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Abstract. The structure and physical properties of a snow-assimilation scheme is implemented in order to minimize
pack and their temporal evolution may be simulated usingthe discrepancies between EBM simulations and observa-
meteorological data and a snow metamorphism model. Suctions obtained from TerraSAR-X acquisitions by modifying
an approach may meet limitations related to potential diverthe physical parameters of the Crocus-simulated snowpack.
gences and accumulated errors, to a limited spatial resoluThe algorithm then re-initializes Crocus with the modified
tion, to wind or topography-induced local modulations of snowpack physical parameters, allowing it to continue the
the physical properties of a snow cover, etc. Exogenous dataimulation of snowpack evolution, with adjustments based
are then required in order to constrain the simulator and im-on remote sensing information. This method is evaluated us-
prove its performance over time. Synthetic-aperture radaréng multi-temporal TerraSAR-X images acquired over the
(SARs) and, in particular, recent sensors provide reflectivityspecific site of the Argentiére glacier (Mont-Blanc massif,
maps of snow-covered environments with high temporal and=rench Alps) to constrain the evolution of Crocus. Results
spatial resolutions. The radiometric properties of a snowpackndicate that X-band SAR data can be taken into account to
measured at sufficiently high carrier frequencies are knowrmodify the evolution of snowpack simulated by Crocus.

to be tightly related to some of its main physical parame-
ters, like its depth, snow grain size and density. SAR acqui-

sitions may then be used, together with an electromagnetic

backscattering model (EBM) able to simulate the reflectiv-1 Introduction

ity of a snowpack from a set of physical descriptors, in or-

der to constrain a physical snowpack model. In this Study,Accurate knowledge of snowpack internal structure is critical
we introduce a variational data assimilation scheme couplindor better understanding the snowpack evolution over time,
TerraSAR-X radiometric data into the snowpack evolution and is essential for snow forecasting, water resource moni-
model Crocus. The physical properties of a snowpack, suctoring and prediction of natural hazards, such as avalanches.
as snow density and optical diameter of each layer, are simuEor this purpose, snow metamorphism models, such as Cro-
lated by Crocus, fed by the local reanalysis of meteorologicacus Brun et al, 1992 Vionnet et al, 2012, are developed in
data (SAFRAN) at a French Alpine location. These snow-order to simulate the evolution of snowpack based on mete-
pack properties are used as inputs of an EBM based on dengxological variables. These models are currently limited due
media radiative transfer (DMRT) theory, which simulates t© the lack of in situ snow stratigraphic measurements. For
the total backscattering coefficient of a dry snow medium at€xample, in the French Alps, the network of snow and me-
X and higher frequency bands. After evaluating the sensijteorological observations contains about 150-180 stations,

tivity of the EBM to snowpack parameters, a 1D-Var data Which is not enough to adjust a snow model to predict the
state and the spatial variability of snowpack at small scale
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(20 m). This limitation results in potential divergences, accu- Veoroog
mulated errors and limited spatial resolution of the model. model
Therefore, exogenous data are crucial in order to constrain """
the simulator and improve its performance over time.

On the other hand, the radiometric properties of a snow- : :
pack measured at high frequencies depend strongly on it o (EBMy (2o

