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Abstract. In the current paper, we re-examine the conceptaing admissibility
as was originally introduced by Baroni and Giacomin. We dxarthe formal prop-
erties of strong admissibility, both in its extension-tthsad in its labelling-based
form. Moreover, we show that strong admissibility plays @liole in discussion-
based proof procedures for grounded semantics. In patiddllows one to com-
pare the performance of alternative dialectical proof pdoaces for grounded se-
mantics, and obtain some remarkable differences betweeStindard Grounded
Game and the Grounded Persuasion Game.
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1. Introduction

Admissibility is generally seen as one of the cornerstofi@bstract argumentation the-
ory [15], as it is the basis of various argumentation serncaifl]. Not only does admissi-
bility appeal to common intuitions [3], it is also one of theykrequirements for obtaining
a consistent outcome of instantiated argumentation fasmal[8,17,19].

Slightly less well-known is the principle aftrong admissibilitywhich was origi-
nally introduced in [2]. The original aim of strong admis#tlp was to characterise the
unique properties of the grounded extension. It turns amjever, that the concept is
also useful for comparing the characteristics of the déffedialectical proof procedures
that have been stated in the literature. In particular, thadrd Grounded Game [16,20]
and the Grounded Persuasion Game [13,14] prove memberfsthip grounded exten-
sion essentially by constructing a strongly admissibleasetind the argument in ques-
tion. However, as we will see, the Grounded Persuasion Gamaiglé to do so in a more
efficient way, requiring a number of steps thalirearly related to thein/out-sizé* of
the strongly admissible set, whereas the Standard Grougdete can require a number
of steps that i€xponentiallyrelated to thein/out-size of the strongly admissible set.

The remaining part of the current paper is structured asvia? First, in Section 2
we briefly summarise some of the key concepts of abstractagtation theory, both in
its extension and in its labelling based form. In Section 8 then discuss the extension
based version of strong admissibility and examine its fdpnaperties. In Section 4 we
introduce the labelling based version of strong admisgitzihd show how it relates to its
extension based version. In Section 5 we then re-examirgtérelard Grounded Game,

1By thein/out-size of a set of arguments, we mean the number of argumeitis get itself plus the number
of arguments attacking the set.
2This paper has been supported by EPSRC (UK), grant ref. EP08@/1 (SAsSy project).
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and the Grounded Persuasion Game, and show that strongsituititysplays a vital role
in describing the relative efficiency of these games. Ini8e@ we then round off with
a discussion of the obtained results and open issues. Ajthsame of the proofs had to
be omitted due to lack of space, these can be found in a segecinical report [7].

2. Formal Preliminaries

In the current section, we briefly restate some of the key episcof abstract argumen-
tation theory, in both its extension based and labellingtdsrm.

Definition 1 ([15]). Anargumentation framewoik a pair (Ar, att) whereAr is a finite
set of entities, called arguments, whose internal striectan be left unspecified, and:
a binary relation onAr. We say thatd attacksB iff (A, B) € att.

Definition 2. Let(Ar, att) be an argumentation frameworld, € Ar and Args C Ar.
We defined™ as{B € Ar | A attacksB}, A~ as{B € Ar | B attacksA}, Args™ as
U{A" | A € Args}, andArgs— asU{A~ | A € Args}. Args is said to beconflict-free
iff Args N Args™ = 0. Args is said todefendA iff A~ C Args™. The characteristic
functionF : 247 — 247 is defined ad"(Args) = {A | Args defendsA}.

Definition 3. Let(Ar, att) be an argumentation frameworkrgs C Ar is said to be:
e an admissible set ifilrgs is conflict-free anddrgs C F(Args)

a complete extension iffrgs is conflict-free anddrgs = F(Args)

a grounded extension iflrgs is the smallest (w.r.tC) complete extension

a preferred extension ifflrgs is a maximal (w.r.tC) complete extension

If Args is a conflict-free set, then ibown-admissibleet (written asdrgs)) is defined
as the (unique) biggest admissible subsetiafs.®

The above definitions essentially follow the extension Haggproach of [15]. It is also
possible to define the key argumentation concepts in termgoiment labellings [5,10].

