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Abstract. In the current paper, we re-examine the concept ofstrong admissibility,
as was originally introduced by Baroni and Giacomin. We examine the formal prop-
erties of strong admissibility, both in its extension-based and in its labelling-based
form. Moreover, we show that strong admissibility plays a vital role in discussion-
based proof procedures for grounded semantics. In particular it allows one to com-
pare the performance of alternative dialectical proof procedures for grounded se-
mantics, and obtain some remarkable differences between the Standard Grounded
Game and the Grounded Persuasion Game.
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1. Introduction

Admissibility is generally seen as one of the cornerstones of abstract argumentation the-
ory [15], as it is the basis of various argumentation semantics [1]. Not only does admissi-
bility appeal to common intuitions [3], it is also one of the key requirements for obtaining
a consistent outcome of instantiated argumentation formalisms [8,17,19].

Slightly less well-known is the principle ofstrong admissibility, which was origi-
nally introduced in [2]. The original aim of strong admissibility was to characterise the
unique properties of the grounded extension. It turns out, however, that the concept is
also useful for comparing the characteristics of the different dialectical proof procedures
that have been stated in the literature. In particular, the Standard Grounded Game [16,20]
and the Grounded Persuasion Game [13,14] prove membership of the grounded exten-
sion essentially by constructing a strongly admissible setaround the argument in ques-
tion. However, as we will see, the Grounded Persuasion Game is able to do so in a more
efficient way, requiring a number of steps that islinearly related to thein/out-size1 of
the strongly admissible set, whereas the Standard GroundedGame can require a number
of steps that isexponentiallyrelated to thein/out-size of the strongly admissible set.

The remaining part of the current paper is structured as follows.2 First, in Section 2
we briefly summarise some of the key concepts of abstract argumentation theory, both in
its extension and in its labelling based form. In Section 3, we then discuss the extension
based version of strong admissibility and examine its formal properties. In Section 4 we
introduce the labelling based version of strong admissibility and show how it relates to its
extension based version. In Section 5 we then re-examine theStandard Grounded Game,

1By thein/out-size of a set of arguments, we mean the number of arguments inthe set itself plus the number
of arguments attacking the set.

2This paper has been supported by EPSRC (UK), grant ref. EP/J012084/1 (SAsSy project).
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and the Grounded Persuasion Game, and show that strong admissibility plays a vital role
in describing the relative efficiency of these games. In Section 6 we then round off with
a discussion of the obtained results and open issues. Although some of the proofs had to
be omitted due to lack of space, these can be found in a seperate technical report [7].

2. Formal Preliminaries

In the current section, we briefly restate some of the key concepts of abstract argumen-
tation theory, in both its extension based and labelling based form.

Definition 1 ([15]). Anargumentation frameworkis a pair(Ar , att) whereAr is a finite
set of entities, called arguments, whose internal structure can be left unspecified, andatt
a binary relation onAr . We say thatA attacksB iff (A,B) ∈ att .

Definition 2. Let (Ar , att) be an argumentation framework,A ∈ Ar andArgs ⊆ Ar .
We defineA+ as{B ∈ Ar | A attacksB}, A− as{B ∈ Ar | B attacksA}, Args+ as
∪{A+ | A ∈ Args}, andArgs− as∪{A− | A ∈ Args}. Args is said to beconflict-free
iff Args ∩ Args+ = ∅. Args is said todefendA iff A− ⊆ Args+. The characteristic
functionF : 2Ar → 2Ar is defined asF (Args) = {A | Args defendsA}.

Definition 3. Let (Ar , att) be an argumentation framework.Args ⊆ Ar is said to be:
• an admissible set iffArgs is conflict-free andArgs ⊆ F (Args)
• a complete extension iffArgs is conflict-free andArgs = F (Args)
• a grounded extension iffArgs is the smallest (w.r.t.⊆) complete extension
• a preferred extension iffArgs is a maximal (w.r.t.⊆) complete extension

If Args is a conflict-free set, then itsdown-admissibleset (written asArgs↓) is defined
as the (unique) biggest admissible subset ofArgs .3

The above definitions essentially follow the extension based approach of [15]. It is also
possible to define the key argumentation concepts in terms ofargument labellings [5,10].

