mkR2k−2(λ2) +R2k−3(λ2), (2.8)

R2k(λ2) = lkR2k−1(λ2) +R2k−2(λ2), (2.9)

(k = 1, 2, . . . , n− 1, R−1(λ2) =
1

l0
, R0(λ2) = 1).

Using (2.7)–(2.9) and taking into account the boundary condition (2.5) we rewrite
(2.3) as follows:

φ(λ) := R2n−3(λ2) + (−mnλ
2 + iλα+ l−1n )R2n−2(λ2) = 0. (2.10)

The spectrum {νk} (k = ±1,±2, . . . ,±n) of problem (2.2)–(2.5) coincides with
the set of zeros of φ(λ). We are also interested in problem (2.2)–(2.4), (2.6). Again
using (2.7)–(2.9) and taking into account boundary condition (2.6) we obtain from
(2.3):

ψ(λ) := R2n−3(λ2) + (−mnλ
2 + iλα)R2n−2(λ2) = 0. (2.11)

The spectrum {µk} (k = ±1,±2, . . . ,±n) of problem (2.2)–(2.4), (2.6) coincides with
the set of zeros of ψ(λ).

We call φ(λ) and ψ(λ) characteristic polynomials of problems (2.2)–(2.5) and
(2.2)–(2.4), (2.6), respectively.

It is known [9] that

R2n−2(λ2)

R2n−3(λ2)
= ln−1 +

1

−mn−1λ2 + 1
ln−2+

1

−mn−2λ
2+...+ 1

l1+ 1
−m1λ

2+ 1
l0

. (2.12)

Definition 2.1. A function ω(λ) is said to be a Nevanlinna function (or R-function
in terms of [13]) if:

1) it is analytic in the half-planes Imλ > 0 and Imλ < 0,
2) ω(λ) = ω(λ) (Imλ 6= 0),
3) Imλ Imω(λ) ≥ 0 for Imλ 6= 0.

Definition 2.2 ([13]). A Nevanlinna function ω(λ) is said to be an S-function if it is
defined and analytic in C\[0,∞) and ω(λ) > 0 for λ < 0. A meromorphic S-function
is said to be an S0-function if ω(0) <∞.
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Lemma 2.3 ([13]). The function R2n−2(z)
R2n−3(z)

is an S0-function.

Definition 2.4. A polynomial is said to be Hermite-Biehler (HB) if all its zeros lie
in the open upper half-plane.

It should be mentioned that the transformation λ→ iλ transforms a HB polyno-
mial into a so-called Hurwitz polynomial.

Theorem 2.5 (Hermite-Biehler theorem, see [11,19]). In order for the polynomial

ω (λ) = P (λ) + iQ(λ)

where P (λ) and Q(λ) are real polynomials, to have no zeros in the closed lower
half-plane Im λ ≤ 0, i.e. belong to HB, it is necessary and sufficient that the following
conditions be satisfied:

1) the polynomials P (λ) and Q(λ) have only simple real zeros, while these zeros sep-
arate one another, i.e. between two successive zeros of one of these polynomials
there lies exactly one zero of the other,

2) at some point λ0 of the real axis

Q′(λ0)P (λ0)−Q(λ0)P ′(λ0) > 0.

The fact that the two polynomials satisfy condition 1) will be expressed by saying
that “the zeros of the polynomials P (λ) and Q(λ) are interlaced“.

Now Lemma 2.3 and Theorem 2.5 imply the following result.

Corollary 2.6. The polynomial P (λ2)+iλQ(λ2) belongs to the Hermite-Biehler class.

Definition 2.7. The polynomial ω(λ) is said to be symmetric if ω(−λ) = ω(λ) for
all λ ∈ C. The polynomial ω(λ) is said to belong to the class SHB if it is symmetric
and belongs to the Hermite-Biehler class.