main physical parameters, like its depth, snow grain size and
SAR

Meteorological
variables

SURFEX/Crocus

Guessed profiles

X

now

Adjoint model VHt

Minimization of cost
function J

density. The electromagnetic backscattering model (EBM),
initially developed byLongepe et al(2009 based on dense
media radiative transfer (DMRT) theory, allows for simula-
tion of the backscattering coefficiemf of dry snow from C
band (5 GHz) to Ku band (14 GHz). The air—-snas, and
snow—groundgsg (Or snow—icegs;), interfaces backscatter-
ing components are calculated using the integral equation
model (IEM) developed bifung and Che(2004). The snow
permittivity is calculated using the strong fluctuation theory
(SFT) (Stogryn 1984). The SFT has been tested and veri-
fied in the literature\(Vang et al. 200Q Tsang et aJ.2007).
It is also used in the DMRT model of multilayer snowpack Figure 1. Global schematic of the data analysis used in this study.
developed byLongepe et al(2009. This model is capable The inputs of the process are the SAR reflectivitie®,(observa-
of simulating the interaction of electromagnetic waves with tion) and the snowpack stratigraphic profile calculated by Crocus
a layer of snow based on the physical parameters (thicknes$guess). The output is the analyzed snowpack prafiteat mini-
optical diameter, snow density). The advantage of this mode[Mizes the cost function.
is the simple implementation and its moderate computation
time, which is crucial in order to run the data assimilation
process, where the electromagnetic model is repeatedly exe data assimilation system which is capable of constraining a
cuted multiple times. With this model, we can calculate thedetailed snow metamorphism model at a layer scale (modifi-
total backscattering coefficieat’ for different polarization  cation of the physical properties of each layer) using X-band
channels g, g =H or V) from the physical features of each SAR data. The assimilation techniques have proven effec-
snow layer, the roughness of air—snow and snow-ice intertive in combining observations and a priori information to
faces, and specific radar illumination (frequency, incidencemore realistically simulate snowpack conditions (i.e., an a
angle). posteriori state). The a priori information is often referred to
The new generation of synthetic-aperture radar (SAR)as “guess parameters”, whereas the a posteriori state is called
satellite data provides images with metric resolution “the analysis”. The guess parameters in this study are the
and short revisit time. The TerraSAR-X satellite, with physical properties of each snowpack layer simulated using
1.477 mx 2.44m resolution and revisit time of 11 days, a snow evolution model. The analysis is obtained by modi-
gives dense information both spatially and temporally onfying the guess information based on the backscattering co-
snowpack evolution. In this study, we propose a new procesgfficient obtained from SAR acquisitions, according to the
which uses these multi-temporal images of TerraSAR-X toerror statistics of both model and observations. The simu-
constrain the Crocus model through data assimilation. lation of snowpack evolution is then continued with the ana-
Data assimilation has been widely used in meteorologicalysis result. The intermittent assimilation algorithm is carried
studies Courtier et al. 1998 Uppala et al.2009 and land  out each time a new SAR acquisition is available; therefore
surface modelingSlater and Clark2006 De Lannoy et al.  the assimilation is propagated over time, which allows us to
201Q Toure et al, 2011). Data assimilation using physically constrain the snowpack simulation using remote sensing ob-
based multilayer models has been initiated in recent studservations. The adjustment made to the snowpack physical
ies, using passive microwave radiandeyre et al. 2017) properties is based on error statistics of modeling (Crocus)
or albedo observationD(mont et al. 2012. The advan- and observation (SAR).
tages of the assimilation using SAR images are the quasi- This study reports, for the first time, on a new process
independence with respect to atmospheric conditions, théwased on the DMRT model and on the one-dimensional vari-
high resolution of analysis, and the sensitivity of SAR re- ational analysis (1D-Var) to assimilate TerraSAR-X data into
sponses to the presence and structure of volumetric medithe snow model Crocus. A global schematic of this pro-
ums. The use of data assimilation on SAR data and meteeess is presented in Fif. Section 2 introduces the Crocus
orological models to predict certain physical properties of snowpack evolution model. Section 3 describes the DMRT
snowpack has been developed in the literatiagler et al. electromagnetic backscattering model. The 1D-Var data as-
2008 Takala et al.2011). This study attempts to implement similation method is presented in Sect. 4. Section 5 contains

no

yes 3D-Var data assimilation

Assimilated
profiles x,
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the study of simulations and sensitivity of snowpack at X

band. Section 6 presents the first results and discussion o Air
data assimilation method in the particular case of the Argen- (K =0)
tiere glacier, where the ground beneath the snow consists o
ice.

=

r=1

2 Snowpack model Crocus

Snow Pack

Crocus is a one-dimensional numerical model simulating the e

thermodynamic balance of energy and mass of a snowpack

Its main objective is to describe in detail the evolution of in-  lce

ternal snowpack properties based on the description of the. _ . _ . -

evolution of morphological features of snow grains during Figure 2. Main backscattering mechanisms occurring within a

their metamorphism. It takes as inputs meteorological Vari_mul.tllayer snowpack obtained from th.e radiative traqsfer equation
. - . A . at first order Longepe et aJ.2009: air—snow reflection Nl a9),

ables such as ‘?'r _temperature, relat_lvg air humidity, Wlndvolume scatteringNly) and reflection over the snow—ice interface

speed, solar radiation, long-wave radiation, and amount an s).

phase of precipitation. In this study within the French Alps,

these meteorological conditions are taken from the SAFRAN

reanalysis, which combines ground-based, radiosondes and For given acquisition conditions, the Stokes vector of ra-

remote sensing (cloudiness) observations with an a pridiation scattered by a mediums, can be related to the inci-

ori estimate of meteorological conditions from a numeri- dentonegi, by a Stokes matrif (Lee and Pottier2009 as

cal weather prediction (NWP) modeDgrand et al.1993  9s=Mg;, with

Durand 2009. SAFRAN meteorological fields, assumed to My, Mi, O 0

be homogeneous for a given mountain range and elevation M»1 Moy O 0

in the French Alps region, provide a description of the alti- M = "o 5% /= 4/ 2
tude dependency of meteorological variables. The output of 0 0 Mz M,

Crocus includes scalar physical properties of the snowpack
(snow depth, snow water equivalent (SWE), surface temperwhere Mi1=1[03,2 and My =02 represent the
ature, albedo, etc.) along with the internal physical propertieso-polarized backscattering coefficientsM1, = |U\9h|2
for each layer (density, thickness, optical radius, etc.). and Mpi= |gr?v|2 the cross-polarized backscattering
e e et o and s =Retcf o). | Mau= e
:‘Oace scheme ISBA ’within tﬁ/e SUIIQOFEX interfacéidnnet (0‘9"0*?“_ |U*?‘6|2)'0 M%42=—Im(a\9var?h.— |U*?"|2)' and
etal, 2012. Among other advantages over previous versions/43= m (o oy + oy, |°) are correlation terms. Due to
i L : the reflection symmetry, the other termshfare equal to
of Crocus, this allows seamless coupling of the snowpack to

: zero (Lee and Pottier2009.
the state of the undertying ground. The first-order solution of the radiative transfer (RT) equa-

tion provides the total backscattered information from a

3 Electromagnetic backscattering model (EBM) snowpack that consists of a combination of five scattering

mechanisms: reflection at the surface air—snow interface, vol-

3.1 Main components of the total backscattering ume scattering, volume—ice and ice—volume interactions, and
coefficient reflection from the snow—ice interfackléartini et al, 2003.