Definition 4. Let (Ar , att) be an argumentation framework. Anargument labellingis
a partial functionLab : Ar → {in, out, undec}. An argument labelling is called an
admissible labellingiff Lab is a total function and for eachA ∈ Ar it holds that:

• if Lab(A) = in then for eachB that attacksA it holds thatLab(B) = out

• if Lab(A) = out then there exists aB that attacksA such thatLab(B) = in

Lab is called acomplete labellingiff it is an admissible labelling and for eachA ∈ Ar

it also holds that:
• if Lab(A) = undec then not for eachB that attacksA it holds thatLab(B) =

out, and there exists noB that attacksA such thatLab(B) = in

As a labelling is essentially a function, we sometimes writeit as a set of pairs. Also,
if Lab is a labelling, we writein(Lab) for {A ∈ Ar | Lab(A) = in}, out(Lab) for
{A ∈ Ar | Lab(A) = out} andundec(Lab) for {A ∈ Ar | Lab(A) = undec}.
As a labelling is also a partition of the arguments into sets of in-labelled arguments,

3The well-definedness of the down-admissible set follows from [11], where this concept is defined in its
labellings form, together with the equivalence between extensions and labellings [10].



out-labelled arguments andundec-labelled arguments, we sometimes write it as a triplet
(in(Lab), out(Lab), undec(Lab)).

Definition 5 ([11]). LetLab andLab′ be argument labellings of argumentation frame-
work (Ar , att). We say thatLab ⊑ Lab′ iff in(Lab) ⊆ in(Lab′) and out(Lab) ⊆
out(Lab′).

We say thatLab1 is a sublabelling ofLab2 (or alternatively, thatLab2 is a superlabelling
of Lab2) iff Lab1 ⊑ Lab2. If Lab is a total labelling (i.e.a total function), then itsdown-
admissiblelabelling [11] (written asLab↓) is defined as the (unique) biggest (w.r.t.⊑)
admissible sublabelling ofLab.

Definition 6. Let Lab be a complete labelling of argumentation framework(Ar , att).
Lab is said to be

• a grounded labelling iffLab is the (unique) smallest (w.r.t.⊑) complete labelling
• a preferred labelling iffLab is a maximal (w.r.t.⊑) complete labelling

Given an argumentation framework(Ar , att) we define two functionsArgs2Lab and
Lab2Args (to translate a conflict-free set of arguments to an argumentlabelling,
and to translate an argument labelling to a set of arguments,respectively) such that
Args2Lab(Args) = (Args ,Args+,Ar \ (Args ∪ Args+)) and Lab2Args(Lab) =
in(Lab). It has been proven [10] that ifArgs is an admissible set (resp. a complete,
grounded or preferred extension) thenArgs2Lab(Args) is an admissible labelling (resp.
a complete, grounded or preferred labelling), and that ifLab is an admissible labelling
(resp. a complete, grounded or preferred labelling) thenLab2Args(Lab) is an admissible
set (resp. a complete, grounded or preferred extension). Moreover, when the domain and
range ofArgs2Lab andLab2Args are restricted to complete extensions and complete
labellings they become injective functions and each other’s reverses, which implies that
the complete extensions (resp. the grounded extension and the preferred extensions) and
the complete labellings (resp. the grounded labelling and the preferred labellings) are
one-to-one related [10].

3. Strongly Admissible Sets

The concept of strong admissibility was first introduced by Baroni and Giacomin [2],
using the notion ofstrong defence.

Definition 7 ([2]). Let (Ar , att) be an argumentation framework,A ⊆ Ar andArgs ⊆
Ar be a set of arguments.A is strongly defendedby Args iff each attackerB of A is
attacked by someC ∈ Args \ {A} such thatC is strongly defended byArgs \ {A}.

Baroni and Giacomin say that a setArgs satisfies the strong admissibility property iff it
strongly defends each of its arguments [2]. However, it is also possible to define strong
admissibility without having to refer to strong defence.