For a symmetric polynomial ω(λ) the following is valid:

ω(λ) = P (λ) + iQ(λ) = P (λ) + iλQ̂(λ) = P̃ (λ2) + iλ
˜̂
Q(λ2),

where P (λ) and Q̂(λ) are real even functions. Here

P̃ (λ2) = P (λ),
˜̂
Q(λ2) = Q̂(λ).

3. INVERSE PROBLEMS I AND II

In this section we consider the following inverse problems.
Inverse problem I. Given the total length of the string l > 0, the length of the
right subinterval ln ∈ (0, l) and the spectrum {νk} (k = ±1,±2, . . . ,±n) of problem
(2.2)–(2.5). Find {mk} (k = 1, 2, . . . , n) and {lk} (k = 0, 1, . . . , n− 1).
Inverse problem II. Given the total length of the string l > 0, the length of the
right subinterval ln ∈ (0, l) and the spectrum {µk} (k = ±1,±2, . . . ,±n) of problem
(2.2)–(2.4), (2.6). Find {mk} (k = 1, 2, . . . , n) and {lk} (k = 0, 1, . . . , n− 1).
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Theorem 3.1. Let l > 0 and ln ∈ (0, l) be given together with the set of complex
numbers {νk} (k = ±1,±2, . . .± n) which satisfy the conditions:

1) Im νk > 0 for k = ±1,±2, . . .± n,
2) ν−k = −νk for not pure imaginary ν−k and the multiplicities of symmetrically

located numbers are equal.

Then there exists a unique Stieltjes string, i.e. a unique set of intervals lk > 0 (k =

0, 1, . . . , n − 1) of total length
∑n−1
k=0 lk = l − ln, a unique set of masses mk > 0

(k = 1, 2, . . . , n) and a unique positive number α which generate problem (2.2)–(2.5)
with the spectrum coinciding with the set {νk} (k = ±1,±2, . . . ,±n).

Proof. Let us construct the polynomial

Φ(λ) =

n∏
−n, k 6=0

(
1− λ

νk

)
. (3.1)

Due to the symmetry of the zeros of this polynomial the following even polynomials
are real:

P (λ2) =
Φ(λ) + Φ(−λ)

2
and

Q(λ2) =
Φ(λ)− Φ(−λ)

2iλ
. (3.2)

Set
α = Q(0)

(
1

l − ln
+

1

ln

)
. (3.3)

Using (3.1) and (3.2) we obtain

α = i

(
1

l − ln
+

1

ln

) n∑
k=−n,k 6=0

1

νk
(3.4)

and because of the symmetry in location of the zeros of the polynomial Φ(λ) and
conditions 1) and 2) we conclude that α > 0. Set

mn = −α lim
|λ|→∞

P (λ2)

λ2Q(λ2)
. (3.5)

The limit in the right-hand side of (3.5) exists because the degree of P (λ2) is 2n and
the degree of Q(λ2) is 2n− 2. Moreover,

P (λ2)

λ2Q(λ2)
=

|λ|→∞

i n∑
k=−n,k 6=0

νk

−1 + o(1).

Conditions 1) and 2) imply

i

n∑
k=−n,k 6=0

νk < 0,
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and according to (3.5)

mn = −α

i n∑
k=−n,k 6=0

νk

−1 > 0.

Since P (λ2) + iλQ(λ2) = Φ(λ) belongs to SHB, φ(λ) := P (λ2) + iλα−1Q(λ2) is
also a SHB polynomial by the Hermite-Biehler theorem. We consider the polynomial

φ(λ,mn, l
−1
n ) := P (λ2) + α−1(mnλ

2 − l−1n )Q(λ2) + iλα−1Q(λ2)

as a perturbation of P (λ2)+iλα−1Q(λ2). Since φ(λ, η, ζ) is a polynomial with respect
to the variables λ, η and ζ, the zeros of it in the λ-plane are piecewise analytic and
continuous functions of η and of ζ ([20]). The zeros do not cross the real axis when
η changes from 0 to mn and ζ changes from 0 to l−1n . Otherwise, we would have
P (λ2) = λQ(λ2) = 0 for some η > 0, some ζ > 0 and some real λ. If this λ 6= 0 then
Q(λ2) = 0 and consequently, P (λ2) = 0 and Φ(λ) = 0 for this real λ, what contradicts
condition 1). If φ(0, η, ζ) = 0, then

P (0)− α−1ζQ(0) = 1− α−1ζQ(0) = 0.