Due to their small amplitude, the volume—ice and ice—volume
The Stokes vector, which contains the incoherent informa-contributions can be neglecteBl¢ricioiu and Rott 2001).

tion related to the polarization of an electromagnetic waveThe illustration of the three other mechanisms is shown in

(EMW), can be expressed as followdlgby et al, 1981): Fig. 2. The expression of the total polarimetric backscattered
) ) information can be written using the Mueller matrix corre-
§|Eh|2§ + §|Ev|2; sponding to each mechanism:
_ | {IEnI%) —({|EV]
9= ZRe(EhE\”;) 1 Msnow= Mas+ My + Mgi. 3)
—2Im (EhE\T)a The air-snow interfaceMag and snow-ice interface

backscatteringM sj) are modeled using the IEM introduced

by Fung and Cher(2004, whereas the volume contribu-

tion (My) is calculated using the vector radiative transfer
equation.

whereEy and Ey, represent the horizontal and vertical com-
ponents of the Jones vector on the electric field, @ncep-
resents the expectation operator.
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3.2 Air—snow interface backscattering energy loss due to transmission between two layers. With
the assumption of a smooth interface between two layers, the

The matrixM as represents the second-order polarimetric re- Fresnel transmission can be used. It is expressed through a
sponse backscattered by the air-snow interface. Its elementfatrix as follows Ulaby et al, 1981):

can be calculated from the air-snow interface roughness

parameters, i.e., its correlation function(x) and its root- (%Vk_n ’ 0 0 0

mean-square (rms) heighi, the incidence anglép and the T, ;) = k-1 0 ‘zm_l 2 0 0 (6)

emitted EM wave frequency using the IEM Fung and ek 0 ‘" Skt —hra-1)

Chen 2004. According to the IEM, the reflectivity may be 0 0 hia-v  8kk-1),

expressed as wherek is the layer number anéd — 1 is the layer above

50 =k—gexp(—2k§ahz 005290) it, ‘t,f(ifl)‘z represents the Fresnel transmission coefficients

P4 An of the pp channel, angyx—1) and hxx—1) are the terms

illn |2Wn (2kosindo, 0) @ of Mueller matrix related to the co-polarized correlation
< pa T (Longepe et a).2009:

where p andg are equal to: or v, indicating a horizontal ~ gkk-1) = %Re (t,‘(’&fl)t,t‘(r}j‘_l)) (7

or vertical polarization, andg = @ represents the wave nggkkl

number. The detailed mathematical expressions of the surhy 1) = Im (z,‘c’z’k_l)t,?[};il)).
face spectrunW (k) and the Fresnel reflection/transmission COStk
factor|/}, | can be found ifFung and Che2004. 3.3.3 Attenuation

3.3 Snow volume backscattering The particles in a snowpack are generally considered to be
spherical Floricioiu and Rott 2001 Koskinen et al.2010.

The volume backscatterirlgy depends on various scattering Due to the symmetry of the particle shape, the extinction of

mechanisms occurring during the propagation through a mula wave propagating through the snowpack is independent of

tilayer snowpack, which can be categorized into four types:the polarization and may hence be represented by a scalar

(1) transmission between two layers, (2) attenuation by thecoefficient. The extinction is composed of an absorption and
snow particles, (3) scattering and (4) coherent recombing scattering term:

ation. The amplitude of each mechanism depends largely on

the dielectric properties of the snowpack medium. Thereforee = ka+ «s. ®)
the permittivity of each layer, which characterizes its dielec-|t can also be computed through the effective permittivity
tric properties, needs to be calculated first. (Huining et al, 1999:

3.3.1 Dry snow permittivity Ke = 2kolm (/eeff) . 9)

Dry snow is considered to be a dense and heterogeneous The attenuation matrix represents the gradual loss in EMW
medium with strongly variable physical properties. There- Intensity while penetrating through a mu!tilayer snovypack,
fore the variance of permittivity across a snow layer is rel- composed of layers with different physical properties. It

atively high. The SFT, introduced b§togryn (1984, can takes into account the energy loss by absorption and scat-

model the permittivity of such a medium by using the effec- tﬁ,r”llg mt:;hafnﬁmls hased on tlrl1e ex';]lncltmn Eoefﬁo;elamd .
tive permittivity (eeff) that takes into account the scattering thicknessd of the layer, as well as the loss by transmission

effects among ice particles at high frequencies. The expres@ﬁeCt while an EM propagates through different layers:

sion ofegfr Using the SFT is as follows$Huining et al, 1999: k i g
Att gown(k) = Hexp _#S& i(i—1)» (10)
‘ 4 i=1
6eﬁ:€g+]'§(seg'k8'\/€_g'l‘3, (5) k Kédi
. o . o Attyp) = [ [Te-niexp[ -=). (11)
where j is the imaginary uniteg andé, are the quasi- im1 cos)

static permittivity and its variancey is the wave number;
andL =0.85D/3 is the correlation length, with being the
snow optical diameter.