Definition 4. Let (Ar, att) be an argumentation framework. Amgument labellings
a partial functionLab : Ar — {in, out,undec}. An argument labelling is called an
admissible labellingff Lab is a total function and for eacld € Ar it holds that:

e if Lab(A) = in then for eachB that attacksA it holds thatLab(B) = out

e if Lab(A) = out then there exists & that attacksA such thatCab(B) = in

Lab is called acomplete labellingff it is an admissible labelling and for each € Ar
it also holds that:
e if Lab(A) = undec then not for eachB that attacksA it holds thatLab(B) =
out, and there exists n® that attacksA such thatCab(B) = in

As a labelling is essentially a function, we sometimes wititas a set of pairs. Also,
if Lab is a labelling, we writein(Lab) for {A € Ar | Lab(A) = in}, out(Lab) for
{A € Ar | Lab(A) = out} andundec(Lab) for {A € Ar | Lab(A) = undec}.
As a labelling is also a partition of the arguments into sétsmlabelled arguments,

3The well-definedness of the down-admissible set followsnfi@1], where this concept is defined in its
labellings form, together with the equivalence betweeemsibns and labellings [10].



out-labelled arguments andchdec-labelled arguments, we sometimes write it as a triplet
(in(Lab), out(Lab), undec(Lab)).

Definition 5 ([11]). Let Lab and Lab’ be argument labellings of argumentation frame-
work (Ar, att). We say thatCab T Lab' iff in(Lab) C in(Lad’) and out(Lab) C
out(Lab’).

We say thatCab, is a sublabelling o ab, (or alternatively, thatabs is a superlabelling
of Laby) iff Laby T Labs. If Labis a total labellingi(e. a total function), then itdown-
admissibldabelling [11] (written asCabl) is defined as the (unique) biggest (w.E5)
admissible sublabelling afab.

Definition 6. Let Lab be a complete labelling of argumentation framew¢de, ait).
Lab is said to be
e a grounded labelling ifiCab is the (unique) smallest (w.ri.) complete labelling
e a preferred labelling iffiCab is a maximal (w.r.tC) complete labelling

Given an argumentation framewo(kr, att) we define two functionargs2Lab and
Lab2Args (to translate a conflict-free set of arguments to an argunedelling,
and to translate an argument labelling to a set of argumesgpectively) such that
Args2Lab(Args) = (Args, Argst, Ar \ (Args U Args™)) and Lab2Args(Lab) =
in(Lab). It has been proven [10] that ifirgs is an admissible set (resp. a complete,
grounded or preferred extension) thergs2Lab(.Args) is an admissible labelling (resp.
a complete, grounded or preferred labelling), and th&kib is an admissible labelling
(resp. a complete, grounded or preferred labelling) thé2Args(Lab) is an admissible
set (resp. a complete, grounded or preferred extensiomedder, when the domain and
range ofArgs2Lab andLab2Args are restricted to complete extensions and complete
labellings they become injective functions and each osheverses, which implies that
the complete extensions (resp. the grounded extensiorhamit¢ferred extensions) and
the complete labellings (resp. the grounded labelling &edpreferred labellings) are
one-to-one related [10].

3. Strongly Admissible Sets

The concept of strong admissibility was first introduced ardhi and Giacomin [2],
using the notion o§trong defence

Definition 7 ([2]). Let(Ar, att) be an argumentation frameworl, C Ar and.Args C
Ar be a set of argumentsl is strongly defendetby Args iff each attackerB of A is
attacked by som€ € Args \ {A} such thatC' is strongly defended bytrgs \ {A}.

Baroni and Giacomin say that a sétgs satisfies the strong admissibility property iff it
strongly defends each of its arguments [2]. However, it$® glossible to define strong
admissibility without having to refer to strong defence.