This is impossible for ζ ∈ (0, l−1n ) due to (3.3). The degree of the polynomial φ(λ, η, ζ)
is 2n for each η ∈ [0,mn) and each ζ ∈ [0, l−1n ] and the degree is equal 2n − 1 for
η = mn and each ζ ∈ [0, l−1n ]. This means the zeros do not come from infinity.
Therefore, φ(λ, η, ζ) ∈ SHB for each ζ ∈ [0, l−1n ] and each η ∈ [0,mn]. This implies
(see [19, p. 308]) that

α−1Q(z)

P (z) + (mnz − l−1n )α−1Q(z)

is an S-function. Then according to [9] we have

α−1Q(z)

P (z) + (mnz − l−1n )α−1Q(z)
= an−1+

1

−bn−1z + 1
an−2+

1

−bn−2z+...+
1

a1+ 1
−b1z+

1
a0

(3.6)

with ak > 0 and bk > 0 for each k.
We identify ak with the length of k-th interval and bk with the k-th mass of a

Stieltjes string, i.e.

α−1Q(λ2)

P (λ2) + (mnλ2 − l−1n )α−1Q(λ2)
=
R2n−2(λ2)

R2n−3(λ2)
, (3.7)

where R2n−2(λ2) and R2n−3(λ2) are the corresponding polynomials for this Stieltjes
string. Consequently,

α−1Q(λ2) = TR2n−2(λ2),

P (λ2) + (mnλ
2 − l−1n )α−1Q(λ2) = TR2n−3(λ2),
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where T is a positive constant. Therefore,

Φ(λ) = P (λ2) + iλQ(λ2) = T (R2n−3(λ2) + (−mnλ
2 + l−1n + iλα)R2n−2(λ2)).

According to (2.10), this means that the set {νk} is the spectrum of problem
(2.2)–(2.5) with the masses bk (k = 1, 2, . . . , n − 1) and mn and the lengths ak
(k = 0, 1, . . . , n − 1) and ln damped at the mass mn with the coefficient of damping
α. The length of the interval between the left end of the string and the mass mn

according to [9] is equal to R2n−2(0)
R2n−3(0)

. From (3.7) we obtain

R2n−2(0)

R2n−3(0)
=

α−1Q(0)

P (0)− l−1n α−1Q(0)
. (3.8)

Using (3.3) and the evident identity P (0) = 1 we obtain

R2n−2(0)

R2n−3(0)
= l − ln. (3.9)

Let us prove uniqueness of the solution to our inverse problem. Suppose there
exists another Stieljes string with the same total length l, the same length of the
right interval ln between the fixed end and the first mass from the right (which is
damped) having the same spectrum {νk}nk=−n,k 6=0. In other words, we suppose that
there exist sequences of positive numbers {m̃k}nk=1 and {l̃k}n−1k=0 (

∑n−1
k=0 l̃k = l − ln),

not identical with sets {mk}nk=1 and {lk}n−1k=0 , which together with l̃n = ln generate
problem (2.2)–(2.5) having the same spectrum {νk}nk=−n,k 6=0.