Definition 8. Let (Ar , att) be an argumentation framework.Args ⊆ Ar is strongly
admissibleiff everyA ∈ Args is defended by someArgs ′ ⊆ Args \ {A} which in its
turn is again strongly admissible.
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Figure 1. Example argumentation framework.

Theorem 1. Let (Ar , att) be an argumentation framework andArgs ⊆ Ar . Args is
a strongly admissible set (in the sense of Definition 8) iff each A ∈ Args is strongly
defended byArgs (in the sense of Definition 7).

Proof. See [7].

Theorem 2. Let (Ar , att) be an argumentation framework and letArgs ⊆ Ar be a
strongly admissible set. It holds that:

• Args is conflict-free
• Args is admissible

Proof. Conflict-freeness follows from [2, Proposition 51], together with Theorem 1. Ad-
missibility follows from conflict-freeness, together withthe fact that every strongly ad-
missible set defends each of its arguments.

To illustrate the concept of strong admissibility, consider the argumentation framework
of Figure 1. Here, the strongly admissible sets are∅, {A}, {A,C}, {A,C, F}, {D},
{A,D}, {A,C,D}, {D,F}, {A,D, F} and {A,C,D, F}, the latter also being the
grounded extension. As an example, the set{A,C, F} is strongly admissible asA is
defended by∅, C is defended by{A} andF is defended by{A,C}, each of which is a
strongly admissible subset of{A,C, F} not containing the argument it defends.4

Baroni and Giacomin prove that the grounded extension is theunique biggest
strongly admissible set [2].5 However, it can additionally be proved that the strongly ad-
missible sets form a lattice, of which the grounded extension is the top element and the
empty set is the bottom element. To do so, we need two lemmas.

Lemma 1. If Args1 andArgs2 are strongly admissible sets, thenArgs1∪Args2 is also
a strongly admissible set.

Lemma 2. Each admissible set has a unique biggest (w.r.t. set-inclusion) strongly ad-
missible subset.

If Args is an admissible set, we writeArgs ⇓ for its biggest strongly admissible subset.

Theorem 3. Let(Ar , att) be an argumentation framework. The strongly admissible sets
of this framework form a lattice (w.r.t. set inclusion).

4Please notice that although the set{A, F} defends argumentC in {A,C, F}, it is in its turn not strongly
admissible (unlike{A}). Hence the requirement in Definition 8 forArgs

′ to be asubsetof Args \ {A}.
5Hence, each strongly admissible set is an admissible set that is contained in the grounded extension. The

converse, however, does not hold. For instance, in Figure 1,{F} is an admissible set that is contained in the
grounded extension, but it is not a strongly admissible set.



Proof. We need to prove that each two strongly admissible sets have asupremum (a
lowest upper bound) and a infimum (a greatest lower bound).
supremum Let Args1 andArgs2 be two strongly admissible sets. From Lemma 1 it

follows thatArgs1∪Args2 is again a strongly admissible set. Since, by definition,
Args1 ⊆ Args1 ∪ Args2 andArgs2 ⊆ Args1 ∪ Args2, it follows thatArgs1 ∪
Args2 is an upper bound. Moreover, it is also alowestupper bound, since any
proper subset ofArgs1 ∪ Args2 will not be a superset ofArgs1 andArgs2.

infimum Let Args1 andArgs2 be two strongly admissible sets. LetArgs3 beArgs1 ∩
Args2. From the fact thatArgs3 is conflict-free, it follows that it has a (unique)
biggest admissible subset, which we will refer to asArgs ′3. From Lemma 2 it
follows thatArgs ′3 has a (unique) biggest strongly admissible subset, which we
will refer to asArgs ′′3 . We now prove thatArgs ′′3 is an infimum ofArgs1 and
Args2.
lower bound From the fact thatArgs ′′3 ⊆ Args ′3 ⊆ Args3 = Args1 ∩ Args2 it

follows thatArgs ′′3 ⊆ Args1 andArgs ′′3 ⊆ Args2.
greatest lower boundLet Args ′′′3 be a strongly admissible admissible set such

thatArgs ′′′3 ⊆ Args1 andArgs ′′′3 ⊆ Args2. Then, by definition,Args ′′′3 ⊆
Args3. SinceArgs ′′′3 is admissible, it follows thatArgs ′′′3 ⊆ Args ′3 (since
Args ′3 is thebiggestadmissible subset ofArgs3). SinceArgs ′′′3 is a strongly
admissible subset ofArgs ′3 it follows thatArgs ′′′3 ⊆ Args ′′3 (sinceArgs ′′3 is
thebiggeststrongly admissible subset ofArgs ′3).