Att gown IS the intensity loss (attenuation) when propagat-
ing from the surface to layet, whereasAtt,, represents
the intensity loss from layek to the surface. The exponen-
tial factor, which takes into account the gradual loss of en-
ergy throughout the layer, is deduced from the basic radia-

The snowpack consists of layers with different physical prop-tive transfer equationfd= / ke dr, wherer =d/cosf and/
erties. Therefore the model needs to take into account thés the EMW intensity.

3.3.2 Transmission between two layers

The Cryosphere, 8, 19753987, 2014 www.the-cryosphere.net/8/1975/2014/
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Figure 3. Test of EBM simulations on X-band, HH polarization for Figure 4. Test of EBM simulations on X-band, HH polarization for
varying snow depth and optical diameter: snow density 250k3,m  varying snow depth and density: snow density 200-600k§,rap-
optical diameter 0.2—1 mm, and snow depth 30—400 cm. The glacietical diameter 1 mm, and snow depth 30-400 cm. The glacier rough-
roughness is fixed atj = 0.9 cm andgj= 8.6 cm. ness is fixed atsj=0.9 cm andgj=8.6 cm.

3.3.4 Scattering by the particles 3.5 Sensitivity of the EBM to snowpack parameters

The phase matri®*, under the hypothesis of spherical par- In order to assess the sensitivity of the EBM outputs with re-
ticles, has the form shown in Eg2)( where the cross- spect to the different properties of a snowpack, a set of simu-
polarization termsP;2 and P31, which correspond tey, and lations were run for various snowpack structures. A random
ovh, are equal to 0. In the backscattering case, with the asdata set was generated corresponding to a snow height vary-
sumption of spherical particles, the SFT phase matrix can béng from 30 to 400 cm (SWE from 75 to 1000 mm with snow
simplified toP* = 31,4, wherel 4 is the (4x 4) identity ma-  density set at 250 kg n?). Measurements of the roughness
trix (Tsang et al.2007). The assumption of spherical parti- parameters of air—snow interface and snow-ice interface are
cles can simplify the modeling problem; however, it preventsnot available; therefore, empirical values for the correlation
the simulations of the backscattering coefficient over crosslength! and the rms height from Oh et al.(1992) have been

polarization channels (HV and VH). used. The values a@f;s= 0.4 cm andas= 8.4 cm, equivalent
_ _ to a slightly rough surface, are used for the air-snow inter-
3.3.5 Calculation of the volume backscattering face; howevessi = 0.9 cm andsj = 8.6 cm, corresponding to

o o a rough surface, are chosen for the snow—ice interface due to
Considering a snowpack made efdistinct layers, where  the characteristics of ice beneath the snowpack over the study
Ok is the incidence angle antf is the thickness of layet  greq.

(Fig. 2), the total contribution of the volume backscattering  The results of EBM simulations are plotted vs. SWE in

mechanisnMy can be written as follows: Figs.3 and4. In Fig. 3, snow density is fixed at 250 kga,
n while the optical diameter is varied from 0.2 to 1 mm. The
My = 4x COSHoZ Att yp(k — DT k—1)k backscattering contribution at the air—snow interface, being
k=1 inferior to —40dB, is not represented here. As the SWE in-
2uckd* creases, the volume backscattering coefficient becomes more
- exp(— costy ) important until it reaches a value comparable to the snow—ice
: (12) P p

P Tk k-1 Att down(k — 1).

2ick interface backscattering. The vertical dispersion of the vol-
o ) ume backscattering represents the sensitivity of the EBM to
3.4 Snow-ice interface backscattering optical diameter. Lowest values correspond to an optical di-
ameter of 0.2 mm, whereas the highest ones correspond to an

The backscattering/ls; of the snow—ice interface is com- optical diameter of 1 mm.

puted as In Fig. 4, where the optical diameter is fixed at 1 mm and
R (6,) snow density varies from 200 to 600 kg the vertical dis-
Msi = COSoAtt up(n)- = Alt down(n). (13)  persion of the volume backscattering represents the sensitiv-
n

ity of the EBM to snow density. By comparing Figsand4,
whereR(6,) represents the contribution of the snow—ice in- we can observe that the EBM is strongly sensitive to the op-
terface backscattering and can be determined using the IEMical diameter and moderately sensitive to the snow density.
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Many studies have been carried out on the retrieval of dif-4.2  Adjoint operator and minimization algorithm
ferent snowpack properties from SAR data, such as snow
water equivalent$hi and Dozier 2000, liquid water con-  In order to minimize the cost functiah, one needs to calcu-
tent Shi et al, 1993, and wet snow mappingN@gler and  late its gradient:

