A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF *n* COPIES OF A GRAPH

P. Jeyanthi and N. Angel Benseera

Communicated by Dalibor Fronček

Abstract. A graph G is said to have a totally magic cordial (TMC) labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{0, 1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label *i*. In this paper, we establish the totally magic cordial labeling of one-point union of *n*-copies of cycles, complete graphs and wheels.

Keywords: totally magic cordial labeling, one-point union of graphs.

Mathematics Subject Classification: 05C78.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph G is denoted by V(G) and E(G) respectively. Let p = |V(G)| and q = |E(G)|. A general reference for graph theoretic ideas can be seen in [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f : V(G) \to \{0,1\}$ induces an edge labeling $f^* : E(G) \to \{0,1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Such labeling is called cordial if the conditions $|v_f(0) - v_f(1)| \leq 1$ and $|e_{f^*}(0) - e_{f^*}(1)| \leq 1$ are satisfied, where $v_f(i)$ and $e_{f^*}(i)$ (i = 0, 1) are the number of vertices and edges with label *i* respectively. A graph is called cordial if it admits a cordial labeling. The cordiality of a one-point union of *n* copies of graphs is given in [6].

Kotzig and Rosa introduced the concept of edge-magic total labeling in [5]. A bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p+q\}$ is called an edge-magic total labeling of G if f(x) + f(xy) + f(y) is constant (called the magic constant of f) for every edge xy of G. The graph that admits this labeling is called an edge-magic total graph.

The notion of totally magic cordial (TMC) labeling was due to Cahit [2] as a modification of edge magic total labeling and cordial labeling. A graph G is said to have TMC labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{0, 1\}$

© AGH University of Science and Technology Press, Krakow 2014

such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label *i*.

A rooted graph is a graph in which one vertex is named in a special way so as to distinguish it from other nodes. The special node is called the root of the graph. Let G be a rooted graph. The graph obtained by identifying the roots of n copies of G is called the one-point union of n copies of G and is denoted by $G^{(n)}$.

In this paper, we establish the TMC labeling of a one-point union of *n*-copies of cycles, complete graphs and wheels.

2. MAIN RESULTS

In this section, we present sufficient conditions for a one-point union of n copies of a rooted graph to be TMC and also obtain conditions under which a one-point union of n copies of graphs such as a cycle, complete graph and wheel are TMC graphs.

We relate the TMC labeling of a one-point union of n copies of a rooted graph to the solution of a system which involves an equation and an inequality.

Theorem 2.1. Let G be a graph rooted at a vertex u and for i = 1, 2, ..., k, $f_i: V(G) \cup E(G) \rightarrow \{0,1\}$ be such that $f_i(a) + f_i(b) + f_i(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $f_i(u) = 0$. Let $n_{f_i}(0) = \alpha_i$, $n_{f_i}(1) = \beta_i$ for i = 1, 2, ..., k. Then the one-point union $G^{(n)}$ of n copies of G is TMC if the system (2.1) has a nonnegative integral solution for the x_i 's:

$$\left|\sum_{i=1}^{k} (\alpha_i - 1)x_i - \sum_{i=1}^{k} \beta_i x_i + 1\right| \le 1 \quad and \quad \sum_{i=1}^{k} x_i = n.$$
 (2.1)

Proof. Suppose $x_i = \delta_i$, i = 1, 2, ..., k, is a nonnegative integral solution of system (2.1). Then we label the δ_i copies of G in $G^{(n)}$ with f_i (i = 1, 2, ..., k). As each of these copies has the property $f_i(a) + f_i(b) + f_i(ab) \equiv C \pmod{2}$ and $f_i(u) = 0$ for all $i = 1, 2, \dots, k, G^{(n)}$ is TMC.

Corollary 2.2. Let G be a graph rooted at a vertex u and f be a labeling such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and f(u) = 0. If $n_f(0) = n_f(1) + 1$, then $G^{(n)}$ is TMC for all n > 1.

Example 2.3. One point union of a path is TMC.

Corollary 2.4. Let G be a graph rooted at u. Let f_i , i = 1, 2, 3 be labelings of G such that $f_i(a) + f_i(b) + f_i(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$, $f_i(u) = 0$ and $\gamma_i = \alpha_i - \beta_i$.

