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Abstract 

The impact of coal pore structure on adsorption-induced matrix swelling of three coals of different ranks was 
investigated experimentally. The swelling strain measurements for the selected samples of the two higher rank coals 
suggested that variation in the sample pore size distribution, particularly the microporosity, has a larger impact on 
matrix swelling induced by adsorption of CO2 than by adsorption of less adsorbing gases. The swelling behaviour 
recorded for the low rank coal may be explained by the level of microporosity or lack of it. From flue gas ECBM 
point of view, the swelling strain data tentatively suggests that the low rank coal would experience less swelling, 
compared to the higher rank coals. 
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1. Introduction 

Coal is characterised as a dual porosity reservoir rock system, which consists of porous-solid blocks 
known as matrix (primary porosity), bounded by a well-defined network of natural fractures known as 
cleats (secondary porosity). The cleats are the main flow conduits in a coal seam, whereas methane is 
primarily stored by adsorption in the micropores (pore size<2 nm) of the coal matrix. Current commercial 
production of Coalbed Methane (CBM) is primarily through pressure depletion in the reservoir. Enhanced 
recovery, involving injecting CO2 or N2, has long been proposed as a potentially viable means to improve 
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CBM recovery [1]. Using CO2 for Enhanced Coalbed Methane (ECBM) recovery is attractive as it has the 
added advantage of storing CO2 in deep coal seams.  However, adsorption of CO2 in coal causes it to 
swell, which has a severe detrimental impact on its permeability. To overcome CO2 adsorption induced 
permeability reduction, Durucan and Shi [2] investigated the injection of a binary mixture of N2 and CO2 
using horizontal wells. In a micro-pilot [3] involving injection of flue gas (87.5% N2 and 12.5% CO2) in 
Alberta, Canada, increase in injectivity was reported. If this technology is to be implemented at larger 
scales, a better understanding of the physics of mixed gas adsorption on coal and the associated swelling 
is required.  

The aim of the work presented here is was assess the effect of coal pore size distribution, especially the 
microporosity, on matrix swelling induced by adsorption of flue gas (87% N2 and 13% CO2), as well as 
pure gases, and the implication for flue gas ECBM.  

2. Experimental  procedure 

Three coal types of different ranks (designated as Coal A, Coal B and Coal C) from the Scottish 
coalfields were selected. The proximate analysis results for the three coals are given in Table 1. 

Table 1.Characteristics of coals used in the study  

 Coal A  Coal B Coal C 

Fixed Carbon (d.a.f) (%) 85.55 72.41 60.90 

Volatile Matter (d.a.f) (%) 15.45 27.59 39.10 

Rank, UK (American ) Coking steam              
(Low volatile 
bituminous) 

Medium volatile coking         
(Medium volatile 
bituminous) 

High volatile                  
(High volatile 
bituminous B/A) 

Total porosity (fraction) 0.02-0.04 0.04-0.1 0.04-0.06 

 
These coal samples were retrieved as 150 mm diameter cores from exploration wells and were 

transported to the laboratory immersed in water to retain moisture and prevent damage. Once received the 
coal samples were stored in a desiccator at constant humidity and temperature. Sample cubes were cut 
from these samples and prepared for the experimental work. Prior to their use, the coal samples were 
subjected to vacuum in a Pyrex© brand large diameter vacuum desiccator supplied by Fischer Scientific 
UK, were flooded with distilled water for more than 48 hours[4]. 