Rott, 2000. In general, these studies concentrate on invert—V 1

. . : J(x)=2B -

ing the EBM, which enables the retrieval of such snowpack x) (xt *g) .

properties. For a multilayer snowpack, the number of ob- — 2VHgpr(*)R™ (¥obs— Hebm(x)) . (16)

servations, i.e., the number of SAR backscattering coeffi- If the model is denotedepm: B— R, where B and R

C'slnts’ s mtlrjw(;h srgallerotharg_ the ?umbherl of unlérllown Vlar"are the domain of definition of and y, then the function
ables, i.e., snow properties of each layer. Classical esg i1 catisfvingvx VH! ¥y = (v. VHarmx
timation approaches based on the use of an inverse problem ebm fyingvx, y, (VHgpmy, x)5=(y, ebm¥ )R

Id be viabl di q dio the adjoint operator oHepm IN our case, due to the
would not be viable. Instead, in our study, an adjoint operator. , o, ety of the EBM, an analytical solution of the gradi-

of the direct EBM is developed to be used in a data ass'm'la'ent is time consuming and unreliable. Therefore, humerical

tion scheme. differentiation has been used to calculate the adjoint model.
Once the adjoint operator is developed, the minimization
4 1D-Var data assimilation of J can be achieved using a gradient descent algorithm.
Each iteration consists of modifying the vectoraccording
4.1 Introduction to data assimilation to the Newton method until is converged to its minimum:

The aim of variational assimilation is to integrate observa-x, 1 =x, — (VZJ(x,,)> 1VJ(x”), a7

tional data with guess variables through the use of an obser-

vation operator. The method concentrates on searching fowherev2J (x,) is the gradient of second order (Hessian) of

a solution that minimizes simultaneously the distance be-J:

tween observations and simulation results and the distanc%Z

between initial guess variables and the analyzed variables.

A schematic of this process is presented in BigThe out- 4.3 Estimation of error covariance matrices

puts of the EBM described in the previous section, such as

backscattering coefficient at HH and VV polarizations, areWith preset air-snow interface and snow-ice interface

used as elements of the observation operdigm(x): parameters, the original model input vecter [xcrocus
Xair—snowXsnow—icd’” may be reduced to the Crocus variables

Hebm(x) = vec(Msnow) , (14)  consisting in density and optical diameter for each snow

layer:
wherex represents the set of variables describing the snow-

pack properties (here, density and optical diameter for each = [Xcrocud = [D1, D2, ..., Du, 01, 02, .-+, pu]’, (19)
snow layer).

The 1D-Var algorithm is based on the minimization of a
cost function/ (x), defined as

J=2B"1 4+ 2VH, R VHepm (18)

where D; and p; are respectively the optical diameter and
the density of théth layer of the snowpack. This means that
the analysis process does not modify directly the thickness of
each layer; however this parameter can be changed indirectly
in the subsequent simulations by Crocus. At the first iteration
+ (yobs— Hebm(*))' R™ (yobs— Hebm(x)) . (15)  of the algorithmx is equal taxg, given by the Crocus snow

) ] » profile.
wherex is called the state vector, which can be modified af- The covariance matriB, which represents the error of the

ter each iteration of the minimization, ang is the initial guess profile, i.e., of the Crocus simulation, is & (22n)

guess of the state vector and remains constant during thgefinite positive matrix. Each elementBfis computed as
whole process. Thereforgx — xg||2 serves as a distance

between the modified profile and the starting point. The ob-Bi.j = 0i -0} - ¥ij, (20)
served polarimetric responsggps, contains calibrated val-

J(x) = (x —xg)' B! (x —xg)

f the backscatter: Hicient for diff ¢ polari whereo; ando; represent the standard deviation of the errors
ues ofthe backscatlering coetlicientsior different polart- ) x; andx;, which have been experimentally estimated to

metric channels. Thereforgy — Hepm(x)||? represents the 0.3mm and 65 kg m®, respectively, for optical diameter and
distance between simulated and observed radiometric quan, ' '

tities. Th | ires the estimation of th now density.
es. The process aiso requires Ine estimation of i€ error ¢, coefficienty;; represents the correlation between er-
covariance matrix of observations/simulatioRy &nd of the

. rors onx; andx; and is modeled as
guess error covariance matrig)(
vij = Be At (21)

The Cryosphere, 8, 19753987, 2014 www.the-cryosphere.net/8/1975/2014/
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whereA#;; is the distance in centimeters between layamd
layer j. The values ofr and 8 depend on different types of
correlations and can be split into three cases:

— correlationD — D: «=0.11 and8 =1,

1981

Table 1. TerraSAR-X acquisition parameters.