- 1. If $\gamma_1 = -2$ and $\gamma_2 = 2$, then $G^{(n)}$ is TMC for all $n \not\equiv 1 \pmod{4}$.
- 2. If either
 - a) $\gamma_1 = -1$ and $\gamma_2 = 3$, or
 - b) $\gamma_1 = 4, \ \gamma_2 = 2 \ and \ \gamma_3 = -4, \ or$
 - c) $\gamma_1 = -3$, $\gamma_2 = 3$ and $\gamma_3 = 5$,
- then $G^{(n)}$ is TMC for all $n \ge 1$. 3. If $\gamma_1 = 0$ and $\gamma_2 = 4$, then $G^{(n)}$ is TMC for all $n \not\equiv 3 \pmod{4}$.

Proof. (1) The system (2.1) in Theorem 2.1 becomes $|-3x_1 + x_2 + 1| \le 1, x_1 + x_2 = n$. When n = 4t, $x_1 = t$ and $x_2 = 3t$ is the solution. When n = 4t + 1, the system has no solution. When n = 4t + 2, $x_1 = t + 1$ and $x_2 = 3t + 1$ is the solution. When n = 4t + 3, $x_1 = t + 1$ and $x_2 = 3t + 2$ is the solution. Hence, by Theorem 2.1, $G^{(n)}$ is TMC for all $n \not\equiv 1 \pmod{4}$.

(2a). The system (2.1) in Theorem 2.1 becomes $|-2x_1 + 2x_2 + 1| \le 1, x_1 + x_2 = n$. When n = 2t, $x_1 = t$ and $x_2 = t$ is the solution. When n = 2t + 1, $x_1 = t + 1$ and $x_2 = t$ is the solution. Hence, by Theorem 2.1, $G^{(n)}$ is TMC for all $n \ge 1$.

The other parts can similarly be proved.

3. ONE-POINT UNION OF CYCLES

Let C_m be a cycle of order m. Let

$$V(C_m) = \{v_i | 1 \le i \le m\}$$

and

$$E(C_m) = \{v_i v_{i+1} | 1 \le i < m\} \cup \{v_m v_1\}$$

We consider C_m as a rooted graph with the vertex v_1 as its root.

Theorem 3.1. Let $C_m^{(n)}$ be the one-point union of n copies of a cycle C_m . Then $C_m^{(n)}$ is TMC for all $m \geq 3$ and $n \geq 1$.

Proof. Define the labelings f_1 and f_2 from $V(C_m) \cup E(C_m)$ into $\{0,1\}$ as follows: $f_1(v_i) = 0$ for $1 \le i \le m$, $f_1(v_i v_{i+1}) = 1$ for $1 \le i < m$, $f_1(v_m v_1) = 1$, $1 \le i \le m$ and

$$f_2(v_i) = \begin{cases} 1 & \text{if } i = m, \\ 0 & \text{if } i \neq m, \end{cases} \quad f_2(v_i v_{i+1}) = \begin{cases} 1 & \text{if } 1 \le i < m-1, \\ 0 & \text{if } i = m-1, \end{cases}$$

and $f_2(v_m v_1) = 0$. Then $\alpha_1 = m$, $\beta_1 = m$, $\alpha_2 = m + 1$ and $\beta_2 = m - 1$. Thus system (2.1) in Theorem 2.1 becomes $|-x_1 + x_2 + 1| \le 1$, $x_1 + x_2 = n$. When n = 2t, $x_1 = t$ and $x_2 = t$ is the solution. When n = 2t + 1, $x_1 = t + 1$ and $x_2 = t$ is the solution. Hence, by Theorem 2.1, $C_m^{(n)}$ is TMC for all $m \ge 3$ and $n \ge 1$.

