
Maximum likelihood analysis of the first
KamLAND results

A. Iannia

a) INFN - Laboratori Nazionali del Gran Sasso,
S.S. 17bis Km 18+910, I-67010 Assergi (Aquila), ITALY

Abstract

A maximum likelihood approach has been used to analize the first
results from KamLAND emphasizing the application of this method
for low statistics samples. The goodness of fit has been determined
exploiting a simple Monte Carlo approach in order to test two different
null hytpotheses. It turns out that with the present statistics the
neutrino oscillation hypothesis has a significance of about 90% (the
best-fit for the oscillation parameters from KamLAND are found to
be: δm2

12 ∼ 7.1× 10−5 eV2 and sin2 θ12 = 0.424/0.576), while the no-
oscillation hypothesis of about 50%. Through the likelihood ratio the
hypothesis of no disappearence is rejected at about 99.9% C.L. with
the present data from the positron spectrum. A comparison with other
analyses is presented.

1 Introduction

The purpose of this paper is to perform a likelihood analysis of the first
KamLAND results [1]. KamLAND is a reactor-based neutrino oscillation
experiment with a baseline (source-detector distance) larger than 100 km [2].
This allows KamLAND to explore with a terrestrial anti-neutrino beam part
of the oscillation parameters space which is of interest for solar neutrinos. In
particular, KamLAND can test the Large Mixing Angle (LMA) solution for
the solar neutrinos puzzle [3].
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Experimental measurements [4, 7, 6, 8, 9] of the solar neutrinos flux on
Earth seems to show that these particles undergo matter-enhanced flavor
transformations (MSW effect) [10, 3]. However, a global analysis which takes
into account only the solar neutrinos measurements cannot identify a unique
solution for the parameters which drive the oscillations [11, 12]. Including the
new results from KamLAND the scenario changes and only one possibility,
namely the mentioned LMA solution, survives [11, 12, 13, 14, 15, 16, 17, 18].

In the following we present a new analysis of the KamLAND data. This
analysis, although performed with the first results shows few features such as
the importance of the systematic uncertainties which may affect future data
treatments.

In Fig. 1 we show the kamLAND results as from [1]. It can be noticed
that the statistics is rather poor at the moment and 5 bins have zero entries.
Therefore, a least square analysis of the data could be not appropriate. In
this case, as for low counting experiments, the method of analysis commonly
used is that of the Maximum Likelihood (ML). So, in this paper we attempt
to perform a ML analysis. In order to define our likelihood function we
introduce some definitions. We call, for the experimental KamLAND results,
Nobs

tot and Nobs
i the total number of observations and the number of entries in

the bin ith, respectively. Moreover, we assume that Nobs
tot is a Poisson random

variable. Hence, the joint p.d.f. for the set of data shown in Fig. 1 is the
product of Poisson distributions [19].

L(v) =
N∏

i=1

(N th
i (v))Nobs

i

Nobs
i !

Exp(−N th
i (v)) (1)

where N th
i is the expected number of entries in the bin ith and v is the vector

of unkown parameters we wish to estimate through the ML method. Accord-
ing to the ML prescription in order to estimate the unknown parameters we
should maximize the likelihood function. This is usually done through the
log-likelihood function which in the large-N limit1 (i.e. with high statistics)
is parabolic. For the log-likelihood we write

lnL(v) = −
∫ b

a
f(x;v)dx +

N∑
i=1

Nobs
i ln(

∫ xi+1

xi

f(x;v)dx) (2)

1Here, we call N the data sample size.
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with f(x;v) being the function which describes the physical process under
investigation 2 and, a and b define the region of interest for the random
variable x, which is measured.

Once the parameters have been estimated using the log-likelihood the
difficult task is to determine the confidence intervals for the same parameters.
In the large-N limit this is done through the covariance matrix using the
second derivatives of the log-likelihood function or through the relation [19,
20]

lnL(v) = lnLmax − Q

2
(3)

where Q defines the condifence region as a function of the number of param-
eters. Values of Q are tabulated in [19] as an example. Eq. (3) can also be
used when the likelihood function is not Gaussian, i.e. in the small-N limit.
In this case, however, the classical definition of confidence region is only ap-
proximated by eq. (3). Depending on how accurately the uncertainties should
be reported one could try to estimate the level of the approximation by a
Monte Carlo [19]. For a multidimensional likelihood an alternative approach
for confidence regions estimation is to maximize the log-likelihood function
with respect to all parameters but one. The profile of lnLmax against this
latter can be used as a one dimensional problem and, as an example, Q=1
in eq. (3) will corresponds to a 68.3% confidence interval.