In essence, ifArgs1 andArgs2 are strongly admissible sets, thenArgs1 ∪ Args2 is
their supremum, and(Args1 ∩ Args2)↓⇓ is their infimum. By forming a lattice, with
the empty set as its bottom element and the grounded extension as its top element, the
strongly admissible sets differ from the admissible sets, which form a semi-lattice with
the empty set as its bottom element, and the preferred extensions as its top elements [15].
It also distinguishes the strongly admissible sets from thecomplete extensions, which
form a semi-lattice with the grounded extension as its bottom element and the preferred
extensions as its top elements [15].

4. Strongly Admissible Labellings

Argument labellings [5,10] have become a popular approach for purposes such as argu-
mentation algorithms [6,16,18], argument-based judgmentaggregation [11,12] and is-
sues of measuring distance of opinion [4]. In the current section, we develop a labelling
account of strong admissibility, which will subsequently be used to analyse some of the
existing discussion games for grounded semantics.

To define a strongly admissible labelling, we first have to introduce the concept of a
min-max numbering.

Definition 9. LetLab be an admissible labelling of argumentation framework(Ar , att).
A min-max numberingis a total functionMMLab : in(Lab) ∪ out(Lab) → N ∪ {∞}
such that for eachA ∈ in(Lab) ∪ out(Lab) it holds that:

• if Lab(A) = in thenMMLab(A) = max({MMLab(B) | B attacksA and
Lab(B) = out}) + 1 (with max(∅) defined as0)



• if Lab(A) = out thenMMLab(A) = min({MMLab(B) | B attacksA and
Lab(B) = in}) + 1 (withmin(∅) defined as∞)

Theorem 4. Every admissible labelling has a unique min-max numbering.

Given an admissible labelling, its min-max numbering can becomputed in an inductive,
bottom-up way. Each step for doing so consists of two substeps. In the first substep,
we identify the unnumberedin-labelled arguments of which allout-labelled attackers
have already been numbered, and number them accordingly (with the maximal min-
max number of their out-labelled attackers, plus 1). In the second substep, we identify
the unnumberedout-labelled arguments that have at least onein-labelled attacker that
has already been numbered, and number them accordingly (with the minimal min-max
number of their in-labelled attackers that have already been numbered, plus 1).6 We
keep on doing such steps until no new arguments become numbered. Thosein andout-
labelled arguments that are still unnumbered then become numbered with∞.

As an example, in the argumentation framework of Figure 1 consider the admissible
labelling({A,C, F,H}, {B,E,G}, {D}). In step 1 (first substep) thein-labelled argu-
mentA is numbered with 1, as it has no attackers. In the second substep, theout-labelled
argumentB is numbered with 2, as it has anin-labelled attacker that is already numbered
(A). In step 2, thein-labelled argumentC is numbered with 3, and theout-labelled ar-
gumentE is numbered with 4. In step 3, thein-labelled argumentF is numbered with
5. After that, no subsequent steps will yield any additionalnumbers, so the remaining
unnumberedin andout-labelled arguments (G andH) are numbered∞. Notice that
becauseD is labelledundec, it will remain unnumbered.

It can be verified that the procedure sketched above yields a correct min-max num-
bering [7]. Moreover, it turns out that every min-max numbering of the same admissi-
ble labelling has to be equal to the one yielded by the above sketched procedure, thus
obtaining uniqueness [7].7

Definition 10. A strongly admissible labellingis an admissible labelling whose min-max
numbering yields natural numbers only (so no argument is numbered∞).

From Definition 10 it directly follows that every strongly admissible labelling is also an
admissible labelling.