All the quantities related to problem (2.2)–(2.5) generated by {m̃k}nk=1 and
{l̃k}n−1k=0 and l̃n = ln will have the sign tilde. Then we have the following analogue
of (2.12):

R̃2n−2(λ2)

R̃2n−3(λ2)
= l̃n−1 +

1

−m̃n−1λ2 + 1
l̃n−2+

1

−m̃n−2λ
2+...+ 1

l̃1+ 1
−m̃1λ

2+ 1
l̃0

. (3.10)

The analogue of (2.10) is

φ̃(λ) := R̃2n−3(λ2) + (−m̃nλ
2 + iλα̃+ l−1n )R̃2n−2(λ2) = 0. (3.11)

Since the sets of zeros of φ(λ) and φ̃(λ) coincide with the spectrum {νk}nk=−n,k 6=0, we
conclude that

φ̃(λ) = Cφ(λ) (3.12)

with a constant C which is positive, because the following are positive

φ̃(0) = R̃2n−3(0) + l−1n R̃2n−2(0) and φ(0) = R2n−3(0) + l−1n R2n−2(0).

Using (2.10) and (3.11) we obtain from (3.12):

R̃2n−3(λ2) + (−m̃nλ
2 + l−1n )R̃2n−2(λ2) = C(R2n−3(λ2) + (−mnλ

2 + l−1n )R2n−2(λ2))
(3.13)
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and
α̃R̃2n−2(λ2) = CαR2n−2(λ2). (3.14)

Equations (3.13) and (3.14) imply

R̃2n−3(λ2)

α̃R̃2n−2(λ2)
− m̃nλ

2

α̃
+

1

α̃ln
=

R2n−3(λ2)

αR2n−2(λ2)
− mnλ

2

α
+

1

αln
. (3.15)

Since the polynomials R2n−2(λ2), R2n−3(λ2), R̃2n−2(λ2) and R̃2n−3(λ2) are of the
same degree, (3.15) implies

m̃n

α̃
=
mn

α
(3.16)

and
R̃2n−3(λ2)

α̃R̃2n−2(λ2)
+

1

α̃ln
=

R2n−3(λ2)

αR2n−2(λ2)
+

1

αln
(3.17)

and, consequently,

R̃2n−3(0)

α̃R̃2n−2(0)
+

1

α̃ln
=

R2n−3(0)

αR2n−2(0)
+

1

αln
. (3.18)

Setting λ = 0 in (2.12) and (3.10) we obtain

R2n−2(0)

R2n−3(0)
=
R̃2n−2(0)

R̃2n−3(0)
=

n−1∑
k=0

lk =

n−1∑
k=0

l̃k = l − ln. (3.19)

Combining (3.19) with (3.18) we arrive at α̃ = α. Now (3.16) implies mn = m̃n and
it follows from (3.17) that

R̃2n−2(λ2)

R̃2n−3(λ2)
=
R2n−2(λ2)

R2n−3(λ2)
.

Since the left-hand sides of (2.12) and (3.10) coincide, we conclude that mk = m̃k

for k = 1, 2, . . . , n−1 and lk = l̃k for k = 0, 1, 2, . . . , n−1. The theorem is proved.

Theorem 3.1 gives a solution of Inverse problem I. A solution of Inverse problem II
is similar. It is necessary just to delete the summand l−1n in (3.3), (3.4), set l−1n = 0
in (3.6), (3.7), (3.8), (3.11), (3.13), (3.15), (3.17), (3.18).

4. COMPARISON OF PROBLEMS I AND II

In this section we compare the functions φ(λ) and ψ(λ) defined by (2.10) and (2.11)
and the sets of their zeros {νk} and {µk}.

Comparison of (2.10) with (2.11) gives

φ(λ) = ψ(λ) +
ψ(λ)− ψ(−λ)

2iλαln
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φ(λ)

ψ(λ)
= 1 +

l−1n
−mnλ2 + iαλ+ 1

R2n−2(λ2)/R2n−3(λ2)

= 1 +
l−1n

−mnλ2 + iαλ+ 1
ln−1+

1

−mn−1λ
2+...+ 1

l1+ 1
−m1λ

2+ 1
l0

.
(4.1)

It follows from (4.1) that
φ(0)

ψ(0)
=

l

ln
(4.2)

and

R2n−2(λ)

R2n−3(λ)
=

(
mnλ− iαλ1/2 +

(
ln

(
φ(λ1/2)

ψ(λ1/2)
− 1

))−1)−1
(4.3)

is an S0-function.