Finally, once the parameters and their uncertainties have been estimated,
a goodness-of-fit calculation can be carried out through the classical Pearson’s
χ2

Per test, where

χ2
Per =

N∑
i=1

(Nobs
i −N th

i )2

N th
i

. (4)

Eq. (4) follows a χ2 distribution only in the large-N limit and the rule of
thumb is that the number of entries in the experimental histogram should be
such that Nobs

i > 5 [19, 21]. When the large-N limit is not reached a Monte
Carlo study to determine the statistics of χ2

Per should be performed. Only
in this way a correct P-value can be calculated.

2Here, N th
i =

∫ xi+1

xi
f(x;v)dx.
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2 Analysis of the first KamLAND results

Recently, KamLAND results have been analized [13, 11, 12, 14, 15, 16, 17, 18]
and used to estimate the solar neutrino oscillation parameters performing
a global analysis including solar neutrinos and short-baseline experiments.
In particular, in [13, 11, 12, 14, 15] KamLAND results have been analized
cosidering the statistics: χ2

P = −2logλP
3, where λP is a normalized likelihood

function given by the product of Poisson distributions [19]. So, λP and the
likelihood used in this paper only differ by a factor and should have the
same best-fit parameters. Yet, the confidence region estimation requires a
Monte Carlo calculation when the statistics is poor because only in the large-
N limit χ2

P follows a χ2 distribution with N − p d.o.f., being p the number
of estimated parameters [19, 21]. In [16, 17, 18] a different approach for
the statistical analysis has been used. Here, a multidimensional χ2-function
is used with the covariance matrix calculated from the experimental errors
shown in Fig. 1 and the systematic uncertainty from [1]. Of course, the use
of a χ2-function implies the assumption of Gaussian errors. As pointed out
in Sec. 1 this could be not appropriate for the data set of KamLAND.

In the following we have used the above considerations and the ML
method to analize the KamLAND results and compare the findings with
the other methods already implemented.

For KamLAND and in a 2ν scenario we write

N th
i (α, δm2, sin θ12) = αA

∫ Ei+1

Ei

dE
∫

dE ′R(E, E′)σ(Eν̄e)φ(Eν̄e)
( ∑

i

Pi

d2
i

P ee
i

)

=
∫ Ei+1

Ei

dEN th(E, α, δm2, sin θ12) (5)

where E and E ′ are the measured and real visible energy, respectively, and
Eν̄e = E ′ +0.8 MeV the energy of the incoming ν̄e. Moreover, A is a normal-
ization factor which accounts for the number of target protons, the detection
efficiency, the data taking time and conversion of units, σ(E ′) is the cross-
section for the inverse β-decay [22], Pi is the thermal power (in units of
GW) of the ith reactor and di its distance from the KamLAND detector [2],
φ(E ′) 4 is the ν̄e’s flux at the detector, weighed over the different fuel com-

3The implementation of this χ2 is suggested by the Review of Particle Properties [21].
4This flux takes into account the differential spectrum of the ν̄e’s, the average energy

and the intensity fraction of each fuel component.
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ponents [2, 23] in U and Pu as from [1] and calculated using the differential
spectrum from [24]. In eq. (5), R(E, E ′) is a Gaussian energy resolution

function with σ = 0.075
√

E ′(MeV ) [1].

In order to determine the constant A, we have normalized eq. (5) by using
the information and the average expected number of events (86.8) from [1].
Yet, we introduce a correction factor, α, which accounts for the systematic
uncertainties. The ν̄e’s survival probability, P ee

i , is written

P ee
i = 1− sin2 2θ12 sin2

(
1.27

δm2(eV 2)di(m)

Eν̄e(MeV )

)
(6)

In particular, to take into account the sistematic uncertainties we have mul-
tiplied the likelihood function in eq. (1) by a Gaussian given as a function
of α with mean value equal to one and σsys = 0.064, the total systematic
uncertainty quoted in [1]. So, the log-likelihood function to maximize looks
like

lnL(α, δm2, sin θ12) = −
∫ 8.125MeV

2.6MeV
dEN th(E, α, δm2, sin θ12)+

+
13∑
i=1

Nobs
i ln

∫ Ei+1

Ei

dEN th(E, α, δm2, sin θ12)− 1

2

(α− 1

σsys

)2
(7)

with N th from eq. (5).
We have searched for maxima of lnL from eq. (7) using two hypotheses.

