A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH

P. Jeyanthi and N. Angel Benseera
Communicated by Dalibor Fronček

Abstract

A graph G is said to have a totally magic cordial (TMC) labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i. In this paper, we establish the totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels.

Keywords: totally magic cordial labeling, one-point union of graphs.

Mathematics Subject Classification: 05C78.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph G is denoted by $V(G)$ and $E(G)$ respectively. Let $p=|V(G)|$ and $q=|E(G)|$. A general reference for graph theoretic ideas can be seen in [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f: V(G) \rightarrow\{0,1\}$ induces an edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)=$ $|f(u)-f(v)|$. Such labeling is called cordial if the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{*}}(0)-e_{f^{*}}(1)\right| \leq 1$ are satisfied, where $v_{f}(i)$ and $e_{f^{*}}(i)(i=0,1)$ are the number of vertices and edges with label i respectively. A graph is called cordial if it admits a cordial labeling. The cordiality of a one-point union of n copies of graphs is given in [6].

Kotzig and Rosa introduced the concept of edge-magic total labeling in [5]. A bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ is called an edge-magic total labeling of G if $f(x)+f(x y)+f(y)$ is constant (called the magic constant of f) for every edge $x y$ of G. The graph that admits this labeling is called an edge-magic total graph.

The notion of totally magic cordial (TMC) labeling was due to Cahit [2] as a modification of edge magic total labeling and cordial labeling. A graph G is said to have TMC labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$
such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i.

A rooted graph is a graph in which one vertex is named in a special way so as to distinguish it from other nodes. The special node is called the root of the graph. Let G be a rooted graph. The graph obtained by identifying the roots of n copies of G is called the one-point union of n copies of G and is denoted by $G^{(n)}$.

In this paper, we establish the TMC labeling of a one-point union of n-copies of cycles, complete graphs and wheels.

2. MAIN RESULTS

In this section, we present sufficient conditions for a one-point union of n copies of a rooted graph to be TMC and also obtain conditions under which a one-point union of n copies of graphs such as a cycle, complete graph and wheel are TMC graphs.

We relate the TMC labeling of a one-point union of n copies of a rooted graph to the solution of a system which involves an equation and an inequality.
Theorem 2.1. Let G be a graph rooted at a vertex u and for $i=1,2, \ldots, k$, $f_{i}: V(G) \cup E(G) \rightarrow\{0,1\}$ be such that $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $f_{i}(u)=0$. Let $n_{f_{i}}(0)=\alpha_{i}, n_{f_{i}}(1)=\beta_{i}$ for $i=1,2, \ldots, k$. Then the one-point union $G^{(n)}$ of n copies of G is TMC if the system (2.1) has a nonnegative integral solution for the x_{i} 's:

$$
\begin{equation*}
\left|\sum_{i=1}^{k}\left(\alpha_{i}-1\right) x_{i}-\sum_{i=1}^{k} \beta_{i} x_{i}+1\right| \leq 1 \quad \text { and } \quad \sum_{i=1}^{k} x_{i}=n \tag{2.1}
\end{equation*}
$$

Proof. Suppose $x_{i}=\delta_{i}, i=1,2, \ldots, k$, is a nonnegative integral solution of system (2.1). Then we label the δ_{i} copies of G in $G^{(n)}$ with $f_{i}(i=1,2, \ldots, k)$. As each of these copies has the property $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv C(\bmod 2)$ and $f_{i}(u)=0$ for all $i=1,2, \ldots, k, G^{(n)}$ is TMC.
Corollary 2.2. Let G be a graph rooted at a vertex u and f be a labeling such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $f(u)=0$. If $n_{f}(0)=n_{f}(1)+1$, then $G^{(n)}$ is TMC for all $n \geq 1$.

Example 2.3. One point union of a path is TMC.
Corollary 2.4. Let G be a graph rooted at u. Let $f_{i}, i=1,2,3$ be labelings of G such that $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv C(\bmod 2)$ for all $a b \in E(G), f_{i}(u)=0$ and $\gamma_{i}=\alpha_{i}-\beta_{i}$.