Definition 8. Let (Ar, att) be an argumentation frameworldrgs C Ar is strongly
admissibleiff every A € Args is defended by somérgs’ C Args \ {A} which in its
turn is again strongly admissible.
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Figure 1. Example argumentation framework.

Theorem 1. Let (Ar, att) be an argumentation framework andlrgs C Ar. Args is
a strongly admissible set (in the sense of Definition 8) itthed € Args is strongly
defended bydrgs (in the sense of Definition 7).

Proof. See [7]. O

Theorem 2. Let (Ar, att) be an argumentation framework and ldigs C Ar be a
strongly admissible set. It holds that:

o Arygs is conflict-free

e Args is admissible

Proof. Conflict-freeness follows from [2, Proposition 51], togetlwith Theorem 1. Ad-
missibility follows from conflict-freeness, together withe fact that every strongly ad-
missible set defends each of its arguments. O

To illustrate the concept of strong admissibility, consittee argumentation framework
of Figure 1. Here, the strongly admissible sets &ré A}, {A,C}, {A,C, F}, {D},
{A,D}, {A,C, D}, {D,F}, {A,D,F} and {A,C, D, F'}, the latter also being the
grounded extension. As an example, the {s&1C, F'} is strongly admissible ad is
defended by, C is defended by{ A} and F’ is defended by{ A, C'}, each of which is a
strongly admissible subset §fi, C, F'} not containing the argument it deferttis.

Baroni and Giacomin prove that the grounded extension isuthigue biggest
strongly admissible set [Z|However, it can additionally be proved that the strongly ad-
missible sets form a lattice, of which the grounded exten&dhe top element and the
empty set is the bottom element. To do so, we need two lemmas.

Lemma 1. If Args; and.Args, are strongly admissible sets, thefrgs, U Args, is also
a strongly admissible set.

Lemma 2. Each admissible set has a unique biggest (w.r.t. set-immh)strongly ad-
missible subset.

If Args is an admissible set, we writdrgs |} for its biggest strongly admissible subset.

Theorem 3. Let(Ar, att) be an argumentation framework. The strongly admissibke set
of this framework form a lattice (w.r.t. set inclusion).

“4Please notice that although the §et, F'} defends argumerd in {4, C, F'}, itis in its turn not strongly
admissible (unlike{ A}). Hence the requirement in Definition 8 fatrgs’ to be asubsebf Args \ {A}.

5Hence, each strongly admissible set is an admissible seistbantained in the grounded extension. The
converse, however, does not hold. For instance, in Figufg“},is an admissible set that is contained in the
grounded extension, but it is not a strongly admissible set.



Proof. We need to prove that each two strongly admissible sets hap@mum (a
lowest upper bound) and a infimum (a greatest lower bound).
supremum Let Args, and.Args, be two strongly admissible sets. From Lemma 1 it
follows thatArgs, U.Args, is again a strongly admissible set. Since, by definition,
Args; C Args, U Args, andArgs, C Args, U Args,, it follows that.Args; U
Args, is an upper bound. Moreover, it is alsdavestupper bound, since any
proper subset aflrgs; U Args, will not be a superset aflrgs; and.Args,.
infimum Let Args, and.Args, be two strongly admissible sets. Ldtgs; be Args; N
Args,. From the fact thaidrgs; is conflict-free, it follows that it has a (unique)
biggest admissible subset, which we will refer to.4sgs;. From Lemma 2 it
follows that.Args5 has a (unique) biggest strongly admissible subset, which we
will refer to as.Argsy. We now prove thatdrgsy is an infimum ofArgs, and
Args,.
lower bound From the fact thatdrgsy C Argsy C Argss = Args; N Args, it
follows thatArgsy C Args; and.Argsy C Args,.
greatest lower bound Let .Args}’ be a strongly admissible admissible set such
that Argsy’ C Args; and.Argsy’ C Args,. Then, by definition, Args}’ C
Argss. Since Argsy’ is admissible, it follows thafdrgsy’ C Argsh (since
Argst, is thebiggestadmissible subset odrgs;). SinceArgsy’ is a strongly
admissible subset oflrgs} it follows that. Argsty’ C Argsy (sinceArgsy is
thebiggeststrongly admissible subset gfrgs?). 0