Theorem 5. Let (Ar , att) be an argumentation framework.
• for every strongly admissible setArgs ⊆ Ar , it holds thatArgs2Lab(Args) is a

strongly admissible labelling
• for every strongly admissible labellingLab, it holds thatLab2Args(Lab) is a

strongly admissible set

6It can be observed that if in subsequent steps, more of itsin-labelled attackers become numbered, the
additional min-max numbers of thesein-labelled attackers will never be lower than the min-max number of
the firstin-labelled attacker that became numbered. Hence, theminimal min-max number of thein-labelled
attackers will remain the same. This gives us the desirable property that once an argument becomes numbered,
it never has to be renumbered later on.

7It has to be mentioned, however, thatdifferentadmissible labellings yield different min-max numberings.
For instance, the admissible labelling({D,F}, {E}, {A,B, C,G,H}) numbers argumentF with 3 instead
of with 5.



Theorem 5 can be proven using induction on the steps of the above sketched number-
ing procedure. We refer to [7] for details.8 Similar to the strongly admissible sets, the
strongly admissible labellings form a lattice (w.r.t.⊑) with the all-undec labelling as the
bottom element and the grounded labelling as the top element. The proof of this follows
a structure similar to that of Theorem 3.

5. Strong Admissibility and Argument Games

Now that some of the formal properties of strong admissibility have been examined,
the next step is to study some of its applications. In particular, it turns out that strong
admissibility is one of the corner stones of the discussion games for grounded semantics.

5.1. The Standard Grounded Game

We first describe the Standard Grounded Game [16,20].

Definition 11. A discussionin the Standard Grounded Game is a finite sequence
[A1, . . . , An] (n ≥ 1) of arguments (sometimes calledmoves), of which the odd moves
are called P-moves (Proponent moves) and the even moves are called O-moves (Oppo-
nent moves), such that:

1. every O-move is an attacker of the preceding P-move (that is,everyAi wherei is
even and2 ≤ i ≤ n attacksAi−1)

2. every P-move except the first one is an attacker of the preceding O-move (that is,
everyAi wherei is odd and3 ≤ i ≤ n attacksAi−1)

3. P-moves are not repeated (that is, for every oddi, j ∈ {1, . . . , n} it holds that if
i 6= j thenAi 6= Aj)

A discussion is calledterminatediff there is noAn+1 such that[A1, . . . , An, An+1] is a
discussion. A terminated discussion is said to bewonby the player making the last move.

An argument treeis a tree of which each node (n) is labelled with an argument (Arg(n)).
The levelof a node is the number of nodes in the path to the root.

Definition 12. A winning strategyof the Standard Grounded Game for argumentA is
an argument tree, where the root is labelled withA, such that

1. for each path from the root (nroot ) to a leaf node (nleaf ) it holds that the argu-
ments on this path form a terminated discussion won by P

2. for each node at odd levelnP it holds that{Arg(nchild) | nchild is a child ofnP }
= {B | B attacksArg(nP )} and the number of children ofnP is equal to the
number of attackers ofArg(nP )

3. each node of even levelnO has precisely one childnchild , andArg(nchild ) attacks
Arg(nO)

8Notice that running the numbering procedure on an arbitraryadmissible labelling identifies its unique max-
imal (w.r.t.⊑) strongly admissible sublabelling, consisting of thosein andout-labelled arguments that are
assigned natural numbers, and all other arguments becomingundec. Hence, every admissible labelling has a
unique maximal strongly admissible sublabelling. Using Theorem 5, we then obtain that also every admissible
set has a unique biggest (w.r.t.⊆) strongly admissible subset, hence proving Lemma 2.



The correctness and completeness of the Standard Grounded Game depends on the pres-
ence of a winning strategy. That is, an argumentA is in the grounded extension iff there
exists a winning strategy forA. Interesting enough, it turns out that such a winning strat-
egy defines a strongly admissible set containingA.

Theorem 6. The set of all proponent moves in a winning strategy of the Standard
Grounded Game is strongly admissible.

