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Abstract. The work of Caminada & Amgoud presents two possible ways of sat-
isfying the rationality postulates: one using restricted rebut, and one using unre-
stricted rebut. Subsequent work on ASPIC+ has extended the work of Caminada
& Amgoud, for instance by allowing preferences over arguments. However, such
extensions have utilised restricted rebut only. In the current paper, we make the case
for unrestricted rebut, and provide a formalism (called ASPIC-) that implements
preferences between the defeasible rules, in the context of unrestricted rebut while
still satisfying the rationality postulates of Caminada & Amgoud.

1. Introduction

One of the important aspects of instantiated argumentation [2,9,10,12] is how to precisely
determine whether one argument attacks another. Suppose one considers arguments con-
structed using reasons, represented as rules. Many rules will be defeasible (for instance,
when applying the argument scheme of expert opinion), but some rules will be strict (for
instance, Modus ponens).The idea in formalisms like ASPIC+ [12,15], ASPIClite [19]
and ABA [9] is that arguments are constructed by chaining rules, so that the consequent
of one rule feeds into the antecedent of the next. In this way, an argument is essentially a
derivation supporting a particular conclusion (namely the consequent of the top rule).

Given this method of argument construction, the next step is to define the attacks be-
tween arguments. For this, ASPIC-like formalisms distinguish between undercut-attacks
(where the attacking argument derives the non-applicability of a particular defeasible
rule in the attacked argument) and rebut-attacks (where the attacking argument derives
the contrary (negation) of one of the (intermediate) conclusions of the attacked argument.

In the literature, one can observe two principles for defining rebut-attacks: restricted
rebut and unrestricted rebut [2]. To illustrate the difference between these forms of rebut,
consider the example of arguments A = (⇒ a) → b and B = (→ c) ⇒ ¬b.1 With
restricted rebut, one can only rebut-attack a conclusion that is the consequent of a defea-
sible rule. Hence, A attacks (restrictedly rebuts) B, but B does not attack (restrictedly
rebut) A. However, with unrestricted rebut, one can rebut-attack any conclusion (even
consequents of strict rules) as long as at least one defeasible rule has been used in its
derivation. So A still attacks (unrestrictedly rebuts) B, but B also attacks (unrestrictedly
rebuts) A. In essence, with restricted rebut, the last rule of the attacked conclusion must
be defeasible, whereas with unrestricted rebut one merely requires that any previous rule

1We are applying ASPIC+ notation, with argument A consisting of a defeasible rule with empty antecedent
“⇒ a”, followed by a strict rule a → b, and argument B consisting of a strict rule with empty antecedent
“→ c”, followed by a defeasible rule “c ⇒ ¬b”.
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Figure 1. Research lines on rule-based argumentation.

(possibly even the last one) is defeasible. Hence, if an argument restrictedly rebuts an-
other argument then it also unrestrictedly rebuts it, but not vice versa. Forms of unre-
stricted rebut are applied in the formalism of Prakken and Sartor [16], the argumentation
version of Nute’s Defeasible Logic [11,13] and [14]’s version of Pollock’s OSCAR sys-
tem. Forms of restricted rebut are applied in the 1995 version of Pollock’s OSCAR system,
as well as in the argumentation version of Default Logic [3,8,17] and ASPIC+[12].

When it comes to reasoning with strict and defeasible rules, one of the landmark
papers is the work of Caminada and Amgoud [2], in which a number of rationality pos-
tulates are specified: direct consistency, indirect consistency, (conclusion) closure and
subargument closure. The authors provide two different approaches for satisfying these
postulates: one that applies unrestricted rebut, and one that applies restricted rebut. The
approach that applies unrestricted rebut is shown to satisfy the postulates only under
grounded semantics. The approach that applies restricted rebut is shown to satisfy the
postulates under any complete-based semantics2. This paper focuses on how to define
unrestricted rebut-attacks in a slightly simplified version of [12]’s ASPIC+ framework3

under grounded semantics.
In constructing ASPIC+, Prakken and Modgil build on the work of [2] by allowing

preferences over arguments, and proving that the rationality postulates of [2] are still
satisfied [12,15] under certain conditions on the preference relation. They then show that
various ways of defining preferences based on a prioritisation of defeasible knowledge,
satisfy these conditions. However, the postulates are shown to hold only when applying
restricted rebut. This leaves open the question of how to allow preferences when applying
unrestricted rebut. It is this question that is studied in the current paper. An overview of
how the current work fits into the existing research lines is provided in figure 1.

The remainder of this paper is structured as follows. In Section 2, we provide the
formal preliminaries of a slightly simplified version of ASPIC+ (called ASPIC-) that
applies unrestricted rebut and allows for preferences over arguments as defined in [12].
Section 3 then discusses why the approach of restricted rebut (as applied in ASPIC+) is
not satisfactory, and makes the case for unrestricted rebut. In Section 4, we show that

2What we mean is any semantics whose extensions are complete. Examples of such are complete, grounded,
preferred, stable, semi-stable, ideal and eager semantics, but not stage and CF2 semantics.