1. If $\gamma_{1}=-2$ and $\gamma_{2}=2$, then $G^{(n)}$ is TMC for all $n \not \equiv 1(\bmod 4)$.
2. If either
a) $\gamma_{1}=-1$ and $\gamma_{2}=3$, or
b) $\gamma_{1}=4, \gamma_{2}=2$ and $\gamma_{3}=-4$, or
c) $\gamma_{1}=-3, \gamma_{2}=3$ and $\gamma_{3}=5$,
then $G^{(n)}$ is TMC for all $n \geq 1$.
3. If $\gamma_{1}=0$ and $\gamma_{2}=4$, then $G^{(n)}$ is TMC for all $n \not \equiv 3(\bmod 4)$.

Proof. (1) The system (2.1) in Theorem 2.1 becomes $\left|-3 x_{1}+x_{2}+1\right| \leq 1, x_{1}+x_{2}=n$. When $n=4 t, x_{1}=t$ and $x_{2}=3 t$ is the solution. When $n=4 t+1$, the system has no solution. When $n=4 t+2, x_{1}=t+1$ and $x_{2}=3 t+1$ is the solution. When $n=4 t+3, x_{1}=t+1$ and $x_{2}=3 t+2$ is the solution. Hence, by Theorem 2.1, $G^{(n)}$ is TMC for all $n \not \equiv 1(\bmod 4)$.
(2a). The system (2.1) in Theorem 2.1 becomes $\left|-2 x_{1}+2 x_{2}+1\right| \leq 1, x_{1}+x_{2}=n$. When $n=2 t, x_{1}=t$ and $x_{2}=t$ is the solution. When $n=2 t+1, x_{1}=t+1$ and $x_{2}=t$ is the solution. Hence, by Theorem 2.1, $G^{(n)}$ is TMC for all $n \geq 1$.

The other parts can similarly be proved.

3. ONE-POINT UNION OF CYCLES

Let C_{m} be a cycle of order m. Let

$$
V\left(C_{m}\right)=\left\{v_{i} \mid 1 \leq i \leq m\right\}
$$

and

$$
E\left(C_{m}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i<m\right\} \cup\left\{v_{m} v_{1}\right\} .
$$

We consider C_{m} as a rooted graph with the vertex v_{1} as its root.
Theorem 3.1. Let $C_{m}^{(n)}$ be the one-point union of n copies of a cycle C_{m}. Then $C_{m}^{(n)}$ is $T M C$ for all $m \geq 3$ and $n \geq 1$.

Proof. Define the labelings f_{1} and f_{2} from $V\left(C_{m}\right) \cup E\left(C_{m}\right)$ into $\{0,1\}$ as follows: $f_{1}\left(v_{i}\right)=0$ for $1 \leq i \leq m, f_{1}\left(v_{i} v_{i+1}\right)=1$ for $1 \leq i<m, f_{1}\left(v_{m} v_{1}\right)=1,1 \leq i \leq m$ and

$$
f_{2}\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=m, \\
0 & \text { if } i \neq m,
\end{array} \quad f_{2}\left(v_{i} v_{i+1}\right)= \begin{cases}1 & \text { if } 1 \leq i<m-1 \\
0 & \text { if } i=m-1\end{cases}\right.
$$

and $f_{2}\left(v_{m} v_{1}\right)=0$. Then $\alpha_{1}=m, \beta_{1}=m, \alpha_{2}=m+1$ and $\beta_{2}=m-1$. Thus system (2.1) in Theorem 2.1 becomes $\left|-x_{1}+x_{2}+1\right| \leq 1, x_{1}+x_{2}=n$. When $n=2 t, x_{1}=t$ and $x_{2}=t$ is the solution. When $n=2 t+1, x_{1}=t+1$ and $x_{2}=t$ is the solution. Hence, by Theorem 2.1, $C_{m}^{(n)}$ is TMC for all $m \geq 3$ and $n \geq 1$.

4. ONE-POINT UNION OF COMPLETE GRAPHS

Let K_{m} be a complete graph of order m. Let

$$
V\left(K_{m}\right)=\left\{v_{i} \mid 1 \leq i \leq m\right\}
$$

and

$$
E\left(K_{m}\right)=\left\{v_{i} v_{j} \mid i \neq j, 1 \leq i \leq m, 1 \leq j \leq m\right\} .
$$

We consider K_{m} as a rooted graph with the vertex v_{1} as its root. Let $f: V\left(K_{m}\right) \cup$ $E\left(K_{m}\right) \rightarrow\{0,1\}$ be a TMC labeling of K_{m}. Without loss of generality, assume $C=1$.