4. ONE-POINT UNION OF COMPLETE GRAPHS

Let K_m be a complete graph of order m. Let

$$V(K_m) = \{v_i | 1 \le i \le m\}$$

and

$$E(K_m) = \{ v_i v_j | i \neq j, 1 \le i \le m, 1 \le j \le m \}$$

We consider K_m as a rooted graph with the vertex v_1 as its root. Let $f: V(K_m) \cup$ $E(K_m) \to \{0,1\}$ be a TMC labeling of K_m . Without loss of generality, assume C = 1. Then for any edge $e = uv \in E(K_m)$, we have either f(e) = f(u) = f(v) = 1 or f(e) = f(u) = 0 and f(v) = 1 or f(e) = f(v) = 0 and f(u) = 1 or f(u) = f(v) = 0 and f(e) = 1. Thus, under the labeling f, the graph K_m can be decomposed as $K_m = K_p \cup K_r \cup K_{p,r}$ where K_p is the sub-complete graph in which all the vertices and edges are labeled with 1, K_r is the sub-complete graph in which all the vertices are labeled with 0 and edges are labeled with 1 and $K_{p,r}$ is the complete bipartite subgraph of K_m with the bipartition $V(K_p) \cup V(K_r)$ and its edges are labeled with 0. Then we find $n_f(0) = r + pr$ and $n_f(1) = \frac{p^2 + r^2 + p - r}{2}$.

Table 1. Possible values of α_i and β_i for distinct labelings of K_m

i	р	r	$lpha_i$	β_i
1	0	m	m	$\frac{m^2-m}{2}$
2	1	m-1	$2 \times (m-1)$	$\frac{m^2 - 3m + 4}{2}$
3	2	m-2	$3 \times (m-2)$	$\frac{m^2 - 5m + 12}{2}$
4	3	m-3	$4 \times (m-3)$	$\frac{m^2-7m+24}{2}$
			•	
•	•	•	•	
•	•	•	•	•
$\left\lfloor \frac{m+1}{2} \right\rfloor$	$\left\lfloor \frac{m-1}{2} \right\rfloor$	$\left\lceil \frac{m+1}{2} \right\rceil$	$\left\lfloor \frac{m-1}{2} \right\rfloor \times \left\lceil \frac{m+1}{2} \right\rceil$	$\frac{\left[\left(\left\lfloor \frac{m-1}{2}\right\rfloor\right)^2 + \left(\left\lceil \frac{m+1}{2}\right\rceil\right)^2 + \left\lfloor \frac{m-1}{2}\right\rfloor + \left\lceil \frac{m+1}{2}\right\rceil\right]}{2}$

Table 1 gives the possible values of α_i and β_i for distinct labelings f_i of K_m such that $f_i(a) + f_i(b) + f_i(ab) \equiv 1 \pmod{2}$ for all $ab \in E(K_m)$.

Theorem 4.1. Let $K_m^{(n)}$ be the one-point union of n copies of a complete graph K_m . If $\sqrt{m-1}$ has an integer value, then $K_m^{(n)}$ is TMC for $m \equiv 1, 2 \pmod{4}$.

Proof. Let $f: V(K_m) \cup E(K_m) \to \{0,1\}$ be a TMC labeling of K_m . Under the labeling f, the graph K_m can be decomposed as $K_m = K_p \cup K_r \cup K_{p,r}$. Then we have, $n_f(0) = r + pr$ and $n_f(1) = \frac{p^2 + r^2 + p - r}{2}$. By Corollary 2.2, $K_m^{(m)}$ is TMC if $n_f(0) = n_f(1) + 1$. Whenever, $n_f(0) = n_f(1) + 1$, $p^2 + p(1 - 2r) + r^2 - 3r + 2 = 0$. This implies that $r = \frac{1}{2} \left[(m+1) \pm \sqrt{m-1} \right]$ as p = m - r. Also, $n_f(0) = n_f(1) + 1$ is possible only when $m \equiv 1, 2 \pmod{4}$. Therefore, $K_m^{(n)}$ is TMC for $m \equiv 1, 2 \pmod{4}$, if $\sqrt{m-1}$ has an integer value

Theorem 4.2 ([4]). Let G be an odd graph with $p + q \equiv 2 \pmod{4}$. Then G is not TMC.

Theorem 4.3. Let $K_m^{(n)}$ be the one-point union of n copies of a complete graph K_m .