Proof. We prove this by induction over the depth (i) of the winning strategy game tree.

basis i = 0. In that case, the winning strategy consists of a single argument (say,A).
This means thatA has no attackers. Hence,{A} is a strongly admissible set.

step Suppose that every winning strategy of depth less or equal thani has its proponent
moves constituting a strongly admissible set. We need to prove that also every
winning strategy of depthi + 2 has its proponent moves constituting a strongly
admissible set. LetWS be a winning strategy of depthi+2. LetA be the argument
at the root of the tree. LetWS′

1, . . . ,WS′
n be the subtrees whose roots are at

distance 2 of the root ofWS. The induction hypothesis states that for each of
these subtrees (WS′

j), their set of proponent movesArgs ′j constitutes a strongly
admissible set. Therefore (by Lemma 1) the setArgs′ = ∪n

j=1Args ′j is strongly
admissible. Also,A 6∈ Args ′ (this is because the proponent is not allowed to repeat
his moves). LetB be an arbitrary argument inArgs (the set of all proponent moves
in the winning strategy). We distinguish two cases:
1. B ∈ Args ′. Then, sinceArgs ′ is a strongly admissible set, there exists an

Args ′′ ⊆ Args ′ \ {B} that defendsB and is itself strongly admissible. Since
Args ′ ⊆ Args , it also holds thatArgs ′′ ⊆ Args \ {B}.

2. B 6∈ Args ′. ThenB = A (the root of the treeWS). The structure of the
WS tree is such thatB is defended by the roots ofWS′

1, . . . ,WS′
n. SoB is

defended by the strongly admissible setArgs ′. Also B 6∈ Args ′, soArgs ′ ⊆
Args \ {B}, therefore satisfying Definition 8.

It can also be observed that a winning strategy defines a strongly admissible labelling.

Theorem 7. LetArgsP be the set of proponent moves andArgsO be the set of opponent
moves of a particular winning strategy given an argumentation framework(Ar , att). It
holds that(ArgsP ,ArgsO,Ar \ (ArgsP ∪ArgsO)) is a strongly admissible labelling.

Proof. Given thatArgsP is strongly admisible (Theorem 6) it then follows from Theo-
rem 5 thatLabPP+ = (ArgsP ,Args+P ,Ar \ (ArgsP ∪Args+P )) is a strongly admissible
labelling. Now considerLabPO = (ArgsP ,ArgsO,Ar \(ArgsP ∪ArgsO)). Notice that
Args−P ⊆ Args+P , otherwiseArgsP would not be an admissible set. Also, from the struc-
ture of a winning strategy (with the Opponent playing all possible attackers of each Pro-
ponent move as its children) it follows thatArgsO = Args−P . Hence,ArgsO ⊆ Args+P .
LabPO has the same min-max numbering asLabPP+ (minus the arguments that are no
longerout in LabPO, sinceout(LabPO) ⊆ out(LabPP+), asArgsO ⊆ Args+P ). This
is because theout-labelled arguments inArgs+P \ ArgsO do not influence the min-max
numbers of thein-labelled arguments inArgsP . It then follows that the min-max num-
bers of theout-labelled arguments inLabPO also stay the same. Hence, the min-max
numbering ofLabPO is essentially a restricted version (with a smaller domain)of the



min-max numbering ofLabPP+ . So from the fact thatLabPP+ is a strongly admissi-
ble labelling (not yielding∞) it directly follows thatLabPO is a strongly admissible
labelling (not yielding∞).

Hence, given a winning strategy of the Standard Grounded Game, the set of all propo-
nent moves and the set of all opponent moves essentially define a strongly admissible
labelling.

5.2. The Grounded Persuasion Game

The second discussion game to be discussed is the Grounded Persuasion Game [13],
which can be seen as a type of Mackenzie-style dialogue, applied to abstract argumen-
tation. The game has two participants (proponent P and opponent O) and four types of
moves:claim (the first move in the discussion, with which P utters the mainclaim that
a particular argument has to be labelledin), why (with which O asks why a particular
argument has to be labelled in a particular way),because (with which P explains why
a particular argument has to be labelled a particular way) and concede (with which O
indicates agreement with a particular statement of P). During the game, both P and O
keepcommitment stores, partial labellings (which we will refer to asLabP andLabO)
which keep track of which arguments they think arein andout during the course of
the discussion. For P, a commitment is added every time he utters aclaim or because
statement. For O, a commitment is added every time he utters aconcede statement. An
open issueis an argument where only one player has a commitment. Since the game is
such that at each stage,LabO ⊑ LabP , this means an argument where P already has a
commitment while O has not. Some of the key rules of the Grounded Persuasion Game
are as follows.