Then for any edge $e=u v \in E\left(K_{m}\right)$, we have either $f(e)=f(u)=f(v)=1$ or $f(e)=f(u)=0$ and $f(v)=1$ or $f(e)=f(v)=0$ and $f(u)=1$ or $f(u)=f(v)=0$ and $f(e)=1$. Thus, under the labeling f, the graph K_{m} can be decomposed as $K_{m}=K_{p} \cup K_{r} \cup K_{p, r}$ where K_{p} is the sub-complete graph in which all the vertices and edges are labeled with $1, K_{r}$ is the sub-complete graph in which all the vertices are labeled with 0 and edges are labeled with 1 and $K_{p, r}$ is the complete bipartite subgraph of K_{m} with the bipartition $V\left(K_{p}\right) \cup V\left(K_{r}\right)$ and its edges are labeled with 0 . Then we find $n_{f}(0)=r+p r$ and $n_{f}(1)=\frac{p^{2}+r^{2}+p-r}{2}$.

Table 1. Possible values of α_{i} and β_{i} for distinct labelings of K_{m}

i	p	r	α_{i}	β_{i}
1	0	m	m	$\frac{m^{2}-m}{2}$
2	1	m-1	$2 \times(m-1)$	$\frac{m^{2}-3 m+4}{2}$
3	2	m-2	$3 \times(m-2)$	$\frac{m^{2}-5 m+12}{2}$
4	3	m-3	$4 \times(m-3)$	$\frac{m^{2}-7 m+24}{2}$
-	-	-	-	.
.	.	.	-	.
$\left\lfloor\frac{m+1}{2}\right\rfloor$	$\left\lfloor\frac{m-1}{2}\right\rfloor$	$\left\lceil\frac{m+1}{2}\right\rceil$	$\left\lfloor\frac{m-1}{2}\right\rfloor \times\left\lceil\frac{m+1}{2}\right\rceil$	$\frac{\left[\left(\left\lfloor\frac{m-1}{2}\right\rfloor\right)^{2}+\left(\left\lceil\frac{m+1}{2}\right\rceil\right)^{2}+\left\lfloor\frac{m-1}{2}\right\rfloor+\left\lceil\frac{m+1}{2}\right\rceil\right]}{2}$

Table 1 gives the possible values of α_{i} and β_{i} for distinct labelings f_{i} of K_{m} such that $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv 1(\bmod 2)$ for all $a b \in E\left(K_{m}\right)$.

Theorem 4.1. Let $K_{m}^{(n)}$ be the one-point union of n copies of a complete graph K_{m}. If $\sqrt{m-1}$ has an integer value, then $K_{m}^{(n)}$ is TMC for $m \equiv 1,2(\bmod 4)$.
Proof. Let $f: V\left(K_{m}\right) \cup E\left(K_{m}\right) \rightarrow\{0,1\}$ be a TMC labeling of K_{m}. Under the labeling f, the graph K_{m} can be decomposed as $K_{m}=K_{p} \cup K_{r} \cup K_{p, r}$. Then we have, $n_{f}(0)=r+p r$ and $n_{f}(1)=\frac{p^{2}+r^{2}+p-r}{2}$. By Corollary 2.2, $K_{m}^{(n)}$ is TMC if $n_{f}(0)=n_{f}(1)+1$. Whenever, $n_{f}(0)=n_{f}(1)+1, p^{2}+p(1-2 r)+r^{2}-3 r+2=0$. This implies that $r=\frac{1}{2}[(m+1) \pm \sqrt{m-1}]$ as $p=m-r$. Also, $n_{f}(0)=n_{f}(1)+1$ is possible only when $m \equiv 1,2(\bmod 4)$. Therefore, $K_{m}^{(n)}$ is TMC for $m \equiv 1,2(\bmod 4)$, if $\sqrt{m-1}$ has an integer value

Theorem $4.2([4])$. Let G be an odd graph with $p+q \equiv 2(\bmod 4)$. Then G is not TMC.
Theorem 4.3. Let $K_{m}^{(n)}$ be the one-point union of n copies of a complete graph K_{m}.
(i) If $m \equiv 0(\bmod 8)$, then $K_{m}^{(n)}$ is not TMC for $n \equiv 3(\bmod 4)$.
(ii) If $m \equiv 4(\bmod 8)$, then $K_{m}^{(n)}$ is not TMC for $n \equiv 1(\bmod 4)$.