In essence, itdrgs; and.Args, are strongly admissible sets, thetrgs; U Args, is
their supremum, anfldrgs, N Args,)] is their infimum. By forming a lattice, with
the empty set as its bottom element and the grounded exteasiis top element, the
strongly admissible sets differ from the admissible setscivform a semi-lattice with
the empty set as its bottom element, and the preferred eateas its top elements [15].
It also distinguishes the strongly admissible sets fromdbmplete extensions, which
form a semi-lattice with the grounded extension as its mo#dement and the preferred
extensions as its top elements [15].

4. Strongly Admissible Labellings

Argument labellings [5,10] have become a popular approacpurposes such as argu-
mentation algorithms [6,16,18], argument-based judgraggtegation [11,12] and is-
sues of measuring distance of opinion [4]. In the currentigecwe develop a labelling
account of strong admissibility, which will subsequentéydsed to analyse some of the
existing discussion games for grounded semantics.

To define a strongly admissible labelling, we first have toodtice the concept of a
min-max numbering.

Definition 9. LetLab be an admissible labelling of argumentation framewdtk, att).
A min-max numberings a total functionMM s, : in(Lab) U out(Lab) — N U {oo}
such that for eact! € in(Lab) U out(Lab) it holds that:
e if Lab(A) = inthen MM 4 (A) = max({MMa(B) | B attacksA and
Lab(B) = out}) + 1 (with maz(0) defined a9)



o if Lab(A) = out then MM (A) = min({MM,q(B) | B attacksA and
Lab(B) = in}) + 1 (with min(0) defined asxo)

Theorem 4. Every admissible labelling has a uniqgue min-max numbering.

Given an admissible labelling, its min-max numbering cacdm@puted in an inductive,
bottom-up way. Each step for doing so consists of two substiepthe first substep,
we identify the unnumbereth-labelled arguments of which adlut-labelled attackers
have already been numbered, and number them accordingly (i@ maximal min-
max number of their out-labelled attackers, plus 1). In thepsd substep, we identify
the unnumberedut-labelled arguments that have at least andabelled attacker that
has already been numbered, and number them accordingly tfvatminimal min-max
number of their in-labelled attackers that have alreadynbraembered, plus 19.We
keep on doing such steps until no new arguments become nathfJdrosein andout-
labelled arguments that are still unnumbered then becombdered withoo.

As an example, in the argumentation framework of Figure kst the admissible
labelling({A, C, F, H},{B, E,G},{D}). In step 1 (first substep) thia:-labelled argu-
mentA is numbered with 1, as it has no attackers. In the secondequtibbout-labelled
argumentB is numbered with 2, as it has an-labelled attacker that is already numbered
(4). In step 2, thein-labelled argument’ is numbered with 3, and thext-labelled ar-
gumentE is numbered with 4. In step 3, the-labelled argumenk’ is numbered with
5. After that, no subsequent steps will yield any additiamainbers, so the remaining
unnumberedn andout-labelled arguments{ and H) are numberedo. Notice that
becausd) is labelledundec, it will remain unnumbered.

It can be verified that the procedure sketched above yieldsraa min-max num-
bering [7]. Moreover, it turns out that every min-max nunibgrof the same admissi-
ble labelling has to be equal to the one yielded by the abostekkd procedure, thus
obtaining uniqueness [7].

Definition 10. A strongly admissible labellinig an admissible labelling whose min-max
numbering yields natural numbers only (so no argument isharatoo).

From Definition 10 it directly follows that every strongly mdssible labelling is also an
admissible labelling.