• If O utters awhy in(A) statement (resp. awhy out(A) statement) then P has to
reply with because out(B1, . . . , Bn) whereB1, . . . , Bn are all attackers ofA
(resp. withbecause in(B) whereB is an attacker ofA).

• Any why in(A) or why out(A) statement of O has to be related to the most
recently created open issue in the discussion.

• A because statement is not allowed to use an argument that is already anopen
issue.

• Every time an open issue is resolved, O has to concede immediately. That is,
every time O has enough evidence to agree with P that a particular argument has
to be labelledin (because for each of its attackers, O is already committed that
the attacker is labelledout) or has to be labelledout (because it has an attacker
of which O is already committed that it is labelledin) then O has to utter the
relevantconcede statement immediately.

We refer to [13] for full formal details of the game. An example discussion of the
Grounded Persuasion Game can be found in Figure 2 (bottom).

Unlike the Standard Grounded Game, in the Grounded Persuasion Game it is not
necessary to construct a winning strategy to show grounded membership. Instead, an
argumentA is in the grounded extension iff there existsat least one gamethat starts with
P uttering “claim in(A)” and is won by P [13].9

9A discussion is won by P iff at the end of the game O is committedthat the argument the discussion started
with is labelledin.



As a general property of the Grounded Persuasion Game, it canbe observed that at
every stage of the discussion, the commitment store of O (LabO) forms an admissible
labelling.10 This is because whenever a newin-commitment is added, O is already com-
mitted that all its attackers areout, and whenever a newout-commitment is added, O
is already committed that at least one attacker isin. Moreover, the commitment store
of O also forms astronglyadmissible labelling. This is because every time a newin-
commitment is added, all itsout-attackers have natural min-max numbers, and every
time a newout-commitment is added, it has anin-attacker with a natural min-max num-
ber. Although it is possible for theout-commitments to obtain lower min-max numbers
later on in the game (in case it gets newin-attackers) the fact that each commitment
has a natural min-max number when it is first created implies that it will continue to
have a natural min-max number at any further point of the game. Hence, we obtain the
following result.

Theorem 8. If, given an argumentation framework(Ar , att), a particular discussion
under the Grounded Persuasion Game is won by P, then the resulting commitment
store of O (LabO) forms the strongly admissible labelling(in(LabO), out(LabO),Ar \
(in(LabO) ∪ out(LabO))).

5.3. The Standard Grounded Game (SGG) vs. the Grounded Persuasion Game (GPG)

So far, we have seen that both the SGG and the GPG show membership of the grounded
extension essentially by building a strongly admissible labelling where the argument
in question is labelledin.11 This raises the question of how many steps each of these
games requires for doing so. Consider again the argumentation framework of Figure
2 (top left). The winning strategy of the SGG is in the same figure (top right). Now
consider what would happen if one would start to extend the argumentation framework
by duplicating the middle part. That is, suppose we have argumentsB1, . . . , Bn and
C1, . . . , Cn (with n being an odd number), as well as argumentsA andD. Suppose that
for everyi ∈ {1, . . . , n − 1} Bi+1 attacksBi, andCi+1 attacksCi, and that for each
eveni ∈ {2, . . . n− 1} Bi+1 attacksCi, andCi+1 attacksBi, and thatB1 andC1 attack
A, and thatD attacksBn andCn. In that case, the branches in the SGG winning strategy
would split at every O-move. So forn = 3 (as is the case in Figure 2) the number of
branches is four, forn = 5 it is eight, etc. In general, the number of branches in the SGG
winning strategy is2(n+1)/2, with the number of nodes in the SGG winning strategy
being1 + 2Σ

(n+1)/2
i=1 2i. Hence, the number of steps needed in a winning strategy of the

SGG can beexponentialin relation to the size (number ofin andout labelled arguments)
of the strongly admissible labelling that the SGG winning strategy is constructing.12