Proof. Clearly, $p=\left|V\left(K_{m}^{n}\right)\right|=n(m-1)+1$ and $q=\left|E\left(K_{m}^{n}\right)\right|=\frac{n m(m-1)}{2}$ so that $p+q=\frac{n(m-1)(m+2)}{2}+1$.
Part (i) Assume $m=8 k$ and $n=4 l+3$. Since the degree of every vertex is odd and
$p+q \equiv 2(\bmod 4)$, it follows from Theorem 4.2 that $K_{m}^{(n)}$ is not TMC.
Part (ii) can similarly be proved.
Theorem 4.4. $K_{4}^{(n)}$ is TMC if and only if $n \not \equiv 1(\bmod 4)$.
Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f_{1} and f_{2} as follows: $f_{1}\left(v_{i}\right)=0$ for $1 \leq i \leq 4, f_{1}\left(v_{i} v_{j}\right)=1$ for $1 \leq i, j \leq 4$ and under the labeling f_{2} decompose K_{4} as $K_{1} \cup K_{3} \cup K_{1,3}$. From Table 1, we observe that $\alpha_{1}=4, \beta_{1}=6, \alpha_{2}=6$ and $\beta_{2}=4$. Therefore, by Corollary $2.4(1), K_{4}^{(n)}$ is TMC if $n \not \equiv 1(\bmod 4)$.

Theorem 4.5. $K_{5}^{(n)}$ is TMC for all $n \geq 1$.
Proof. Define $f: V\left(K_{5}^{(n)}\right) \cup E\left(K_{5}^{(n)}\right) \rightarrow\{0,1\}$ as follows:

$$
f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \neq 5 \\ 1 & \text { if } i=5\end{cases}
$$

and

$$
f\left(v_{i} v_{j}\right)= \begin{cases}1 & \text { if } 1 \leq i, j \leq 4 \\ 0 & \text { if } i=5 \text { or } j=5\end{cases}
$$

Clearly, $\alpha=\beta+1=8$. Therefore, by Corollary $2.2, K_{5}^{(n)}$ is TMC for all $n \geq 1$.
Theorem 4.6. $K_{6}^{(n)}$ is $T M C$ for all $n \geq 1$.
Proof. Let f_{1} and f_{2} be the labelings from $V\left(K_{6}^{(n)}\right) \cup E\left(K_{6}^{(n)}\right)$ into $\{0,1\}$. Then, under the labelings f_{1} and f_{2} the graph K_{6} can be decomposed as $K_{1} \cup K_{5} \cup K_{1,5}$ and $K_{2} \cup K_{4} \cup K_{2,4}$ respectively. Clearly, $\alpha_{1}=10, \beta_{1}=11, \alpha_{2}=12$ and $\beta_{2}=9$. Hence, by Corollary 2.4 (2a), $K_{6}^{(n)}$ is TMC for all $n \geq 1$.

Theorem 4.7. $K_{7}^{(n)}$ is $T M C$ for all $n \geq 1$.
Proof. Let f_{1}, f_{2} and f_{3} be the labelings from $V\left(K_{7}^{(n)}\right) \cup E\left(K_{7}^{(n)}\right)$ into $\{0,1\}$. Then under the labelings f_{1}, f_{2} and f_{3} the graph K_{7} can be decomposed as $K_{3} \cup K_{4} \cup K_{3,4}$, $K_{4} \cup K_{3} \cup K_{4,3}$ and $K_{5} \cup K_{2} \cup K_{5,2}$ respectively. We observe that $\alpha_{1}=16, \beta_{1}=12$, $\alpha_{2}=15, \beta_{2}=13, \alpha_{3}=12$ and $\beta_{3}=16$. Hence, by Corollary $2.4(2 \mathrm{~b}), K_{7}^{(n)}$ is TMC for all $n \geq 1$.
Theorem 4.8. $K_{8}^{(n)}$ is TMC if and only if $n \not \equiv 3(\bmod 4)$.
Proof. Necessity follows from Theorem 4.3 and for sufficiency we define the labelings f_{1} and f_{2} as follows: under the labelings f_{1} and f_{2} the graph K_{8} can be decomposed as $K_{2} \cup K_{6} \cup K_{2,6}$ and $K_{3} \cup K_{5} \cup K_{3,5}$ respectively. Clearly, $\alpha_{1}=18, \beta_{1}=18, \alpha_{2}=20$ and $\beta_{2}=16$. Hence, by Corollary $2.4(3), K_{8}^{(n)}$ is TMC if $n \not \equiv 3(\bmod 4)$.
Theorem 4.9. $K_{9}^{(n)}$ is $T M C$ for all $n \geq 1$.