Parameter

Value

TerraSAR-X products

Single-look complex image

) Frequency (GHz) 9.65
— correlationp — p: « =0.13 and8 =1, Channels HH
— correlationD — p: « =0.15 and8 = 0.66. Incidence angle?) 37.9892
h | . qf ble of sliahtl Mode Descending
Vi re i rom an ensem i r- I
€se values are Issued from an ensemboie of siightly pe Acquisition dates 6,17, 28 Jan;
turbed Crocus runs, obtained by varying their meteorological (2009) 8 19 Feb:
inputs over_é)ne (\letntebr se?son. :’he dev;atlé)nts between t?hese 213, 24 March,
runs, considered to be elementary perturbations, were then .
. . . . R I 1.47% 2.44
statistically studied and fitted with the model of EQ1) for es_o Ut'_on (m_)
Calibration gain (dB)  49.6802

each pair of variables.

In this case study, SAR data are only available for the
HH channel; therefore the error covariance mafixre-
duces to a scalar, deduced from the radiometric uncertaintp Sensitivity and simulation of snowpack at X band
of TerraSAR-X (0.5 dB) and the error of the EMB (inferred
from the sensitivity of the EBM). The calculations at several 9-1  Study site: Argentiére glacier

altitudes over the Argentiére glacier gives the average value i . . .
of R=0.03. The area of interest covers the Argentiére glacier (altitude:

2771 m; 45.94628N, 7.00456 E). The size of the domain is
approximately 5 kmx 6 km. Over the glacier, altitude varies
from 2400 to 3200 m, and the snowpack is essentially com-
In general, modeling techniques are used to establish the relgposed of dry snow.

tionship between the physical properties of a natural environ-

ment and observations measured by specific equipment (such2 Sensitivity of TerraSAR-X data

as SAR or optical sensors). An inverse approach may then ) ) o

be developed to characterize the environment using the ob-0" this study, TerraSAR-X descending acquisitions over

servations. However, such problems often require solving ari"€ région of Chamonix Mont-Blanc, France, from 6 Jan-
underdetermined system, with a number of unknown quanti4a"y 2009 to 24 March 2009 are available for continuous as-
ties higher than the number of equations. similation, with a revisit time of 11 days. Tableprovides

In our case, the length of the input state vectoran the main features of TerraSAR-X data sets. Fighshows
reach 100 (in the case of a snowpack with 50 layers, fre.the location and a TerraSAR-X image of Argentiere glacier

quently generated by Crocus), whereas the output of th&@ptured on 6 January 2009. _
model only consists of backscattering coefficients corre- Meteorological forcing data provided by SAFRAN from

sponding to the polarimetric channels of SAR data. There-2400 to 3000 m altitude in steps of 100 m elevation on hor-

fore the realization of an inverse model is highly impractical. Zontal terrain were used to drive the detailed snowpack
Data analysis methods, on the other hand, require a vedhodel Crocus throughout the entire season 2008-2009 (start-
’ ' ing on 1 August 2008). In order to carry out the compar-

tor of guess variables relatively close to the actual values; - o 4
The snowpack variables calculated by Crocus are used aSON Petween the backscattering coefficiens, (obtained

guess variables in our assimilation scheme. The fundamerffo™M the EBM using Crocus snowpack profile as an input)
tal goal is to modify the initial guess variables, while balanc- @1doTsx (obtained from TerraSAR-X reflectivity), the im-
ing the errors of the guess variables, modeling and measuré2deS were multi-looked to (20 m20m) wide pixels and a

ments. It should be noted that, as the problem remains undef"0St filter €rost 1983 was applied using window size of

determined, the analysis scheme only serves as a method ®* © PiXels. o
improve the initial guess variables using the new observa- " Order to study the sensitivity of TerraSAR-X data to the

tions from SAR data. The quality of improvement is based €"anges in snow properties, Figshows the comparison of
on the estimation of the initial guess vectey and on the ~ 1€TaSAR-X backscattering coefficientsréx) on different
precision of the EBM. dates at the altitudes of 2400, 2700 and 3000 m on Argen-

tiére glacier. For the period from 6 to 17 January (blue trian-
gles) and from 8 to 19 February (red circles), it can be ob-
served that the sets of comparison values are well below the
equality line, which means the backscattering coefficients de-
creased between successive observations. The opposite effect

4.4 General comments on the chosen analysis process
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Figure 6. Comparison of TerraSAR-X reflectivities between two
different dates of winter season 2008—2009 at the altitudes of 2400,
2700 and 3000m on Argentiére glacier. The small graph on the
bottom right shows the snow precipitation level for each period of

comparison.
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Figure 5. Top panels: location of the TerraSAR-X acquisition in Figure 7. TerraSAR-X reflectivity plotted as function of optical

the French Alps. Bottom panel: a cropped image on the Argentierehickness derived from Crocus output. Each point corresponds to
glacier area. The approximate positions of different altitudes on thea date of acquisition TerraSAR-X.