Theorem 5. Let (Ar, att) be an argumentation framework.
o for every strongly admissible sgtrgs C Ar, it holds thatArgs2Lab(Args) is a
strongly admissible labelling
e for every strongly admissible labellingab, it holds thatLab2Args(Lab) is a
strongly admissible set

61t can be observed that if in subsequent steps, more afitabelled attackers become numbered, the
additional min-max numbers of these-labelled attackers will never be lower than the min-max bhanof
the firstin-labelled attacker that became numbered. Hencemihenal min-max number of then-labelled
attackers will remain the same. This gives us the desiralolegpty that once an argument becomes numbered,
it never has to be renumbered later on.

“It has to be mentioned, however, thtitferentadmissible labellings yield different min-max numberings
For instance, the admissible labelliggD, F'},{E}, {A, B, C, G, H}) numbers argumerf with 3 instead
of with 5.



Theorem 5 can be proven using induction on the steps of theeatletched number-
ing procedure. We refer to [7] for detaflsSimilar to the strongly admissible sets, the
strongly admissible labellings form a lattice (w.E) with the all-undec labelling as the
bottom element and the grounded labelling as the top elermbetproof of this follows

a structure similar to that of Theorem 3.

5. Strong Admissibility and Argument Games

Now that some of the formal properties of strong admissibiiave been examined,
the next step is to study some of its applications. In padigit turns out that strong
admissibility is one of the corner stones of the discussames for grounded semantics.

5.1. The Standard Grounded Game

We first describe the Standard Grounded Game [16,20].

Definition 11. A discussionin the Standard Grounded Game is a finite sequence
[A1,...,A,] (n > 1) of arguments (sometimes calletbveg, of which the odd moves
are called P-moves (Proponent moves) and the even moveslégd ©-moves (Oppo-
nent moves), such that:
1. every O-move is an attacker of the preceding P-move (thavesyA; wherei is
even and® < i < n attacksA;_1)
2. every P-move except the first one is an attacker of the prag&dimove (that s,
everyA; wherei is odd and3 < i < n attacksA;_;)
3. P-moves are not repeated (that is, for every edde {1,...,n} it holds that if
1#£ ] thenA; #+ AJ)

A discussion is calleterminatedff there is noA,, 1 such thafA, ..., A,, A,41]isa
discussion. A terminated discussion is said tevo@ by the player making the last move.

An argument trees a tree of which each nodej(is labelled with an argumenti(g(n)).
Thelevelof a node is the number of nodes in the path to the root.

Definition 12. A winning strategyof the Standard Grounded Game for argumehnis
an argument tree, where the root is labelled withsuch that
1. for each path from the root(,,;) to a leaf noded,.q) it holds that the argu-
ments on this path form a terminated discussion won by P
2. for each node at odd levelp it holds that{ Arg(n.p4) | ncria is a child ofnp}
= {B | B attacksArg(np)} and the number of children afp is equal to the
number of attackers odrg(np)
3. each node of even leve}, has precisely one chilal, 4, and Arg(n.p.q ) attacks

Arg(no)

8Notice that running the numbering procedure on an arbitgrgissible labelling identifies its unique max-
imal (w.r.t. C) strongly admissible sublabelling, consisting of thaseand out-labelled arguments that are
assigned natural numbers, and all other arguments becamiwr. Hence, every admissible labelling has a
unique maximal strongly admissible sublabelling. Usingditem 5, we then obtain that also every admissible
set has a unique biggest (w.&) strongly admissible subset, hence proving Lemma 2.



The correctness and completeness of the Standard Grourathee pends on the pres-
ence of a winning strategy. That is, an arguméns in the grounded extension iff there
exists a winning strategy fot. Interesting enough, it turns out that such a winning strat-
egy defines a strongly admissible set containing

Theorem 6. The set of all proponent moves in a winning strategy of thendztal
Grounded Game is strongly admissible.