3The choice of ASPIC+ is motivated by the level of generality that the framework affords, in that a number
of existing approaches to argumentation have been shown to be instances of the framework [12,15]



under the approach of unrestricted rebut (as applied in our ASPIC- formalism), the ratio-
nality postulates are satisfied under the assumption that priority orderings over defeasible
knowledge are total orderings. In Section 5, we conclude with a discussion.

2. Preliminaries

In what follows we define ASPIC- as a special case of [12]’s ASPIC+ framework. Specif-
ically, arguments in [12] are constructed from defeasible and strict rules, and ordinary
and axiom premises, of which only the the former can be attacked. ASPIC- models or-
dinary premises as antecedent free defeasible inference rules, and axiom premises as
antecedent free strict inference rules. Furthermore, we assume a language closed under
negation (¬) rather than [12]’s more general contrary ‘function’ which identifies when
two formulae in the given language are in conflict. Other than these simplifications, the
other key difference is that unlike [12], ASPIC- allows unrestricted rebuts.

Definition 1. An argumentation system is a tuple AS = (L,R, n) where:

• L is a logical language closed under negation (¬).
• R = Rs ∪ Rd is a finite set of strict (Rs) and defeasible (Rd) inference rules

of the form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are
meta-variables ranging over wff in L), and Rs ∩ Rd = ∅. Rs is assumed to be
closed under transposition, i.e., if φ1, . . . , φn → ψ ∈ Rs, then for i = 1 . . . n,
φ1, . . . , φi−1,−ψ, φi+1, . . . , φn → −φi ∈ Rs.

• n is a partial function such that n : Rd −→ L.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say
that formulas ϕ and −ϕ are each other’s negation).

Definition 2. An argument A on the basis of an argumentation system (L,R, n) is defined as:

1. A1, . . . An → ψ if A1, . . . , An (n ≥ 0) are arguments, and there is a strict rule
Conc(A1), . . . , Conc(An)→ ψ inRs. In that case, we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . Conc(An)→ ψ

2. A1, . . . An ⇒ ψ if A1, . . . , An (n ≥ 0) are arguments, and there exists a defea-
sible rule
Conc(A1), . . . , Conc(An)⇒ ψ inRd. In that case, we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A)=DefRules(A1) ∪ . . . ∪ DefRules(An) ∪ {Conc(A1), . . .Conc(An)⇒ψ},
TopRule(A) = Conc(A1), . . . Conc(An)⇒ ψ.

Furthermore, for any argument A and set of arguments E:

• A is strict iff DefRules(A) = ∅; defeasible iff DefRules(A) 6= ∅;
• If DefRules(A) = ∅, then LastDefRules(A) = ∅, else;

ifA=A1, . . . , An ⇒ φ then LastDefRules(A) = {Conc(A1), . . . , Conc(An)⇒
φ}, otherwise LastDefRules(A) = LastDefRules(A1)∪. . .∪LastDefRules(An).



• if TopRule(A) = Conc(A1), . . . Conc(An) → ψ, then A is said to be a strict
extension of {A1, . . . , An}.

• Concs(E) = {Conc(A)|A ∈ E}
• The closure under strict rules of E, denoted ClS(E) is the smallest set contain-

ing Concs(E) and the consequent of any strict rule in Rs whose antecedent is
contained in ClS(E).

As in [2,15] we henceforth assume that the strict knowledge in an argumentation system
is consistent in the following sense.

Definition 3. Let Ar ′ be the set of all strict arguments defined on the basis of AS = (L,
R, n). Then AS is said to be consistent iff¬∃A,B∈Ar ′ such that Conc(A) =−Conc(B)

In the following, attacks on the conclusions of rules (rebuts) are not restricted to the
consequents of defeasible rules, and so are referred to as unrestricted.

Definition 4. A attacks B iff A undercuts or rebuts B, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that TopRule(B′) = r where r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −Conc(B′) for some B′ ∈ Sub(B)4

Given a preference ordering over arguments, a rebut attack succeeds as a defeat (see
Definition 7) only if the attacked argument is not strictly preferred to its attacker. Un-
dercut attacks always succeed as defeats, irrespective of preferences (see [12] for further
details). We now recapitulate examples of how [12] define a preference ordering � over
arguments, based on a priority ordering over the arguments’ defeasible rules. However,
unlike [12], we assume a total pre-ordering on the defeasible rules. This ordering is used
to compare sets of all the defeasible rules in the compared arguments (the weakest link
principle) or only the top most defeasible rules (the last link principle). These rule set
orderings are of two types; the so called Elitist and Democratic set orderings.