As for the GPG, the situation is different. We observe that, as a general property, the
total number of moves in a successful GPG (won by P) is at most three times the size
of the strongly admissible labelling. This is because everyin or out-labelled argument
will have at most one associatedwhy statement and precisely one associatedconcede

statement, and the total number ofclaim andbecause statements will be less or equal

10That is, if one regards all arguments where O does not have anycommitments to be labelledundec.
11Similarly, it can be observed that for instance the credulous preferred game [9,21] shows membership of a

preferred extension essentially by building an admissiblelabelling around the argument in question.
12We thank Mikołaj Podlaszewski for this example.
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D
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in(LabP ) out(LabP ) in(LabO) out(LabO)
P:claim in(A) A - - -
O: why in(A) A - - -
P:because out(B1, C1) A B1, C1 - -
O: why out(B1) A B1, C1 - -
P:because in(B2) A,B2 B1, C1 - -
O: why in(B2) A,B2 B1, C1 - -
P:because out(B3, C3) A,B2 B1, C1, B3, C3 - -
O: why out(B3) A,B2 B1, C1, B3, C3 - -
P:because in(D) A,B2, D B1, C1, B3, C3 - -
O: concede in(D) A,B2, D B1, C1, B3, C3 D -
O: concede out(B3) A,B2, D B1, C1, B3, C3 D B3

O: concede out(C3) A,B2, D B1, C1, B3, C3 D B3, C3

O: concede in(B2) A,B2, D B1, C1, B3, C3 D,B2 B3, C3

O: concede out(B1) A,B2, D B1, C1, B3, C3 D,B2 B3, C3, B1

O: why out(C1) A,B2, D B1, C1, B3, C3 D,B2 B3, C3, B1

P:because in(C2) A,B2, D,C2 B1, C1, B3, C3 D,B2 B3, C3, B1

O: concede in(C2) A,B2, D,C2 B1, C1, B3, C3 D,B2, C2 B3, C3, B1

O: concede out(C1) A,B2, D,C2 B1, C1, B3, C3 D,B2, C2 B3, C3, B1, C1

O: concede in(A) A,B2, D,C2 B1, C1, B3, C3 D,B2, C2, A B3, C3, B1, C1

Figure 2. The Standard Grounded Game (SGG) versus the Grounded Persuasion Game (GPG).

to the total number ofconcede statements. Hence, the total number of moves in the
GPG islinear in relation to the size of the strongly admissible labellingthat the GPG is
constructing.

6. Discussion and Future Research

In the current paper, we have re-examined the concept of strong admissibility, from both
theoretical and practical perspectives. From theoreticalperspective, we have observed
that the strongly admissible sets form a lattice with the empty set as bottom element and
the grounded extension as top element. Also, we have developed the concept of a strongly
admissible labelling, and shown how it relates to the concept of a strongly admissible
set. From practical perspective, we have examined how strongly admissible labellings
lie at the basis of both the Standard Grounded Game [16] and the Grounded Persuasion
Game [13]. Although both essentially construct a strongly admissible labelling around
the argument in question, the Grounded Persuasion Game doesso using a linear number
of steps, whereas the Standard Grounded Game can require an exponential number of
steps.

One of the things we plan to examine in the near future is how the concept of strong
admissibility can be useful in identifying the shortest discussion that shows an argument
(A) is in the grounded extension. For instance, we conjecture that for each minimal (w.r.t.
⊑) strongly admissible labelling that labelsA in, there exists a discussion under the
Grounded Persuasion Game for argumentA that builds precisely this labelling. How-
ever, there can be more than one such labelling. For argumentF in Figure 1, for in-
stance, both({A,C, F}, {B,E}, {D,G,H}) and({D,F}, {E}, {A,B,C,G,H}) are
minimal (w.r.t.⊑) strongly admissible labellings that labelF in, but the size of the sec-



ond labelling is smaller than that of the first labelling, thus yielding a shorter discussion.
How to precisely obtain such a strongly admissible labelling with minimal size is a topic
for further investigation.
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