Argentiére glacier: 2400, 2700 and 3000 m on the TerraSAR-X im-
ages are indicated. The red line represents the continuous trail on
the glacier where the SAR data will be used in the case study; thés.3  Simulation of Crocus snowpack data
marks on this line delineate each 100 m of altitude.
The intrinsic parameters of a snowpack needed for EBM sim-

) ulations are simulated by Crocus, which consist of a hum-
can be noted for the period from 17 January to 8 Februaryye o snow layers, their density, optical diameter, and thick-

(green crosses). The medium beneath the snowpack consistgss These quantities are used as inputs for the simulation of
of glacier ice, and its roughness can be considered to be conpg \0jyme backscattering mechanism. The relation between

stant; therefore these increases and decreases in baCkscatth'en-loop (i.e., without assimilation) Crocus data and the
ing suggest that thersx can be related to the modification rgrragAR-X reflectivity for different altitudes over the Ar-

of the snow condition. As can be observed in the snow pre'gentiére glacier is shown in Fig. The optical thicknessc{

cipitation chart on the bottom right, the green period has Sigyg the product of snow depth and the extinction coefficient
nificantly more snowfall than the other two periods. (Tsang et al.2007). In the case of multilayer snowpack, it is

defined as
n
T= Zlcgdk, (22)
k=1
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Open loop profile Table 2. Comparisons of RMSE (dB) between simulated
(osnow= H(x)) and measuredofsy) reflectivities for different

Crocus ,Aq_l Crocus
x(t-1) x(t) types of profiles.
yp p

| Meteo. var. | Meteo. var. ..
. Date x=openloop x=guess x=assimilated
ime
6 Jan 3.6256 3.6256 3.2697
Cuessed R 17 Jan 3.1677 3.3645 3.1302
profile profile 28 Jan 3.4697 3.5326 3.3718
8 Feb 3.4649 3.3619 1.8071
7] Crocus 19 Feb 3.3708 2.6463 1.2729
X(t X(t+1) 2 Mar 3.6877 1.7992 1.2276
13 Mar 3.7383 1.2482 1.0652
eteo. var.
24 Mar 3.1840 0.6757 0.4370

Figure 8. Implementation of SAR data assimilation in the Crocus
temporal simulation of a snowpack.
Figure 9 shows the results of simulation and analysis
using the TerraSAR-X time series from 6 January to
where the extinction coefficiert is calculated using EqQ9] 24 March 2009. The reflectivity on the glacier crevasse area
andd the thickness of the snow layer. 2600 m elevation) has a very high standard deviation due to
It can be observed that the snowpack stratigraphy provideghe cracks and has therefore been masked. The red line cor-
by Crocus may be used to separate TerraSAR-X reflectivityresponds to the TerraSAR-X reflectivities along the glacier,
at different altitudes. Figuréalso indicates the sensitivity of \yhereas the cyan diamond shape indicates the EBM simula-
the reflectivity to volume-related snow parameters. tions for the Crocus open-loop profiles. The blue triangles in-
dicate the EBM simulation of the guess profiles. These guess
profiles are in turn modified by the assimilation process to
become the assimilated profiles. The EBM simulations of

Crocus snow stratigraphic profiles were computed forthe assimilated profiles are shown in green circles. The as-
seven different altitudes over the Argentiére glacier, fromSimilated profile is used to reinitialize Crocus for the next
2400 to 3000 m. The level of liquid water content per volume itération, which then produces the guess profile for the next
(LWCy) at the times and locations of analysis is 0 %; there-2ssimilation when a new SAR acquisition is available.
fore the condition of dry snow is satisfied. Figdrshows the The agreement between TerraSAR-X reflectivity and the
approximate locations of each study area on the glacier. ~ ©utput of the EBM using Crocus simulated profiles can be
Figure8 presents the implementation of the SAR data as_obsgrved in Fig9, where EBM S|mulat|ons of assimilated
similation process into Crocus. The top part of the figure Profiles converge gradually over time toward the TerraSAR-
shows the Crocus simulation of snowpack without assimi-X Packscattering coefficient. The graph corresponding to
lation of SAR data. At instant, Crocus simulates the snow 2 March 2009 shows that the convergence has been reached

stratigraphic profile from the previous state of snowpack (in-at aI_I altitudes, as EBM simulations of guess and assimilated
stantr — 1) and the meteorological data hourly provided from Profiles are much closer to the TerraSAR-X measurements
SAFRAN. The time lag between instanand instant — 1is  than the open-loop profiles.

therefore one hour. We call this simulation “open loop”. The _ Table 2 shows a comparison of root-mean-square error
bottom part of the figure shows the implementation of data(RMSE) between simulated and measured reflectivities for
assimilation into the execution of Crocus. Every 11 days,different types of profile: open loop, guess and assimilated.
a TerraSAR-X acquisition is used to modify the snowpack !t can be observed that thenow values converge gradually
stratigraphic profile of Crocus through an assimilation pro-toward theorsy for the guess and assimilated profiles. At
cess. The snow profile before assimilation is called “guess” the last date of acquisition (24 March), the RMSEs for guess
and the analyzed snow profile after assimilation is called “as-2nd assimilated profiles are below 1 dB, while the open-loop
similated”. Consequently, at the date of the first TerraSAR-x Profile still gives an RMSE higher than 3 dB.