2.1. Pore size distribution 

In this study solid state H1 Nuclear Magnetic Resonance (H1 NMR) logs were used to characterise the 
pore size distribution of the coal samples. A distinct advantage of this technique is the ability to capture 
the entire pore size distribution ranging from submicropores to cleats; and the non-destructive nature of 
the process facilitates the use of the same sample for further analysis. H1 NMR is based on the relaxation 
behaviour of proton in the pore fluid of the rock when subjected to an external magnetic field. The 
transverse relaxation time (T2) of the protons in the pore fluid is widely used in the petroleum industry to 
map the hydrocarbons and to estimate the porosity of the subsurface formations [5]. The signal amplitude 
distribution of transverse relaxation time T2 extracted from the NMR logs is an indicator of the pore size 
distribution of the coal sample [6]. Although it is not possible to translate the NMR observations directly 
into pore size as the surface relaxivity of the fluid rock system is not quantitatively known, it is possible 
to correlate and compare the pore volumes for various coal samples.  
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NMR measurements were carried out at a temperature of 34oC using a 2 MHz, 0.5T, MARAN 
Instrument supplied by Oxford Instruments (UK). A CPMG [7, 8] pulse sequence was used to produce a 
closely spaced echo train with interecho time of 200 s and 8000 of those echos were captured for each of 
the 300 scans. The amplitudes of the resulting echo trains were fitted with a multimodal Distributed 
Exponential Fit (DXP) [6] and were plotted against the logarithmic T2 value in microseconds. For 
comparison, a surface relaxivity of 0.66 nm/ms was assumed. Following IUPAC classification: the T2 
relaxation <0.2 ms corresponds to sub-micropores (pore size<0.8 nm); 0.2<T2<1ms represents micropores 
(0.8 nm<pore size<2 nm); 1<T2<25 ms indicates mesopores (2 nm <pore size<50 nm); and T2>25 ms 
yields macropores (pore size>50 nm).  

2.2. Adsorption of pure and mixed gases 

The experimental setup used for adsorption isotherm measurements is based on Boyle's law (Fig. 1). It 
consists of a stainless steel cylindrical sample cell in which crushed coal sample can be introduced. The 
sample cell is connected to a reference volume through steel tubing of diameter 3.17 mm. An expansion 
valve connects the sample cell to the reference cell and the pressure is monitored through a transducer 
sourced from Druck UK Ltd. 

 

   
(a) (b) (c) 

Fig. 1. (a) and (b) Experimental set up for adsorption isotherm ; (c) matrix swelling measurements. 

An inline filter of size 0.5 micron, supplied by Swagelok UK, is placed before the sample cell to 
prevent the migration of coal fines into the tubings and reference cell. The setup is enclosed in a 
temperature controlled Hereaus 300 litre oven, supplied by Thermo Fischer GmbH, Germany, operating 
within 0.2 oC. The sample for the tests is prepared by crushing the coal sample and sieving to extract 
particles of uniform grain size of 150 m. All the experiments were conducted for dry coal at constant 
temperature of 26 oC.  

2.3. Sorption induced matrix  swelling 

Approximately 25 mm cubes (or rectangular prisms) of coal samples, with machine-smoothed surfaces 
mutually perpendicular to each other were used for matrix swelling experiments. High precision strain 
gauges were pasted on the mutually perpendicular directions on the coal sample. The samples were 
loaded into a 10 MPa high pressure moisture extractor cell (Figure 1c), which in turn was enclosed in an 
oven to maintain constant temperature throughout the experiments. The strain gauge leads from the cell 
were connected to an automatic data logging system which was connected to a desktop computer to 
record strain measurement data. Gas was injected into the cell in pressure steps of 0.5 MPa and the 
pressure in the cell was maintained during each step. The strain readings were monitored and, once the 
strains are stabilised, the pressure of the gas in the cell was increased to the next pressure step. The time 
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required to reach equilibrium and stabilisation of the strains depended on the gas injected, adsorption 
rate/volume and gas pressure.    

3. Results and discussion 

3.1. Pore size distribution 

The T2 measurement and the inferred pore size distribution of selected samples for each coal type is 
shown in Fig. 2. It can be seen that Coal A (low volatile bituminous) and Coal B (medium volatile 
bituminous) generally exhibit bi-modal pore structure, with pore volume mainly residing in micro-/meso- 
and macropores. It is noted Coal B is largely dominated by macroporosity. This is consistent with visual 
inspection of the samples, which shows significant cleats in all the samples. On the other hand, pore 
volume in the four Coal C (high volatile bituminous) samples tested was concentrated in a rather narrow 
range, varying from micropore (C3 and C4) to macropore (C1). No signal was recorded for sample C2. 
Visual observation of the Coal C samples revealed pyrite depositions and a rough and dull texture.  