Proof. We prove this by induction over the depth ¢f the winning strategy game tree.

basisi = 0. In that case, the winning strategy consists of a singleraegu (say,A).
This means thatl has no attackers. Hencg4} is a strongly admissible set.
step Suppose that every winning strategy of depth less or eqaalithas its proponent
moves constituting a strongly admissible set. We need tueptioat also every
winning strategy of depth + 2 has its proponent moves constituting a strongly
admissible set. L/ S be a winning strategy of depth-2. Let A be the argument
at the root of the tree. Lel/ S, ..., WS, be the subtrees whose roots are at
distance 2 of the root of¥'S. The induction hypothesis states that for each of
these subtreed!(S?), their set of proponent moveérgs’; constitutes a strongly
admissible set. Therefore (by Lemma 1) the deys’ = U, Args’; is strongly
admissible. AlsoA ¢ Args’ (this is because the proponentis not allowed to repeat
his moves). LeB3 be an arbitrary argumentidrgs (the set of all proponent moves
in the winning strategy). We distinguish two cases:
1. B € Args’. Then, sincedrys’ is a strongly admissible set, there exists an
Args” C Args’ \ {B} that defend$B and is itself strongly admissible. Since
Args’ C Arygs, it also holds thatdrgs” C Args \ {B}.
2. B ¢ Args’. ThenB = A (the root of the tredV S). The structure of the
W S tree is such thaB is defended by the roots &7S},...,WS/. SoB is
defended by the strongly admissible sétgs’. Also B ¢ Args’, so Args’ C
Args \ { B}, therefore satisfying Definition 8. O

It can also be observed that a winning strategy defines agdyradmissible labelling.

Theorem 7. Let. Args p be the set of proponent moves aftgys, be the set of opponent
moves of a particular winning strategy given an argumentatramework( Ar, att). It
holds that(Args p, Argsq, Ar \ (Argsp U Args)) is a strongly admissible labelling.

Proof. Given thatArgs p is strongly admisible (Theorem 6) it then follows from Theo-
rem5thatCabpp+ = (Argsp, Argsh, Ar\ (Args p UArgs})) is a strongly admissible
labelling. Now consideCabpo = (Argsp, Argsy, Ar\ (Args pUArgs,)). Notice that
Argsp C Argsh, otherwiseArgs , would not be an admissible set. Also, from the struc-
ture of a winning strategy (with the Opponent playing allgibke attackers of each Pro-
ponent move as its children) it follows thdtrgs,, = Argsp. Hence,Args, C Argsh.
Labpo has the same min-max numbering&s pp+ (Minus the arguments that are no
longerout in Labpo, sinceout(Labpo) C out(Labpp+ ), asArgsy C Argsh). This

is because theut-labelled arguments islrgs; \ Args, do not influence the min-max
numbers of thein-labelled arguments inlrgs p. It then follows that the min-max num-
bers of theout-labelled arguments ifabpo also stay the same. Hence, the min-max
numbering ofLabpo is essentially a restricted version (with a smaller domairthe



min-max numbering oLabpp+. So from the fact thatabpp+ is a strongly admissi-
ble labelling (not yielding>o) it directly follows thatLabpo is a strongly admissible
labelling (not yieldingo). O

Hence, given a winning strategy of the Standard GroundedeGHre set of all propo-
nent moves and the set of all opponent moves essentiallyedafgirongly admissible
labelling.

5.2. The Grounded Persuasion Game

The second discussion game to be discussed is the Groundatafien Game [13],
which can be seen as a type of Mackenzie-style dialogueieabl abstract argumen-
tation. The game has two participants (proponent P and appdd) and four types of
moves:claim (the first move in the discussion, with which P utters the ncéaim that
a particular argument has to be labeltad), why (with which O asks why a particular
argument has to be labelled in a particular wagause (with which P explains why
a particular argument has to be labelled a particular wagl)cancede (with which O
indicates agreement with a particular statement of P).rputhe game, both P and O
keepcommitment storegartial labellings (which we will refer to aSabp and Labp)
which keep track of which arguments they think areandout during the course of
the discussion. For P, a commitment is added every time Bestdatlaim or because
statement. For O, a commitment is added every time he uttesa@de statement. An
open issuas an argument where only one player has a commitment. Sirecgame is
such that at each stagéabpo T Labp, this means an argument where P already has a
commitment while O has not. Some of the key rules of the GredriRersuasion Game
are as follows.