Proof. Under the labelings f_{1}, f_{2} and f_{3} the graph K_{9} can be decomposed as $K_{2} \cup K_{7} \cup K_{2,7}, K_{3} \cup K_{6} \cup K_{3,6}$ and $K_{4} \cup K_{5} \cup K_{4,5}$ respectively. We observe that $\alpha_{1}=21, \beta_{1}=24, \alpha_{2}=24, \beta_{2}=21, \alpha_{3}=25$ and $\beta_{3}=20$. Therefore, by Corollary $2.4(2 \mathrm{c})$, the graph $K_{9}^{(n)}$ is TMC for all $n \geq 1$.

5. ONE-POINT UNION OF WHEELS

A wheel W_{m} is obtained by joining the vertices $v_{1}, v_{2}, \ldots, v_{m}$ of a cycle C_{m} to an extra vertex v called the centre. We consider W_{m} as a rooted graph with v as its root.
Theorem 5.1. Let $W_{m}^{(n)}$ be the one-point union of n copies of a wheel W_{m}.
(i) If $m \equiv 0(\bmod 4)$, then $W_{m}^{(n)}$ is TMC for all $n \geq 1$.
(ii) If $m \equiv 1(\bmod 4)$, then $W_{m}^{(n)}$ is TMC for $n \not \equiv 3(\bmod 4)$.
(iii) If $m \equiv 2(\bmod 4)$, then $W_{m}^{(n)}$ is TMC for all $n \geq 1$.
(iv) If $m \equiv 3(\bmod 4)$, then $W_{m}^{(n)}$ is TMC for $n \not \equiv 1(\bmod 4)$.

Proof. Define the labelings $f_{1}, f_{2}, f_{3}, f_{4}$ and f_{5} as follows: $f_{j}(v)=0$ for $j=1,2,3,4,5$. $f_{1}\left(v_{m} v_{1}\right)=0$,

$$
f_{1}\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 0(\bmod 4), \\
0 & \text { if } & i \not \equiv 0(\bmod 4),
\end{array} \quad f_{1}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 1,2(\bmod 4) \\
0 & \text { if } & i \equiv 0,3(\bmod 4)
\end{array}\right.\right.
$$

and

$$
f_{1}\left(v v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \not \equiv 0(\bmod 4) \\
0 & \text { if } & i \equiv 0(\bmod 4)
\end{array}\right.
$$

$f_{2}\left(v_{i}\right)=f_{2}\left(v_{i} v_{i+1}\right)=1, f_{2}\left(v v_{i}\right)=0$ for $i=1,2, \ldots, m$ and $f_{2}\left(v_{m} v_{1}\right)=1$. $f_{3}\left(v_{i}\right)=f_{1}\left(v_{i}\right), f_{3}\left(v_{i} v_{i+1}\right)=f_{1}\left(v_{i} v_{i+1}\right), f_{3}\left(v v_{i}\right)=f_{1}\left(v v_{i}\right)$ for $i=1,2, \ldots, m$ and $f_{3}\left(v_{m} v_{1}\right)=1 . f_{4}\left(v_{1}\right)=1, f_{4}\left(v_{1} v_{2}\right)=f_{4}\left(v_{m} v_{1}\right)=0, f_{4}\left(v_{i}\right)=f_{3}\left(v_{i}\right)$, $f_{4}\left(v_{i} v_{i+1}\right)=f_{3}\left(v_{i} v_{i+1}\right), f_{4}\left(v v_{i}\right)=f_{3}\left(v v_{i}\right)$ for $i=2,3, \ldots, m$ and $f_{4}\left(v v_{1}\right)=0$.

$$
f_{5}\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 1(\bmod 2), \\
0 & \text { if } & i \equiv 0(\bmod 2),
\end{array} \quad f_{5}\left(v v_{i}\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \equiv 1(\bmod 2), \\
1 & \text { if } & i \equiv 0(\bmod 2)
\end{array}\right.\right.
$$