Definition 5. Let ≤⊆ (Rd × Rd) be a total pre-ordering on the defeasible inference
rules, where as usual, r < r′ iff r ≤ r′ and r � r′, and r ≡ r′ iff r ≤ r′ and r′ ≤ r.
Then for any E , E ′ ⊆ Rd, Es (s ∈ {Eli, Dem}) is defined as follows:

1. If E = ∅ then E 5s E ′ ;
2. If E ′ = ∅ and E 6= ∅ then E Es E ′ ; else:
3. if s = Eli: E EEli E ′ if ∃A ∈ E s.t. ∀B ∈ E ′, A ≤ B. else:
4. if s = Dem: E EDem E ′ if ∀A ∈ E , ∃B ∈ E ′, A ≤ B.

As usual E �s E ′ iff E Es E ′ and E ′ 5s E

The democratic ordering has been used in Dung-style argumentation since the work
of [16]. The elitist ordering was introduced into formal argumentation more recently,
and has for instance been shown in [12] to support argument-based interpretations of
Brewka’s preferred subtheories [1]. Both orderings have been used within ASPIC+.

4Note that whereas the principle of unrestricted rebut commonly requires the attacked argument to be de-
feasible, no such requirement has explicitly been stated in Definition 4. However, as in [12], no rebut-attack
on a strict argument will succeed (and constitute a defeat) since all the preference principles examined in the
remainder of this paper are such that strict arguments are maximally preferred (see Proposition 1).



Definition 6. Let Ar be defined on the basis of (L,R, n). Then ∀A,B ∈ Ar :

1. A �Ewl B iff DefRules(A) EEli DefRules(B)
2. A �Ell B iff LastDefRules(A) EEli LastDefRules(B)
3. A �Dwl B iff DefRules(A) EDem DefRules(B)
4. A �Dll B iff LastDefRules(A) EDem LastDefRules(B)

where Ewl, Ell, Dwl and Dll respectively denote ‘Elitist weakest link’, ‘Elitist
last link’, ‘Democratic weakest link’ and ‘Democratic last link’.
We may write A ≺p B iff A �p B andB �p A; and write A ≈p B iff A �p B,B �p A
(where p ∈ {Ewl, Ell, Dwl, Dll}). It is straightforward to show that≺p is a strict partial
ordering (irreflexive, transitive and asymmetric).

Proposition 1. Let Ar be defined on the basis of (L,R, n). Then ∀A,B ∈ Ar :
1. If B is strict and A is defeasible, then A ≺p B.
2. If B is strict then B ⊀p A.

Proof. 1): By assumption, E = (Last)DefRules(A)6= ∅, and E ′ = (Last)DefRules(B)
= ∅. By Definition 5-1 & 5-2, E ′ 5s E and E Es E ′. By Definition 6, A �p B and
B �p A, and so A ≺p B.
2): Let E = (Last)DefRules(B) = ∅. By Definition 5-1, ∀E ′, E 5s E ′. Hence by Defi-
nition 6, ∀A, B �p A.

Definition 7. Let Ar be defined on the basis of (L,R, n). Let ≤ be a total pre-ordering
onRd and let�p be the associated preference ordering over Ar , as defined in Definition
6. Then def ⊆ Ar ×Ar is said to be defined over Ar , where:
(A,B) ∈ def iff either A undercuts B, or A rebuts B and A ⊀p B.
We say that the Dung framework (Ar , def ) is defined by (L,R, n) and ≤.

Definition 8. Let (Ar , def ) be defined by (L,R, n) and ≤. Let A ∈ Ar and E ⊆ Ar .
E is said to be conflict-free iff there do not exist a B,C ∈ E such that (B,C) ∈ def .
E is said to defend A iff for every B ∈ Ar such that (B,A) ∈ def there exists an
C ∈ E such that (C,B) ∈ def . The characteristic function F : 2Ar → 2Ar is defined
as F (E) = {A ∈ Ar | E defends A}. E is called:

• an admissible set iff E is conflict-free and E ⊆ F (E)
• a complete extension iff E is conflict-free and E = F (E)
• a grounded extension iffE is the minimal (w.r.t. set-inclusion) complete extension
• a preferred extension iff E is a maximal (w.r.t. set-inclusion) complete extension;

3. A Criticism of the Principle of Restricted Rebut

The following discussion highlights the advantages of unrestricted over restricted rebut.

John: “Bob will attend conferences A and I this year, as he has papers accepted at both.“
Mary: “That won’t be possible, as his budget of £1000 only allows for one foreign trip.”

Formally, this discussion could be modelled using the argumentation theory (L,R, n)
with Rd ⊇ {accA ⇒ attA; accI ⇒ attI; budget ⇒ ¬(attA ∧ attI)} and Rs ⊇ {→
accA; →accI; →budget; attA, attI→attA ∧ attI}.