Theorem 4.1. For the polynomials φ(λ) and ψ(λ) of degree 2n each to be the cha-
racteristic polynomials of problems I and II, respectively, normalized by (4.2) it is
necessary and sufficient that the function(

mnλ− iαλ1/2 +

(
ln

(
φ(λ1/2)

ψ(λ1/2)
− 1

))−1)−1
(4.4)

with

α =:

(
1

l − ln
+

1

ln

)
lim
λ→0

φ(λ)− φ(−λ)

2iλ
(4.5)

and

mn =: −iα lim
|λ|→∞

φ(λ) + φ(−λ)

λ(φ(λ)− φ(−λ)
(4.6)

be a rational S0-function.

Proof. Necessity follows from (4.3) and (2.12). Now let the function (4.4) be an
S0-function. Then it can be expanded into a continued fraction:(

mnλ− iαλ1/2 +

(
ln

(
φ(λ1/2)

ψ(λ1/2)
− 1

))−1)−1
= an−1 +

1

−bn−1λ2 + 1
an−2+

1

−bn−2λ
2+...+ 1

a1+ 1
−b1λ2+ 1

b0

,

where ak > 0 for k = 0, 1, . . . , n− 1 and b > 0 for k = 1, 2, . . . , n− 1.
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We identify bk with masses on a Stieltjes string and ak with the subintervals
into which the masses divide the length l − ln. This data together with the given ln
and α obtained from (4.5) and mn obtained from (4.6) generate problems (2.2)–(2.5)
and (2.2)–(2.4), (2.6) which have spectra {νk} and {µk}, respectively. The proof is
complete.

Comparing (2.10) with (2.11), which can be rewritten as

φ(λ) = (−1)nmn

n−1∏
1

mklk

n∏
−n,k 6=0

(νk − λ) (4.7)

and

ψ(λ) = (−1)nmn

n−1∏
1

mklk

n∏
−n,k 6=0

(µk − λ), (4.8)

we obtain

φ(λ)− ψ(λ) = l−1n R2n−2(λ2).

Let us introduce the following notation:

Mp =

k=n, k′=n,...k(p−1)=n∑∑
. . .
∑

k=−n, k<k′<...<k(p−1), k 6=0, k′ 6=0,..., k(p−1) 6=0

νkνk′ . . . νk(p−1) , (4.9)

Np =

k=n, k′=n,...k(p−1)=n∑∑
. . .
∑

k=−n, k<k′<...<k(p−1), k 6=0, k′ 6=0,..., k(p−1) 6=0

µkµk′ . . . µk(p−1) . (4.10)

Then

R2n−2(λ2) = ln(−1)nmn

n−1∏
1

mklk
(
λ2n−2(N2 −M2) + λ2n−4(N4 −M4) + . . .

. . .+N2n −M2n) .

R2n−2(λ2) =
φ(λ)− φ(−λ)

2iαλ

= i(−1)nmn

n−1∏
1

mklkα
−1 (λ2n−2N1 + λ2n−4N3 + . . .+N2n−1

)
.
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Comparing (4.9) with (4.10) we obtain

ln(N2 −M2) =

(
1

l − ln
+

1

ln

)−1 n∑
k=−n, k 6=0

1

νk

−1N1,

ln(N4 −M4) =

(
1

l − ln
+

1

ln

)−1 n∑
k=−n, k 6=0

1

νk

−1N3,

. . .

ln(N2n −M2n) =

(
1

l − ln
+

1

ln

)−1 n∑
k=−n, k 6=0

1

νk

−1N2n−1.