$f_{5}\left(v_{i} v_{i+1}\right)=f_{5}\left(v_{m} v_{1}\right)=0$.
Case 1. $m \equiv 0(\bmod 4)$.
If we consider the labeling f_{1} we have, $n_{f_{1}}(0)=n_{f_{1}}(1)+1$. Then, by Corollary 2.2, $W_{m}^{(n)}$ is TMC for all $n \geq 1$.
Case 2. $m \equiv 1(\bmod 4)$.
If we consider the labelings f_{2}, f_{3} and f_{4}. We have $\alpha_{2}=\frac{3 m+1}{2}, \beta_{2}=\frac{3 m+1}{2}, \alpha_{3}=\frac{3 m+5}{2}$, $\beta_{3}=\frac{3 m-3}{2}, \alpha_{4}=m+1, \beta_{4}=2 m$. Then, system (2.1) in Theorem 2.1 becomes $\left|-x_{2}+3 x_{3}-(m+1) x_{4}+1\right| \leq 1, x_{2}+x_{3}+x_{4}=n$. When $n=4 t, x_{2}=3 t, x_{3}=t$, $x_{4}=0$ is a solution. When $n=4 t+1, x_{2}=3 t+1, x_{3}=t, x_{4}=0$ is a solution. When $n=4 t+2, x_{2}=3 t+2, x_{3}=t, x_{4}=0$ is a solution. When $n=4 t+3$, the system has no solution. Hence, by Theorem 2.1, $W_{m}^{(n)}$ is TMC if $n \not \equiv 3(\bmod 4)$.

Case 3. $m \equiv 2(\bmod 4)$.
If we consider the labelings f_{2}, f_{3}, f_{4} and f_{5}, we have $\alpha_{2}=m+1, \beta_{2}=2 m, \alpha_{3}=\frac{3 m}{2}$, $\beta_{3}=\frac{3 m+2}{2}, \alpha_{4}=\frac{3 m+4}{2}, \beta_{4}=\frac{3 m-2}{2}, \alpha_{5}=2 m+1, \beta_{5}=m$. Thus, system (2.1) in Theorem 2.1 becomes $\left|-m x_{2}-2 x_{3}+2 x_{4}+m x_{5}+1\right| \leq 1, x_{2}+x_{3}+x_{4}+x_{5}=n$. When $n=4 t, x_{2}=x_{3}=x_{4}=x_{5}=t$ is a solution. When $n=4 t+1, x_{2}=t$, $x_{3}=t+1, x_{4}=t, x_{5}=t$ is a solution. When $n=4 t+2, x_{2}=t+1, x_{2}=t, x_{4}=t$, $x_{5}=t+1$ is a solution. When $n=4 t+3, x_{2}=t+1, x_{3}=t+1, x_{4}=t, x_{5}=t+1$ is a solution. Hence, by Theorem 2.1, $W_{m}^{(n)}$ is TMC for all $n \geq 1$.
Case 4. $\quad m \equiv 3(\bmod 4)$.
If we consider the labelings f_{3} and f_{4}. We have $\alpha_{3}=\frac{3 m-1}{2}, \beta_{3}=\frac{3 m+3}{2}, \alpha_{4}=\frac{3 m+3}{2}$ and $\beta_{4}=\frac{3 m-1}{2}$. Therefore, system (2.1) in Theorem 2.1 becomes, $\left|-3 x_{3}+x_{4}+1\right| \leq 1$, $x_{3}+x_{4}=n$. When $n=4 t, x_{3}=t, x_{4}=3 t$ is a solution. When $n=4 t+1$,the system has no solution. When $n=4 t+2, x_{3}=t+1, x_{4}=3 t+1$ is a solution. When $n=4 t+3, x_{3}=t+1, x_{4}=3 t+2$ is a solution. Hence, by Theorem 2.1, $W_{m}^{(n)}$ is TMC if $n \not \equiv 1(\bmod 4)$.

Acknowledgments

The authors sincerely thank the referee for the valuable suggestions which were used in this paper.

REFERENCES

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
[2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory 22 (2002), 247-258.
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[4] P. Jeyanthi, N. Angel Benseera, Totally magic cordial labeling for some graphs (preprint).
[5] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 4, 451-461.
[6] Sze-Chin Shee, Yong-Song Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117 (1993), 225-243.
P. Jeyanthi
jeyajeyanthi@rediffmail.com

Research Center
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur - 628 215, India

N. Angel Benseera
angelbenseera@yahoo.com
Department of Mathematics
Sri Meenakshi Government Arts College for Women (Autonomous)
Madurai - 625 002, India
Received: June 10, 2013.
Revised: September 14, 2013.
Accepted: September 21, 2013.