John: ((→ accA)⇒ attA), ((→ accI)⇒ attI)→ attA ∧ attI
Mary: (→ budget)⇒ ¬(attA ∧ attI)
In ASPIC-, Mary’s argument attacks John’s argument, as one would expect in natural
discussion. Such an attack utilises unrestricted rebut. That is, in ASPIC+ or any other
formalism based on restricted rebut, Mary’s argument does not attack John’s argument,
since the conclusion Mary wants to attack (attA ∧ attI) is the consequent of a strict rule.
Under ASPIC+, if Mary wants to attack John’s argument, she can only do so by attacking
the consequent of a defeasible rule. That is, she would be forced to choose to attack either
attA or attI, meaning she essentially has to utter one of the following two statements.

Mary′: “Bob will attend I, so can’t attend A; his budget doesn’t allow him to attend both.”
Mary′′: “Bob will attend A, so can’t attend I; his budget doesn’t allow him to attend both.”
The associated formal counter arguments are as follows.5

Mary′: ((→ budget)⇒ ¬(attA ∧ attI)), ((→ accI)⇒ attI)→ ¬attA
Mary′′: ((→ accA)⇒ attA), ((→ budget)⇒ ¬(attA ∧ attI))→ ¬attI
Critically, Mary does not know which of the two conferences Bob will attend, yet the
principle of restricted rebut forces her to make concrete statements on this. From the
perspective of commitment in dialogue [18], this is unnatural. One should not be forced
to commit to things one has insufficient reasons to believe in.

It should be stressed that the problem outlined above is particularly relevant in di-
alectical contexts, where different agents make commitments during the exchange of ar-
guments. This contrasts with a formalism like ASPIC+, which is more monolithic in na-
ture, in that from the given rules and premises, one constructs a Dung graph of attacking
arguments and simply computes which arguments (and associated conclusions) are jus-
tified. Concepts like different agents, communication steps or commitment stores do not
play a role in ASPIC+, and restricted rebut therefore seems acceptable. However, if one
wants to add dialectical aspects to formal argumentation (c.f., [6,5,4]) then one is forced
to take the limitations of restricted rebut seriously.

4. Postulates

We now prove that under unrestricted rebut, ASPIC- satisfies [2]’s rationality postulates
when applying grounded semantics, assuming the preference orderings defined above.

Theorem 1. Let (Ar , def ) be defined by a consistent (L,R, n) and ≤, and let E be the
grounded extension of (Ar , def ). Concs(E) satisfies direct consistency: ¬∃α such that
α,¬α ∈ Concs(E).

Proof. Suppose α,¬α ∈ Concs(E). Then there exist two arguments A,B ∈ E with
Conc(A) = α and Conc(B) = ¬α. We distinguish four cases:

1. both A and B are strict. This cannot be the case as this would contradict the
assumption that the strict knowledgeRs is consistent.

2. A is strict and B is defeasible. Then A and B rebut each other. By Proposition 1
(point 1), A ⊀p B and so (A,B) ∈ def , contradicting that E is conflict free.

3. A is defeasible and B is strict. This case is similar to the second one.

5Since Rs is assumed to be closed under transposition, the fact that Rs contains attA, attI → attA ∧ attI
implies that Rs also contains ¬(attA ∧ attI), attI → ¬attA and attA,¬(attA ∧ attI) → ¬attI.



4. BothA andB are defeasible. The fact that≺p is asymmetric implies thatA 6≺p B
or B 6≺p A. Assume without loss of generality that A 6≺p B. Then A defeats B,
contradicting that E is conflict free.

The next property to be proved is that of subargument closure.

Theorem 2. Let E be the grounded extension of (Ar , def ). E is closed under subargu-
ments. That is, if A ∈ E, then ∀A′ ∈ Sub(A), A′ ∈ E.

Proof. Let A ∈ E and A′ ∈ Sub(A). Since E is admissible and A ∈ E, then every
defeater B of A is defeated by an argument in E. Now, let B be an arbitrary defeater of
A′. We distinguish two cases:

1. B undercuts A′. Then B also undercuts (and so defeats) A.
2. B rebuts A′ and B 6≺p A′′ (where A′′ is the subargument of A′ whose top-

conclusion is rebutted by B). But this means that B also rebuts and defeats A.
So, every defeater ofA′ is defeated by an argument inE. This means thatA′ is acceptable
w.r.t. E. Since E is a complete extension, this implies that A′ ∈ E.

To prove the postulate of closure under strict rules, we first define the G-function, sim-
ilar to the characteristic function F (Definition 8). While F (E) yields the arguments
defended by E, G(E) yields the arguments strongly defended by E. We show that for
constructing the grounded extension either G or F can be applied. We then prove some
properties of the set comparisons and preference relations defined in the previous section.