From the pore size distribution of the coal samples tested, the microporosity fraction for each coal type 
may be estimated. This ranges from 0.33 to 0.54 for Coal A, 0.17 to 0.53 for Coal B and 0 to 1 for Coal 
C.  As coal A is relatively higher rank with fixed carbon around 80%, the presence of large microporosity 
is expected. Similar observation on higher microporosity for bright coals was also reported in the 
literature [10].  
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Fig. 2. NMR pore size distribution of the samples for the three coal types (solid line  Sample 1; red line  Sample 2; green line  
Sample 3; solid blue with symbol  Sample 4). 

3.2. Pure and mixed gas adsorption  

Sorption isotherms for N2, CH4, and flue gas (13% CO2/87% N2) and CO2 were measured on crushed 
samples of the three coals at a controlled temperature of 26 oC. For each coal, the test was repeated on 
different batch of samples. The sorption measurements were found to be very consistent. As shown in 
Figure 3, the sorption data (excess adsorption) for N2, CH4 and CO2 for the three coals can be fitted well 
with Langmuir equation, V = VLp/(PL+p). The fitted parameters, namely Langmuir volume VL and 
Langmuir pressure PL, are listed in Table 2. As would be expected, CO2 has the highest sorption affinity, 
followed by CH4, and then N2. Figure 4 compares the measured sorption isotherms for the three coals. It 
can be seen that the lowest rank Coal C has the least sorption capacity among the three coals, as would be 
expected.  
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Fig. 3. Measured excess adsorption and fitted Langmuir isotherm curves for pure gases for the three coals. 

Table 2. Fitting Langmuir equation to the sorption data for the three coals  Langmuir volume and pressure. 

 N2  CH4 CO2 Flue gas 

 VL 

mol/kg 

PL 

MPa 

VL 

mol/kg 

PL 

MPa 

VL 

mol/kg 

PL 

MPa 

VL 

mol/kg 

PL 

MPa 

Coal A 0.67 3.23 1.36 4.37 1.90 2.81 2.27 8.41 

Coal B 0.58 3.30 1.39 3.53 3.42 6.35 2.78 8.13 

Coal C 0.34 2.85 0.55 2.97 2.18 7.94 1.57 6.89 

 
 
 
 
 
 
 
 
 

 

Fig. 4. Comparison of sorption isotherms among the three coals. 

 
 
 
 
 
 
 

 

Fig. 5. Flue gas isotherms and Langmuir equation fit for the three coals. 

Based on the fitted Langmuir parameters for N2 and CO2, an attempt was made to fit the flue gas 
sorption data using the extended Langmuir equation. It was found that the prediction based on the known 
parameters for the pure gas components would considerably underestimate flue gas adsorption for all 
three coals (Fig. 5). Indeed, the flue gas data, despite its low CO2 content, are seen to lie closer to those 
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for CO2, rather than N2. It would seem that CO2 component has a much more pronounced influence on the 
sorption behaviour of the mixed gas than given by the extended Langmuir equation. The Langmuir 
parameters use are given in Table 2 (last column).    