- (i) If $m \equiv 0 \pmod{8}$, then $K_m^{(n)}$ is not TMC for $n \equiv 3 \pmod{4}$.
- (ii) If $m \equiv 4 \pmod{8}$, then $K_m^{(n)}$ is not TMC for $n \equiv 1 \pmod{4}$.

Proof. Clearly, $p = |V(K_m^n)| = n(m-1) + 1$ and $q = |E(K_m^n)| = \frac{nm(m-1)}{2}$ so that $p + q = \frac{n(m-1)(m+2)}{2} + 1$.

Part (i) Assume m = 8k and n = 4l + 3. Since the degree of every vertex is odd and

 $p+q \equiv 2 \pmod{4}$, it follows from Theorem 4.2 that $K_m^{(n)}$ is not TMC. Part (ii) can similarly be proved.

Theorem 4.4. $K_4^{(n)}$ is TMC if and only if $n \not\equiv 1 \pmod{4}$.

Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f_1 and f_2 as follows: $f_1(v_i) = 0$ for $1 \le i \le 4$, $f_1(v_iv_j) = 1$ for $1 \le i, j \le 4$ and under the labeling f_2 decompose K_4 as $K_1 \cup K_3 \cup K_{1,3}$. From Table 1, we observe that $\alpha_1 = 4$, $\beta_1 = 6$, $\alpha_2 = 6$ and $\beta_2 = 4$. Therefore, by Corollary 2.4 (1), $K_4^{(n)}$ is TMC if $n \ne 1 \pmod{4}$.

Theorem 4.5. $K_5^{(n)}$ is TMC for all $n \ge 1$.

Proof. Define $f: V(K_5^{(n)}) \cup E(K_5^{(n)}) \to \{0, 1\}$ as follows:

$$f(v_i) = \begin{cases} 0 & \text{if } i \neq 5, \\ 1 & \text{if } i = 5 \end{cases}$$

and

$$f(v_i v_j) = \begin{cases} 1 & \text{if } 1 \le i, j \le 4, \\ 0 & \text{if } i = 5 \text{ or } j = 5 \end{cases}$$

Clearly, $\alpha = \beta + 1 = 8$. Therefore, by Corollary 2.2, $K_5^{(n)}$ is TMC for all $n \ge 1$.

Theorem 4.6. $K_6^{(n)}$ is TMC for all $n \ge 1$.

Proof. Let f_1 and f_2 be the labelings from $V(K_6^{(n)}) \cup E(K_6^{(n)})$ into $\{0, 1\}$. Then, under the labelings f_1 and f_2 the graph K_6 can be decomposed as $K_1 \cup K_5 \cup K_{1,5}$ and $K_2 \cup K_4 \cup K_{2,4}$ respectively. Clearly, $\alpha_1 = 10$, $\beta_1 = 11$, $\alpha_2 = 12$ and $\beta_2 = 9$. Hence, by Corollary 2.4 (2a), $K_6^{(n)}$ is TMC for all $n \ge 1$.

Theorem 4.7. $K_7^{(n)}$ is TMC for all $n \ge 1$.

Proof. Let f_1 , f_2 and f_3 be the labelings from $V(K_7^{(n)}) \cup E(K_7^{(n)})$ into $\{0, 1\}$. Then under the labelings f_1 , f_2 and f_3 the graph K_7 can be decomposed as $K_3 \cup K_4 \cup K_{3,4}$, $K_4 \cup K_3 \cup K_{4,3}$ and $K_5 \cup K_2 \cup K_{5,2}$ respectively. We observe that $\alpha_1 = 16$, $\beta_1 = 12$, $\alpha_2 = 15$, $\beta_2 = 13$, $\alpha_3 = 12$ and $\beta_3 = 16$. Hence, by Corollary 2.4 (2b), $K_7^{(n)}$ is TMC for all $n \geq 1$.

Theorem 4.8. $K_8^{(n)}$ is TMC if and only if $n \neq 3 \pmod{4}$.

Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f_1 and f_2 as follows: under the labelings f_1 and f_2 the graph K_8 can be decomposed as $K_2 \cup K_6 \cup K_{2,6}$ and $K_3 \cup K_5 \cup K_{3,5}$ respectively. Clearly, $\alpha_1 = 18$, $\beta_1 = 18$, $\alpha_2 = 20$ and $\beta_2 = 16$. Hence, by Corollary 2.4 (3), $K_8^{(n)}$ is TMC if $n \neq 3 \pmod{4}$.