e If O utters awhy in(A) statement (resp.@hy out(A) statement) then P has to
reply with because out(Bs, ..., B,) whereB, ..., B, are all attackers ofi
(resp. withbecause in(B) whereB is an attacker ofd).

e Any why in(A) or why out(A) statement of O has to be related to the most
recently created open issue in the discussion.

e A because Statement is not allowed to use an argument that is alreadypen
issue.

e Every time an open issue is resolved, O has to concede imtagdid@hat is,
every time O has enough evidence to agree with P that a part&@gument has
to be labelledin (because for each of its attackers, O is already commitiad th
the attacker is labellesut) or has to be labelledut (because it has an attacker
of which O is already committed that it is labellad) then O has to utter the
relevantconcede statement immediately.

We refer to [13] for full formal details of the game. An exammiscussion of the
Grounded Persuasion Game can be found in Figure 2 (bottom).

Unlike the Standard Grounded Game, in the Grounded Pemsu@sime it is not
necessary to construct a winning strategy to show groundadbarship. Instead, an
argumentd is in the grounded extension iff there exiatdeast one gamthat starts with
P uttering ‘claim in(A)” and is won by P [13P

9A discussion is won by P iff at the end of the game O is committed the argument the discussion started
with is labelledin.



As a general property of the Grounded Persuasion Game, hieabserved that at
every stage of the discussion, the commitment store of @) forms an admissible
labellingX° This is because whenever a nemcommitment is added, O is already com-
mitted that all its attackers akmt, and whenever a newut-commitment is added, O
is already committed that at least one attackeinisMoreover, the commitment store
of O also forms astrongly admissible labelling. This is because every time a naw
commitment is added, all itsut-attackers have natural min-max numbers, and every
time a newout-commitment is added, it has an-attacker with a natural min-max num-
ber. Although it is possible for theut-commitments to obtain lower min-max numbers
later on in the game (in case it gets newattackers) the fact that each commitment
has a natural min-max number when it is first created imphes it will continue to
have a natural min-max number at any further point of the gateace, we obtain the
following result.

Theorem 8. If, given an argumentation framewofklr, att), a particular discussion
under the Grounded Persuasion Game is won by P, then thetirgsildommitment
store of O Labp) forms the strongly admissible labellifgn(Labo), out(Labo), Ar \
(in(Labo) U out(Labo))).

5.3. The Standard Grounded Game (SGG) vs. the Groundedd2suGame (GPG)

So far, we have seen that both the SGG and the GPG show meripbafrfie grounded
extension essentially by building a strongly admissibleeling where the argument
in question is labelledn.! This raises the question of how many steps each of these
games requires for doing so. Consider again the argumentitimework of Figure
2 (top left). The winning strategy of the SGG is in the samerggiop right). Now
consider what would happen if one would start to extend tjaraentation framework
by duplicating the middle part. That is, suppose we haveraegusBy, ..., B, and
Ch,...,Cy (with n being an odd number), as well as argumetitsnd D. Suppose that
for everyi € {1,...,n — 1} B;4; attacksB;, andC;, attacksC;, and that for each
even: € {2,...n— 1} B;;; attacks(;, andC; 1, attacksB;, and thatB; andC; attack
A, and thatD attacksB,, andC,,. In that case, the branches in the SGG winning strategy
would split at every O-move. So far = 3 (as is the case in Figure 2) the number of
branches is four, fon = 5 itis eight, etc. In general, the number of branches in the SGG
winning strategy i2("t1/2 with the number of nodes in the SGG winning strategy
beingl + 22521)/221’. Hence, the number of steps needed in a winning strategyeof th
SGG can bexponentiain relation to the size (humber @f andout labelled arguments)
of the strongly admissible labelling that the SGG winninasigy is constructing?