3.3. Sorption  induced matrix swelling 

Matrix swelling caused by adsorption of the pure gases (N2, CH4 and CO2) and flue gas were measured 
for the selected samples of each coal. The results are presented in Figure 6 for the pure gases and Fig. 7 
for the flue gas. For Coal A (Fig. 6a-c) and Coal B (Fig. 6d-f, the measured swelling strains for N2 and 
CH4 for the individual samples, except for A4, are relatively consistent with each other. In comparison, 
the sample data are more scattered for CO2 for both coals. On the other hand, swelling strain was 
measured in only two of the samples (C3 and C4) for Coal C, which have predominantly microporosity; 
and the swelling for C4, with a larger microporosity, is consistently higher than C3. In addition, the strain 
measurement for N2 is dominated by matrix compression (negative) for all the Coal C samples, as 
reflected in the consistency of the data and the almost perfect linear relationship between strain and gas 
pressure (  = -71.5p).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Measured swelling strain for the pure gases for the selected samples of the three coals. 
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Fig. 7. Measured swelling strain for the flue gas for the selected samples of the three coals 

Coal matrix swelling strain is made up of two parts: strain gauge reading and compressive mechanical 
strain due to the cell gas pressure (see Fig. 6g). In this study, the compressive strain at a given gas 
pressure was estimated using the relationship obtained above for Coal C. Thus swelling strain can be 
calculated for each coal sample tested. For ease of analysis, the sample-average value was used for the 
three coals. The swelling strains thus obtained for the pure gases were fitted with Langmuir type equation 

s = Lp/(P +p). The fitted curves, together with the standard deviation, are plotted in Fig. 8, with the 
fitted parameters ( s, P ) listed in Table 3. It is noted that the swelling strains for the three coals do not 
necessarily follow their rank in sorption capacity (Fig. 4). In particular, although Coal C has the lowest 
sorption capacity, its CH4 swelling strain is comparable to that of Coal B (Fig. 8b) and considerably 
higher for CO2, approaching to that of coal A (Fig. 8c).  

As for flue gas adsorption, the flue gas swelling strain could also be fitted well with the Langmuir type 
equation. The fitted curves and the parameters are respectively presented in Fig. 9a and Table 3 (last 
column). For cross reference, the fitted flue gas sorption isotherms are also shown (Fig. 9b). The ratio of 
these two, which gives an indication of swelling strain per unit volume of adsorbed gas, is plotted in Fig. 
9c. It can be seen that Coal C has the least tendency to swell (lowest swelling strain per unit adsorbed 
volume). Interestingly the two higher rank coals have comparable, though varying, ratios. 
 
 
 
 
 
 
 
 

Fig. 8. Sample-averaged sorption induced swelling strain measurement and Langmuir-type equation fit. 

Table 3. Fitting Langmuir-type equation to the swelling data for the three coals  Langmuir swelling strain and swelling pressure. 

 N2  CH4 CO2 Flue gas 

 L 

microstrain 

P  

MPa 
L 

microstrain 

P  

MPa 
L 

microstrain 

P  

MPa 
L 

microstrain 

P  

MPa 

Coal A 8292 42.8 3141 1.54 5479 1.34 3228 2.96 

Coal B 3419 6.97 3698 6.11 4012 2.90 3095 1.78 

Coal C - - 2608 3.14 4683 1.24 1561 3.73 
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Fig. 9. Flue gas swelling strain and its correlation with sorption for the three coals. 

4. Conclusions 

Research has shown that the predicted sorption isotherms for the flue gas using the extended Langmuir 
equation and the parameters for the pure gas components (N2 and CO2) were found to be significantly 
lower compared to the test data.  

The NMR test results showed that the two higher rank coals (Coal A and Coal B) generally exhibit bi-
modal pore structure, whereas the pore structure of the low rank Coal C is highly variable, with the pore 
volume residing in a rather narrow range of pore size, varying from micropores to macropores. The 
swelling strain measurements for the selected samples of the two higher rank coals suggested that 
variation in the sample pore size distribution, particularly the microporosity, has a larger impact on matrix 
swelling induced by adsorption of CO2 than by adsorption of less adsorbing gases. The swelling 
behaviour recorded for Coal C samples may be explained by the level of microporosity or lack of it (C1).  

From flue gas ECBM point of view, the swelling strain data tentatively suggests that the low rank coal 
C would experience less swelling compared to the higher rank coals.  
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