Theorem 4.9. $K_9^{(n)}$ is TMC for all $n \ge 1$.

Proof. Under the labelings f_1 , f_2 and f_3 the graph K_9 can be decomposed as $K_2 \cup K_7 \cup K_{2,7}$, $K_3 \cup K_6 \cup K_{3,6}$ and $K_4 \cup K_5 \cup K_{4,5}$ respectively. We observe that $\alpha_1 = 21$, $\beta_1 = 24$, $\alpha_2 = 24$, $\beta_2 = 21$, $\alpha_3 = 25$ and $\beta_3 = 20$. Therefore, by Corollary 2.4 (2c), the graph $K_9^{(n)}$ is TMC for all $n \ge 1$.

5. ONE-POINT UNION OF WHEELS

A wheel W_m is obtained by joining the vertices v_1, v_2, \ldots, v_m of a cycle C_m to an extra vertex v called the centre. We consider W_m as a rooted graph with v as its root.

Theorem 5.1. Let $W_m^{(n)}$ be the one-point union of n copies of a wheel W_m .

(i) If $m \equiv 0 \pmod{4}$, then $W_m^{(n)}$ is TMC for all $n \ge 1$.

(ii) If $m \equiv 1 \pmod{4}$, then $W_m^{(n)}$ is TMC for $n \not\equiv 3 \pmod{4}$.

(iii) If $m \equiv 2 \pmod{4}$, then $W_m^{(n)}$ is TMC for all $n \ge 1$.

(iv) If $m \equiv 3 \pmod{4}$, then $W_m^{(n)}$ is TMC for $n \not\equiv 1 \pmod{4}$.

Proof. Define the labelings f_1, f_2, f_3, f_4 and f_5 as follows: $f_j(v) = 0$ for j = 1, 2, 3, 4, 5. $f_1(v_m v_1) = 0$,

$$f_1(v_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4}, \\ 0 & \text{if } i \not\equiv 0 \pmod{4}, \end{cases} \quad f_1(v_i v_{i+1}) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases}$$

and

$$f_1(vv_i) = \begin{cases} 1 & \text{if } i \not\equiv 0 \pmod{4}, \\ 0 & \text{if } i \equiv 0 \pmod{4}. \end{cases}$$

 $f_2(v_i) = f_2(v_i v_{i+1}) = 1, \ f_2(v v_i) = 0 \ \text{for} \ i = 1, 2, \dots, m \ \text{and} \ f_2(v_m v_1) = 1.$ $f_3(v_i) = f_1(v_i), \ f_3(v_i v_{i+1}) = f_1(v_i v_{i+1}), \ f_3(v v_i) = f_1(v v_i) \ \text{for} \ i = 1, 2, \dots, m$ $\text{and} \ f_3(v_m v_1) = 1. \ f_4(v_1) = 1, \ f_4(v_1 v_2) = f_4(v_m v_1) = 0, \ f_4(v_i) = f_3(v_i),$ $f_4(v_i v_{i+1}) = f_3(v_i v_{i+1}), \ f_4(v v_i) = f_3(v v_i) \ \text{for} \ i = 2, 3, \dots, m \ \text{and} \ f_4(v v_1) = 0.$

$$f_5(v_i) = \begin{cases} 1 & \text{if } i \equiv 1 \pmod{2}, \\ 0 & \text{if } i \equiv 0 \pmod{2}, \end{cases} \quad f_5(vv_i) = \begin{cases} 0 & \text{if } i \equiv 1 \pmod{2}, \\ 1 & \text{if } i \equiv 0 \pmod{2}, \end{cases}$$

 $f_5(v_i v_{i+1}) = f_5(v_m v_1) = 0.$

Case 1. $m \equiv 0 \pmod{4}$.

If we consider the labeling f_1 we have, $n_{f_1}(0) = n_{f_1}(1) + 1$. Then, by Corollary 2.2, $W_m^{(n)}$ is TMC for all $n \ge 1$.

Case 2. $m \equiv 1 \pmod{4}$.