Definitions (4.7) and (4.8) imply

φ(λ)− φ(−λ) = ψ(λ)− ψ(−λ). (4.11)

Substituting (4.7) and (4.8) into (4.11) we obtain

M2k−1 = N2k−1, k = 1, 2, . . . , n. (4.12)
Using (2.11) we derive

R2n−3(λ2) =
ψ(λ) + ψ(−λ)

2
+mnλ

2R2n−2(λ2). (4.13)

Substituting (4.8) and (4.10) into (4.13) we obtain

R2n−3(λ2) =(−1)nmn

n−1∏
k=1

mklk(λ2n−2(M2 −N−11 N3) + λ2n−4(M4 −N−11 N5) + . . .

(4.14)

+ λ2(M2n−2 −N−11 N2n−1) +M2n).

Taking into account that R2n−3(z) has zeros only on the positive half-axis and com-
paring (4.14) with (2.8) and (2.9) we obtain

(−1)k(M2k −N−11 N2k+1) > 0, k = 1, 2, . . . , n− 1, (−1)nM2n > 0.

Using interlacing of the zeros of R2n−3(z) with the zeros of R2n−2(z) we obtain

(−1)k−1
M2k −N−11 N2k+1

M2 −N−11 N3

> (−1)k−1
N2k−1

N1
, k = 2, 3, . . . , n− 1,

(−1)n−1
M2n

M2 −N−11 N3

> (−1)n−1
N2n−1

N1
.

Equation (4.12) for k = 1 is equivalent to
n∑

k=−n, k 6=0

Imµk =

n∑
k=−n, k 6=0

Imνk.
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5. INVERSE PROBLEM FOR A DAMPED STIELTJES STRING

Now we come back to the problems generated by equation (2.1) where all the masses
are damped. By an inverse problem we mean recovering the parameters of problems
generated by equation

uk − uk+1

lk
+
uk − uk−1
lk−1

−mkλ
2uk + iαkλuk = 0 (k = 1, 2, . . . , n) (5.1)

and conditions (2.4), (2.5) and (2.4), (2.6), i.e. {mk}, {αk} (k = 1, 2, . . . , n), {lk}
(k = 0, 1, . . . , n) using the spectra of these problems and the total length of the string
l = l0 + l1 + . . .+ ln.

Suppose we know {µk} (k = ±1,±2, . . . ± n) eigenvalues of problem (5.1), (2.4),
(2.5), i.e. the zeros of the polynomial R2n−1(λ) which here are obtained from the
recurrence relations

R2k−1(λ2) = (−λ2mk + iαλ)R2k−2(λ2) +R2k−3(λ2),

R2k(λ2) = lkR2k−1(λ2) +R2k−2(λ2), (k = 1, 2, . . . , n, R−1(λ2) =
1

l0
, R0(λ2) = 1)

and {νk} (k = ±1,±2, . . . ± n) eigenvalues of problem (5.1), (2.4), (2.6), i.e. the
zeros of the polynomial R2n(λ) and the total length of the string l. We construct the
polynomials

p(λ) =

n∏
k=1

(
1− λ

µk

)(
1− λ

µ−k

)
, q(λ) =

n∏
k=1

(
1− λ

νk

)(
1− λ

ν−k

)
.

These polynomials have the same sets of zeros as R2n(λ) and R2n−1(λ), respec-
tively. Therefore,

R2n−1(λ) = T1p(λ), R2n(λ) = T2q(λ)

and
R2n(λ)

R2n−1(λ)
=
T2
T1

q(λ)

p(λ)
. (5.2)

We construct p(λ) and q(λ) using {µk} (k = ±1,±2, . . . ± n) and {νk} (k =
±1,±2, . . .± n). To find T2

T1
we substitute λ = 0 in (5.2):

R2n(0)

R2n−1(0)
=
T2
T1

q(0)

p(0)
=
T2
T1
.

Substituting λ = 0 into (2.8) we obtain

T2
T1

= l0 + l1 + . . .+ ln = l.