are identical. Once this first SAR acquisition is assimilated©f the optical diameter and density of each layer due to data

into Crocus, guess and assimilated profiles differ. This mod-assimilation on 6 January, 8 February and 13 March 2009
ification permits the constrainment of a physical snowpackat the altitude of 2400 m. It can be observed that the assim-

simulation using external information acquired at different ilation algorithm tends to modify the optical diameter and
dates. density in the deep layers which have a strong influence

on the backscatter intensity and whose slight modification
significantly reduce the discrepancy between TerraSAR-X

6 Evaluation of the process and discussions
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Figure 9. Results of simulation and analysis using eight TerraSAR-X acquisitions performed in wintero3@9(red) are mean values

obtained from the SAR images over the Argentiére glacier (corresponding to the red line of kignS)blue) represents the output of
simulations using Crocus snowpack variables as inputs. Simulations obtained after data analysis are shown in green. Error bars show the
standard deviation of the measured reflectivities.

observations and Crocus simulations. The speed of the densihe assimilated profile, which can be observed in Bigt
fication process is therefore faster in the Crocus simulation2400 m. Note that this large increase in the diameter results
with assimilation. The snow profile on 8 February records ain a large discrepancy between open-loop and guess profiles
large change in the optical diameter (from 0.4 to 0.8—1.3 mmon 13 March. It can also be noted that there is a difference of
in the layers from 0 to 100 cm of snow height), which results 20 cm in total snow depth between the open- and closed-loop
in a variation in the simulated backscattering coefficient for simulations on 13 March, which shows that the modifications
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Figure 10. Results of 1D-Var data assimilation from some Crocus profiles, showing changes made by the data assimilation algorithm on
optical diameter (top panels) and snow density (bottom panels) on 6 January (left panels), 8 February (middle panels) and 13 March (right
panels). Note that the assimilation only affects directly the optical diameter and snow density. These direct modifications are injected into
Crocus and propagate through the subsequent simulations, and may then lead to open-loop and assimilated profiles with different snow
heights.

of optical diameter and snow density made by data assimilafrequencies enables a fairly accurate calculation of EMW
tion also indirectly modify others physical properties of the losses in each layer of the snowpack. Through the use of 1D-
Crocus-simulated snowpack. Var data assimilation based on the linear tangent and adjoint
These results show that we have combined three modeleperator of the EBM, we are able to modify, in a physically
(Crocus, EBM, adjoint model) and the TerraSAR-X data to consistent way, the snowpack profiles calculated using the
constrain spatially and temporally the snowpack evolution.snowpack evolution model Crocus. This process has been ap-
The use of data assimilation on SAR data to predict cer-plied to atime series of TerraSAR-X images and Crocus sim-
tain physical properties of snowpack has been developed imlations during the winter of 2008—2009 over the Argentiere
Nagler et al.(2008 and Takala et al.(2011). However, it  glacier. Results show that SAR data can be taken into account
is the first time that active X-band radar data have not beeno efficiently modify the evolution of snowpack simulated by
used directly to perform an assessment of snowpack propelcrocus. This process can be further developed and used in
ties but instead used to estimate physical parameters of eaglkal applications such as large-scale snow cover monitoring
snow layer through a data assimilation algorithm. This algo-or snowpack evolution over a long period of time.
rithm needs to be further validated in the future using in situ  This system, however, does have some limitations, like the
measurements and advanced 3-D imaging technidrersa- inability to simulate and assimilate under wet snow condi-
Famil et al, 2012. tions due to the hypothesis used in the EBM. Another im-
portant hypothesis made in this study concerns the spher-
ical shape of snow grains. On the one hand, this assump-
7 Conclusions tion highly simplifies the modeling problem but, on the other
hand, prevents the simulations over cross-polarization chan-
This study presents a new system using data assimilation ani@!S (HV and VH). The discussion on how to resolve these
a multilayer snowpack backscattering model based on the raimitations should be addressed in another study on the mod-
diative transfer theory to constrain the evolution of a snow-€ling of electromagnetic waves interactions with a snowpack.
pack simulated by the snow model Crocus. The proposed Future studies will concentrate on calibrating the as-
new backscattering model adapted to X-band and highefimilation process using in situ measurements. Direct field
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measurements of the optical diameter using recently develFloricioiu, D. and Rott, H.: Seasonal and short-term variability of
oped methodsGallet et al, 2009 Arnaud et al.2011) allow multifrequency, polarimetric radar backscatter of Alpine terrain
for a direct comparison to Crocus outpMtdrin et al, 2013. from SIR-C/X-SAR and AIRSAR data, IEEE T. Geosci. Remote,
Future developments will also benefit from the recently final- 39, 2634-2648, 2001. o _

ized prognostic representation of optical diameter in Crocud™rost, V.. An adaptive filter for smoothing noisy radar images, Proc.

IEEE, 69, 133-135, 1981.
(Carmagnola et 312014). Fung, A. and Chen, K.: An update on the IEM surface backscatter-

ing model, IEEE Geosci. Remote Sens. Lett., 1, 75-77, 2004.
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