As for the GPG, the situation is different. We observe thag general property, the
total number of moves in a successful GPG (won by P) is at nhosettimes the size
of the strongly admissible labelling. This is because euargr out-labelled argument
will have at most one associatedly statement and precisely one associateticede
statement, and the total numberaifaim andbecause statements will be less or equal

10That is, if one regards all arguments where O does not haveanynitments to be labelleghdec.

USimilarly, it can be observed that for instance the credsifmeferred game [9,21] shows membership of a
preferred extension essentially by building an admisddilelling around the argument in question.

12\We thank Mikotaj Podlaszewski for this example.



B1 B2 B3
° . ° B3— D
B1 B2
/ \ / ~ c3— D
Ae® oD A
\ / B3— D
c1 2 ci—=cC2
.~ G @ ~c3—b
in(Labp) out(Labp) in(Labp) out(Labp)
P:claim in(A) A - - -
O:why in(A) A - -
P:because out(Bq1, Cq) A By, Cq - -
O:why out(Bq) A B, Cy - -
P:because in(Bs) A, By B1,C1 - -
O:why in(Bs3) A, By B1,C1 - -
P:because out(Bj3, C3) A, By B1,Cy1, B3, C3 - -
O:why out(B3) A, By B1,C1, B3, C3 - -
P:because in(D) A,Bs, D B1,C1, B3, C3 - -
O: concede in(D) A,Bs, D B1,C1, B3, C3 D -
O: concede out(B3) A,Bs, D B1,C1, B3, C3 D Bs
O: concede out(C'z) A, By, D By,Cq, B3, C3 D B3, C3
O: concede in(Bj) A, By, D By,Cq, B3, C3 D, By B3, C3
O: concede out(Bq) A, By, D By,Cq, B3, C3 D, By B3, C3, By
O:why out(C7) A, By, D B;,C1,B3,C3 D, By Bs,Cs, By
P:because in(Cy) A, By, D,Cy By,Cq, B3, C3 D, By B3, C3, By
O: concede in(C2) A, By, D,Cq By,Cq, B3, C3 D, By, Co B3, C3, By
O: concede out(C'7) A, By, D,Cq By,Cq, B3, C3 D, By, Co B3, C3,B1,Cq
O: concede in(A) A, By, D,Cy B;,C1,B3,C3 D, B3,Ca, A Bs,C3,B1,Cq

Figure 2. The Standard Grounded Game (SGG) versus the Grounded Slers@Game (GPG).

to the total number otoncede statements. Hence, the total number of moves in the
GPG islinear in relation to the size of the strongly admissible labellihgt the GPG is
constructing.

6. Discussion and Future Research

In the current paper, we have re-examined the concept afgsadmissibility, from both
theoretical and practical perspectives. From theorefieaspective, we have observed
that the strongly admissible sets form a lattice with the gmspt as bottom element and
the grounded extension as top element. Also, we have deagtbp concept of a strongly
admissible labelling, and shown how it relates to the conoép strongly admissible
set. From practical perspective, we have examined howgly@dmissible labellings
lie at the basis of both the Standard Grounded Game [16] anGthunded Persuasion
Game [13]. Although both essentially construct a stronglmesible labelling around
the argumentin question, the Grounded Persuasion Gamedasing a linear number
of steps, whereas the Standard Grounded Game can requirpaneatial number of
steps.

One of the things we plan to examine in the near future is hextincept of strong
admissibility can be useful in identifying the shortestdission that shows an argument
(4) isinthe grounded extension. For instance, we conjechatfor each minimal (w.r.t.
C) strongly admissible labelling that labels in, there exists a discussion under the
Grounded Persuasion Game for argumérthat builds precisely this labelling. How-
ever, there can be more than one such labelling. For argumeéntFigure 1, for in-
stance, botli{ A4, C, F'},{B, E},{D,G,H})and({D, F'},{E},{A,B,C,G,H}) are
minimal (w.r.t.C) strongly admissible labellings that labElin, but the size of the sec-



ond labelling is smaller than that of the first labelling,shyielding a shorter discussion.
How to precisely obtain such a strongly admissible labgNirith minimal size is a topic
for further investigation.
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