Definition 9. Let (Ar , def ) be an argumentation framework. We say that A ∈ Ar
strongly defeats B ∈ Ar iff A defeats B, and B does not defeat A. We say that Args ⊆
Ar strongly defends A ∈ Ar iff each B ∈ Ar that defeats A is strongly defeated by
some C ∈ Args . Let G : 2Ar → 2Ar be the function such that G(Args) = {A ∈ Ar | A
is strongly defended by Args}.

Theorem 3. Let F i be an abbreviation of F i(∅) and let Gi be an abbreviation of Gi(∅).
It holds that for every i ≥ 0: F i = Gi.

Proof. We prove this by induction over i. Since we need to go two levels down in the
induction step, we need two basis steps.
Basis 0 Let i = 0. It holds that F 0 = ∅ and G0 = ∅ so F 0 = G0.
Basis 1 Let i = 1. It holds that F 1 = {A ∈ Ar | ¬∃B ∈ Ar : B def A} and

G1 = {A ∈ Ar | ¬∃B ∈ Ar : B def A}, so F 1 = G1.
Step Let i ≥ 1. Suppose that both F i = Gi and F i−1 = Gi−1. We now prove that

F i+1 = Gi+1.
Gi+1 ⊆ F i+1: Let A ∈ Gi+1. Then A is strongly defended by Gi. Therefore A
is also (normally) defended by Gi. And since (induction hypothesis) Gi = F i, it
follows that A is also (normally) defended by F i. Therefore, A ∈ F i+1.
F i+1 ⊆ Gi+1: Let A ∈ F i+1. Then A is (normally) defended by F i. Suppose,
towards a contradiction, that A is not strongly defended by F i. Then there exists a
defeater B of A that is not strongly defeated by F i. This means that every C ∈ F i

that defeats B is also defeated by B. The fact that A is (normally) defended by F i

implies that at least one suchC exists. That is, there exists aC ∈ F i (and therefore
a C ∈ Gi, since our induction hypothesis is that F i = Gi)) that is defeated by B



and Gi does not strongly defeat this B. From the fact that Gi ⊆ Gi+1 it follows
thatGi−1 also does not strongly defeatB. But thenGi−1 does not strongly defend
C. Contradiction.

From the above theorem, it follows that ∪∞i=0F
i = ∪∞i=0G

i. This means we are free to
compute the grounded extension using the G-function instead of the F -function.

In the following proofs (needed to prove Theorem 4 — closure under strict rules),
lower case letters a, b, c, . . . denote defeasible rules. (L)DR(A) denote s(Last)DefRules(A),
where the latter should be read as ’either DefRules(A) or LastDefRules(A)’. For ex-
ample, (L)DR(A) Ep (L)DR(B) should be read as ‘DefRules(A) Ep DefRules(B) or
LastDefRules(A) Ep LastDefRules(B)’ respectively.

Lemma 1. Let ≤ be a total pre-ordering onRd. Then ∀E , E ′ ⊆ Rd, E 6= ∅, E ′ 6= ∅:
1. E /Eli E ′ iff ∃a ∈ E , ∀b ∈ E′, a < b.
2. E /Dem E ′ iff ∀a ∈ E , ∃b ∈ E′, a < b.

Proof. Proof of 1: For the right to left half, given ∃a ∈ E , ∀b ∈ E′, a < b, it follows
that: i) ∃a ∈ E , ∀b ∈ E′, a ≤ b, hence E EEli E ′; ii) it cannot be that ∃b ∈ E ′, ∀a ∈ E,
b ≤ a, hence E ′ 5Eli E . Hence E /Eli E ′.
For the left to right half, given E /Eli E ′, then E EEli E ′ and E ′ 5Eli E . Let a be a <
minimal element in E , i.e. ¬∃a′ s.t. a′ < a. By assumption of E EEli E ′, and ≤ being
a total ordering, ∀b ∈ E ′, a ≤ b. Now suppose some b ∈ E ′ s.t. a ≡ b. Then ∀a′ ∈ E ,
b ≤ a′, and so E ′ EEli E , contradicting E ′ 5Eli E . Hence, ∀b ∈ E ′, a < b.
Proof of 2: For the right to left half, given ∀a ∈ E , ∃b ∈ E ′, a < b, it follows that: i)
∀a ∈ E , ∃b ∈ E′, a ≤ b, hence E EDem E ′; ii) it cannot be that ∀b ∈ E ′, ∃a ∈ E, b ≤ a,
hence E ′ 5Dem E . Hence E /Dem E ′.
For the left to right half, given E /Dem E ′, then E EDem E ′ and E ′ 5Dem E . Let b be a <
maximal element in E ′, i.e. ¬∃b′ s.t. b < b′. By assumption of E EDem E ′, and ≤ being
a total ordering, ∀a ∈ E , a ≤ b. Now suppose some a ∈ E s.t. a ≡ b. Then ∀b′ ∈ E ′,
b′ ≤ a, and so E ′ EDem E , contradicting E ′ 5Dem E . Hence, ∀a ∈ E , a < b.