If we consider the labelings f_2 , f_3 and f_4 . We have $\alpha_2 = \frac{3m+1}{2}$, $\beta_2 = \frac{3m+1}{2}$, $\alpha_3 = \frac{3m+5}{2}$, $\beta_3 = \frac{3m-3}{2}$, $\alpha_4 = m+1$, $\beta_4 = 2m$. Then, system (2.1) in Theorem 2.1 becomes $|-x_2 + 3x_3 - (m+1)x_4 + 1| \le 1$, $x_2 + x_3 + x_4 = n$. When n = 4t, $x_2 = 3t$, $x_3 = t$, $x_4 = 0$ is a solution. When n = 4t + 1, $x_2 = 3t + 1$, $x_3 = t$, $x_4 = 0$ is a solution. When n = 4t + 2, $x_2 = 3t + 2$, $x_3 = t$, $x_4 = 0$ is a solution. When n = 4t + 3, the system has no solution. Hence, by Theorem 2.1, $W_m^{(n)}$ is TMC if $n \neq 3 \pmod{4}$.

Case 3. $m \equiv 2 \pmod{4}$.

If we consider the labelings f_2 , f_3 , f_4 and f_5 , we have $\alpha_2 = m+1$, $\beta_2 = 2m$, $\alpha_3 = \frac{3m}{2}$, $\beta_3 = \frac{3m+2}{2}$, $\alpha_4 = \frac{3m+4}{2}$, $\beta_4 = \frac{3m-2}{2}$, $\alpha_5 = 2m+1$, $\beta_5 = m$. Thus, system (2.1) in Theorem 2.1 becomes $|-mx_2 - 2x_3 + 2x_4 + mx_5 + 1| \le 1$, $x_2 + x_3 + x_4 + x_5 = n$. When n = 4t, $x_2 = x_3 = x_4 = x_5 = t$ is a solution. When n = 4t + 1, $x_2 = t$, $x_3 = t + 1$, $x_4 = t$, $x_5 = t$ is a solution. When n = 4t + 2, $x_2 = t + 1$, $x_2 = t$, $x_4 = t$, $x_5 = t + 1$ is a solution. When n = 4t + 3, $x_2 = t + 1$, $x_3 = t + 1$, $x_4 = t$, $x_5 = t + 1$ is a solution. Hence, by Theorem 2.1, $W_m^{(n)}$ is TMC for all $n \ge 1$.

Case 4. $m \equiv 3 \pmod{4}$.

If we consider the labelings f_3 and f_4 . We have $\alpha_3 = \frac{3m-1}{2}$, $\beta_3 = \frac{3m+3}{2}$, $\alpha_4 = \frac{3m+3}{2}$ and $\beta_4 = \frac{3m-1}{2}$. Therefore, system (2.1) in Theorem 2.1 becomes, $|-3x_3 + x_4 + 1| \le 1$, $x_3 + x_4 = n$. When n = 4t, $x_3 = t$, $x_4 = 3t$ is a solution. When n = 4t + 1, the system has no solution. When n = 4t + 2, $x_3 = t + 1$, $x_4 = 3t + 1$ is a solution. When n = 4t + 3, $x_3 = t + 1$, $x_4 = 3t + 2$ is a solution. Hence, by Theorem 2.1, $W_m^{(n)}$ is TMC if $n \ne 1 \pmod{4}$.

Acknowledgments

The authors sincerely thank the referee for the valuable suggestions which were used in this paper.

REFERENCES

- I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201–207.
- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory 22 (2002), 247-258.
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [4] P. Jeyanthi, N. Angel Benseera, Totally magic cordial labeling for some graphs (preprint).
- [5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 4, 451–461.
- [6] Sze-Chin Shee, Yong-Song Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117 (1993), 225–243.

P. Jeyanthi jeyajeyanthi@rediffmail.com

Research Center Department of Mathematics Govindammal Aditanar College for Women Tiruchendur – 628 215, India N. Angel Benseera angelbenseera@yahoo.com

Department of Mathematics Sri Meenakshi Government Arts College for Women (Autonomous) Madurai – 625 002, India

Received: June 10, 2013. Revised: September 14, 2013. Accepted: September 21, 2013.