Thus the sets {µk} and {νk} together with given l uniquely determine the rational
function

R2n(λ)

R2n−1(λ)
= l

q(λ)

p(λ)
.
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By expanding R2n(λ)
R2n−1(λ)

into continued fraction according to (2.8) we can find {mk},
{αk} (k = 1, 2, . . . , n) and {lk} (k = 0, 1, . . . , n). Hence, we have proved the following
theorem.

Theorem 5.1. The eigenvalues {µk} (k = ±1,±2, . . . ± n) and {νk} (k =
±1,±2, . . .± n) together with the given total length l uniquely determine {mk}, {αk}
(k = 1, 2, . . . , n) and {lk} (k = 0, 1, . . . , n).

Now let us find conditions which must be satisfied by sets of complex numbers
{νk} and {µk} (k = ±1,±2, . . . ,±n) to be the spectra of problems (5.1), (2.4), (2.5)
and (5.1) (2.4), (2.6), respectively.

Theorem 5.2. Let {νk} and {µk} (k = ±1,±2, . . . ,±n) be two sequences of complex
numbers and let l be a positive number. In order {νk} and {µk} (k = ±1,±2, . . . ,±n)
be the spectra of problems (5.1), (2.4), (2.5) and (5.1) (2.4), (2.6), respectively, with
mk > 0, αk > 0 (k = 1, 2, . . . , n), it is necessary and sufficient that:

1) {µk} ∩ {νk} = ∅,
2) the product l

n∏
k=−n,k 6=0

(
1− λ

νk

)(
1− λ

µk

)−1
can be presented as a continued frac-

tion of the form:

l

n∏
k=−n,k 6=0

(
1− λ

νk

)(
1− λ

µk

)−1
= an +

1

bnλ2 + icnλ+ 1
an−1+

1

bn−1λ
2+icn−1λ+...+

1
a1+ 1

b1λ
2+ic1λ+

1
a0

(5.3)

with ak > 0 (k = 0, 1, 2, . . . , n), bk < 0, ck ≥ 0 (k = 0, 1, 2, . . . , n).

Proof. Let us use the continued fraction (5.3) to construct another continued fraction:

an +
1

bnλ2 + 1
an−1+

1

bn−1λ
2+... 1

a1+ 1
b1λ

2+ 1
a0

.

It is clear from (5.3) that
∑n
k=0 ak = l. According to [9] this fraction can be identified

as the ratio of two polynomials the zeros of the numerator are the eigenvalues of an
undamped Stieltjes string with fixed ends and the zeros of the denominator are the
eigenvalues of the same string with the left end fixed and the right end free. The
masses of this string are |bk| at distances ak. The total length of the string is equal
l. Now let us consider the same string (the same masses |bk| and the same lengths
of intervals ak) but with damping proportional to ck at mass |bk|. This new damped
string generates the continued fraction (5.3). The theorem is proved.
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Remark 5.3.

a) Due to conditions 1), 2) µ−k = −µk for each not pure imaginary µk and ν−k = −νk
for each not pure imaginary νk.

b) Condition 2) in explicit form consists of rather involved relations. The first, the
second and the third of them, however, are

n∑
k=−n, k 6=0

Imµk =

n∑
k=−n, k 6=0

Imνk,

k=n,k′=n∑
k=−n,k′=−n,k 6=0,k′ 6=0

µkµk′ >

k=n,k′=n∑
k=−n,k′=−n,k 6=0,k′ 6=0

νkνk′ ,

n∑
−n,k 6=0

Imµk+

+ i

k=n,k′=n,k”=n∑
k=−n,k′=−n,k”=−n,k 6=0,k′ 6=0,k” 6=0

(µkµk′µk” − νkνk′νk”)·

·

 k=n,k′=n,∑
k=−n,k′=−n,k 6=0,k′ 6=0,

(µkµk′ − νkνk′

−1 > 0.
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