Lemma 2. B ⊀p A iff (L)DR(B) 6s (L)DR(A).

Proof. Suppose B ⊀p A and (L)DR(B) /s (L)DR(A). Then (L)DR(B) Es (L)DR(A),
(L)DR(A) 5s (L)DR(B), and so B �p A, A �p B, i.e., B ≺p A. Contradiction.
Suppose (L)DR(B) 6s (L)DR(A) and B ≺p A. Then B �p A, A �p B, and so
(L)DR(B) Es (L)DR(A), (L)DR(A) 5s (L)DR(B), i.e., (L)DR(B) /s (L)DR(A). Contra-
diction.

Lemma 3. LetA andB be arguments such thatA is defeasible,B is strict or defeasible,
and B ⊀p A where p ∈ {Ewl, Ell}. Then ∀b ∈ (L)DR(B),∃a ∈ (L)DR(A) s.t. a ≤ b.

Proof. If B is strict, the lemma is satisfied trivially.
Suppose B is defeasible. By Lemma 2, (L)DR(B) 6Eli (L)DR(A). By Lemma 1, ¬(∃b ∈
(L)DR(B) s.t. ∀a ∈ (L)DR(A), b < a). That is: ∀b ∈ (L)DR(B), ∃a ∈ (L)DR(A) s.t.
b ≮ a. Since ≤ is a total order: ∀b ∈ (L)DR(B),∃a ∈ (L)DR(A) s.t. a ≤ b.

Lemma 4. Let A and B be defeasible arguments, and B ⊀p A where p ∈ {Dwl, Dll}.
Then ∃b ∈ (L)DR(B), s.t. ∀a ∈ (L)DR(A), b ≮ a.



Proof. By assumption of B ⊀p A, and Lemma 2, (L)DR(B) 6Dem (L)DR(A). By
Lemma 1, ¬(∀b ∈ (L)DR(B), ∃a ∈ (L)DR(A), b < a). That is: ∃b ∈ (L)DR(B) s.t.
∀a ∈ (L)DR(A), b ≮ a.

Lemma 5. Let A and B be arguments such that TopRule(A) = Conc(A1), . . .
Conc(An)→ ψ,A is defeasible, andB ⊀p A. Then for some defeasibleAj , j = 1 . . . n,
Bj ⊀p Aj , where Bj is a strict extension of {A1, . . . , Aj−1, B,Aj+1, . . . , An} and
p ∈ {Ewl, Ell, Dwl, Dll}.
Proof. First note that by construction: (L)DR(Bj)∪(L)DR(Aj) = (L)DR(B)∪

⋃n
i=1 (L)DR(Ai).

To prove for p = Ewl (Ell):
Let E ′ = (L)DR(B), E = (L)DR(A). B ⊀p A and so by Lemma 3:

∀b ∈ E ′,∃a ∈ Es.t.a ≤ b. (1)

Suppose some < minimal a′ ∈ E , i.e., ∀a′′ ∈ E , a′′ ≮ a′. Since ≤ is a total or-
der: ∀a′′ ∈ E , a′ ≤ a′′. Given Eq.1, and transitivity of ≤: ∀b ∈ E ′, a′ ≤ b. Hence,
∀c ∈ E ′ ∪ (E \ {a′}, c ≮ a′.
Let Aj be the defeasible subargument of A such that a′ ∈ (L)DR(Aj). Since
(L)DR(Bj) ⊆ E ′ ∪ (E \ {a′}), then ∀c ∈ (L)DR(Bj), c ≮ a′. Suppose (L)DR(Bj) = ∅.
Then by Definition 5 (L)DR(Bj) 5Eli (L)DR(Aj), and so (L)DR(Bj) 6Eli (L)DR(Aj).
Else if (L)DR(Bj) 6= ∅, then by Lemma 1, (L)DR(Bj) 6Eli (L)DR(Aj). By Lemma 2,
Bj ⊀p Aj .
To prove for p = Dwl (Dll):
– Suppose B is strict, and let b ∈ (L)DR(A) be < maximal, i.e., ∀b′ ∈ (L)DR(A), b ≮ b′.
Let b ∈ (L)DR(Aj). If for i = 1 . . . n, i 6= j,Ai is strict, then by constructionBj is strict,
and so by Proposition 1 (point 2), Bj ⊀p Aj . Else, let Bj be so constructed so as to
include Aj as a sub-argument. Then for any Ai, i 6= j, Bj ⊀p Ai, since b ∈ (L)DR(Bj),
∀b′ ∈ (L)DR(Ai), b ≮ b′, and so by Lemma 1, (L)DR(Bj) 6Dem (L)DR(Ai), and so be
Lemma 2 Bj ⊀p Ai.
– Suppose B is not strict. By assumption of B ⊀p A and Lemma 4, ∃b ∈ (L)DR(B)
s.t. ∀a ∈ (L)DR(A), b ≮ a. Let Aj be any defeasible subargument of A. Since
(L)DR(B) ⊆ (L)DR(Bj) and (L)DR(Aj) ⊆ (L)DR(A), then ∃b ∈ (L)DR(Bj) s.t.
∀a ∈ (L)DR(Aj), b ≮ a. By Lemma 1, (L)DR(Bj) 6Dem (L)DR(Aj). By Lemma 2,
Bj ⊀p Aj .

Lemma 6. Let A,B and C be defeasible arguments such that B ⊀p A, B ≺p C. Then
A ≺p C where p ∈ {Ewl, Ell, Dwl, Dll}.
Proof. To prove for p = Ewl (Ell):
By assumption of B ⊀p A and Lemma 3: i) ∀b ∈ (L)DR(B),∃a ∈ (L)DR(A) s.t. a ≤ b.
By assumption of B ≺p C and Lemma 2, (L)DR(B) /Eli (L)DR(C). By Lemma 1: ii)
∃b ∈ (L)DR(B),∀c ∈ (L)DR(C), b < c.
Given i), ii) and transitivity of ≤, ∃a ∈ (L)DR(A),∀c ∈ (L)DR(C), a < c. Hence by
Lemma 1, (L)DR(A) /Eli (L)DR(C), and so by Lemma 2, A ≺p C.
To prove for p = Dwl (Dll):
By assumption of B ⊀p A and Lemma 4, ∃b ∈ (L)DR(B) s.t. ∀a ∈ (L)DR(A), b ≮ a.
Since ≤ is a total order: i) ∃b ∈ (L)DR(B), ∀a ∈ (L)DR(A), a ≤ b.
By assumption of B ≺p C and Lemma 2: ii) (L)DR(B) /Dem (L)DR(C), and so ∀b ∈
(L)DR(B), ∃c ∈ (L)DR(C), b < c.



Given i), ii) and transitivity of ≤, ∀a ∈ (L)DR(A), ∃c ∈ (L)DR(C), a < c. Hence by
Lemma 1, (L)DR(A) /Dem (L)DR(C), and so by Lemma 2, A ≺p C.

Theorem 4. Let (Ar , def ) be defined by a consistent (L,R, n) and ≤, and let E be the
grounded extension of (Ar , def ). Then Concs(E) is closed under the strict rules, i.e.,
Concs(E) = ClS(E).

Proof. It suffices to prove that for an arbitrary i ≥ 1 it holds that Concs(Gi) is closed
under the set of strict rules. Suppose, towards a contradiction, that this is not the case.
That is, there is an i ≥ 1 such that Concs(Gi) is not closed under the strict rules. That
is, there exists a strict rule φ1, . . . , φn → ψ such that φ1, . . . , φn ∈ Concs(Gi) but
ψ 6∈ Concs(Gi). This means that Gi contains arguments A1, . . . , An with Conc(A1) =
φ1, . . . , Conc(An) = φn but no argument with conclusion ψ. In particular, Gi does not
contain the argument A1, . . . , An → ψ (let’s call this argument A).

The fact that argument A is not in Gi implies that it is not strongly defended by
Gi−1. That is, there exists an argument B that defeats A and that is not strongly de-
feated by any argument in Gi−1. The only way B can defeat A is by rebutting A’s top-
conclusion, because otherwiseB would also defeat an argument in {A1, . . . , An}, which
would imply that these are not strongly defended by Gi−1 (and therefore could not be
in Gi). Since (L,R, n) is consistent, it cannot be that both A and B are strict. Hence,
if A is strict, then B must be defeasible, but then by Proposition 1 (point 1), B ≺p A,
contradicting B defeats A. Hence it must be that A is defeasible. By Lemma 5, and the
fact that the strict rules are closed under transposition, one can construct an argument Bj

= A1, . . . , Aj−1, B,Aj+1, . . . , An → ¬φj which rebuts Aj , such that Bj ⊀p Aj . Hence
Bj defeats Aj .

Since Aj ∈ Gi, Gi−1 strongly defends Aj . This means that Gi−1 contains an ar-
gument (say, A′j) that strongly defeats Bj . A′j cannot strongly defeat B (recall that B
was assumed to have no strong defeaters in Gi−1) and cannot defeat any argument in
{A1, . . . , Aj−1, Aj+1, . . . , An} (otherwise, the fact that Gi−1 ⊆ Gi would imply that
A′j ∈ Gi, so Gi is not conflict-free, so E = ∪∞i=0G

i is not conflict-free, which contra-
dicts the fact that E is the grounded extension). Therefore, A′j must strongly defeat Bj

on its top-conclusion. That is, Conc(A′j) = φj . The fact that A′j strongly defeats Bj ,
implies that Bj ≺p A

′
j . From this and the earlier obtained fact that Bj 6≺p Aj it follows

(Lemma 6) that Aj ≺p A
′
j .

Consider the case where we take argument A and replace (substitute) its subargu-
ment Aj by the stronger A′j (this is possible because both Aj and A′j have the same
conclusion φj). Call the resulting argument A′. Now, if A′ in turn has a defeater (say
B′) that is not strongly defeated by Gi−1, then we can use the same line of reasoning
as above to identify subargument of A′ that can be replaced by a stronger subargument
with the same conclusion. This would lead to a sequence of argumentsA′, A′′, A′′′, . . . in
which a sequence of subarguments is replaced by stronger subarguments with the same
conclusion.

Does such a sequence ever terminate, or can it go on infinity? Suppose, towards a
contradiction, that there exists an infinite sequence A′, A′′, A′′′, . . .. Since the number
of arguments in the argumentation framework is finite (more precisely: the number of
arguments with a particular conclusion is finite) it holds that sooner or later, one has to
run out of of “fresh” (unused) subarguments and substitute a subargument in that was
previously substituted out. Let us call this argumentAk1

, with Conc(Ak1
) = φk. Now, in



the sequence of substituted subarguments, let us specifically look for those subarguments
with conclusion φk. So, at some moment, Ak1 was substituted by some Ak2 , after which
possibly some other subarguments were substituted, after which Ak2

was substituted by
Ak3

, after which possibly some other subarguments were substituted, etc, until at some
moment Akm was substituted by Ak1 . Now, the fact that Ak1 was substituted by Ak2

means that (as we have seen before) Ak1
≺p Ak2

. The fact that Ak2
was substituted by

Ak3
means that Ak2

≺p Ak3
, etc. So from transitivity, we obtain that Ak1

≺p Akm
. But

the fact that Akm was substituted by Ak1 means that Akm ≺p Ak1 . Contradiction.
The fact that each sequence of substitutions has to be finite means that the sequence

A,A′, A′′, A′′′, . . . has to terminate at some point with an argument (say, A∗) that is not
eligible for substitution anymore. This means that A∗ cannot have a defeater (say B∗)
that isn’t strongly defeated byGi−1 (because if it did have such a defeater then, using the
reasoning earlier in this proof, we could substitute one of its subarguments). This means
that A∗ is strongly defended by Gi−1. Therefore, A∗ ∈ Gi. But that would mean that
ψ ∈ Concs(Gi) (since ψ = Conc(A∗)), which contradicts our initial assumption that
ψ 6∈ Concs(Gi).

Finally, we show that indirect consistency holds; that is, the closure under strict rules of
the grounded extension is consistent.

Theorem 5. Let (Ar , def ) be defined by a consistent (L,R, n) and ≤, and let E be
the grounded extension of (Ar , def ). Concs(E) satisfies indirect consistency: ¬∃α such
that α,¬α ∈ ClS(E).

Proof. Follows immediately from Theorem 1 and Theorem 4.

5. Discussion and Conclusions

This paper has presented a modified version of the ASPIC+ framework that applies unre-
stricted rebut in combination with various widely used preference principles. We showed
that the resulting ASPIC- formalism satisfies [2]’s rationality postulates when applying
grounded semantics and under the assumption that the preferences are based on a total
ordering over the defeasible rules. Of course, one limitation is that unlike [2,12], the
rationality postulates are not shown to hold for all complete-based semantics (that is, a
semantics whose extensions are complete). Broadening the unrestricted rebut approach
to semantics other than grounded is far from trivial (a counter example against consis-
tency under preferred semantics is given in [7]). Also, note that problems with applying
unrestricted rebut with anything other than the grounded semantics are not restricted to
ASPIC, or even to rule-based argumentation in general, as similar difficulties have been
observed in logic-based argumentation [10]. Another restriction of our approach is the
assumption of a total order on defeasible rules. However, our preliminary investigations
show that if, given a partial ordering, preferences are defined only if they are sanctioned
by all total orderings that preserve the given partial ordering, then the rationality postu-
lates can still be shown to hold. We will pursue this line of research in future work.

Given our results and [2], we can conclude that if one wants to have flexibility
on which semantics to use, one has to apply restricted rebut, with its possible counter-
intuitive behaviour in dialectical settings. Switching to unrestricted rebut, on the other



hand, does allow for more natural dialogues,6 but (unless the results of the current pa-
per can somehow be broadened) also restricts one to use grounded semantics. Thus, the
choice of whether to apply restricted or unrestricted rebut depends on the intended appli-
cation. Apart from describing how unrestricted rebut can be used, the current paper also
helps to highlight what the advantages and disadvantages of each approach are, so that
those interested in applying argumentation formalisms can make an informed choice.
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