The first assumes no-oscillation and the only non-zero parameter is α. In this
case the best-fit is for α = 0.892. We point out that without the systematic
uncertainty the ML method gives α ∼ 0.6, which corresponds to the ratio
between the measured and expected number of events [1]. The number of
events in the absence of oscillations is 77.4+4.4

−2.5 with 1σ confidence interval
according to eq. (3). This integrated rate is in agreement within 1σ with the
number used for the absolute normalization: 86.8±5.6 expected events as
from [1]. The second hypothesis assumes oscillations according to eq. (6). In
this case we have found several local maxima and two global ones symmetric
with respect to sin2 θ12 = 0.5. The best-fit points are: (α, sin2 θ12, δm2) =
(0.997, 0.576

0.424,7.11), where δm2 is given in units of 10−5 eV2. To determine
the confidence regions for the parameters we have studied the profile of lnL
against one parameter while maximizing with respect to the others. The
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result of this study around the global maxima is shown in Fig. 2. It can be
noticed, in particular looking at the profiles of α, that the log-likelihood is not
parabolic. So, though small there is a deviation from the large-N behavior of
the data under investigation. The 68.3% confidence intervals, from eq. (3),
are reported in Tab. 1.

Table 1: Confidence intervals at 68.3%. Best-fit values are (0.997,0.576
0.424,

7.11×10−5 eV2).

Model α sin2 θ12 δm2

(10−5 eV2)
No-oscil. [0.836,0.949] - -
oscil. [0.936,1.057] [0.253,0.747] [6.72,7.67]

In order to study the goodness-of-fit for the two hypotheses under con-
sideration we have calculated the distribution of χ2

Per by generating Poisson
values for Nobs

i based on the mean value for Nth
i according to the fit performed

with the ML method. For the no-oscillation hypothesis we show in Fig. 3 the
KamLAND data against the ML fit. On the up-right corner we also show
the distribution of χ2

Per together with that of a χ2 p.d.f. with 12 d.o.f. The
darkened area show the fraction of the distribution above the measured value
for χ2

Per. In this case the P-value is 53% (∼48% using the χ2 distribution).
Following the same reasoning in Fig. 4 we show the ML fit assuming oscilla-
tions. Again in the up-right corner we report the χ2

Per statistics. The g.o.f is
93% (∼90% using the χ2 distribution). For completeness in Fig. 1 we show
the best-fit curve assuming oscillations together with the distribution of the
expected events in the standard scenario (with α = 0). Finally, in order to
compare our analysis with the others on the KamLAND results, in Fig. 5 we
show the 90%, 95% and 99% confidence regions for the oscillation parameters
(from eq. (2)) together with the the profile of lnL(log(δm2), sin2 θ12). This
latter has been determined by maximizing with respect to α.
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3 Conclusions

In conclusion we have analized the first results of KamLAND through the ML
method for a no-oscillation hypothesis and an oscillation one. The former
gives a P-value of about 93% and the latter of about 53%. By chance we get a
result in perfect agreement with what reported in [1] about how the positron
spectrum is consistent with a neutrino oscillations assumption although we
have a slightly different oscillation parameters. Furthermore, we also are in
perfect agreement with the conclusion in [1] about a no-oscillation assump-
tion for the spectrum analysis. However, in the paper this finding is clearly
due to the present statistics and the systematic uncertainty. On the contrary,
the method of analysis in [1] is not well explained. We should also remind
that the strongest evidence in favour of neutrino oscillations comes from the
ratio between the measured and expected number of events [1]. In this paper
we have used the information from the positron spectrum and in order to
properly make a comparison between the two hypotheses discussed (oscil-
lation and no-oscillation) we have worked out the ratio λ = Lno−osc

max /Losc
max

(likelihood ratio) which turns out to be 8.45× 10−4. This small value gives
an indication that the observed positron spectrum in KamLAND rules out
the no disappearance scenario with the present statistics. Computing -2lnλ,
which follows a χ2 distribution with 2 d.o.f. in this case, it turns out that
the assumption which restrict the number of parameters, i.e. the no disap-
pearence hypothesis, is rejected at the level of about 99.9%.

For the sake of completeness we have reduced the systematic uncertainty
at 2% to study the trend of the fit. As shown in Fig. 3 the fit gets worse for
the no-oscillation hypothesis and the new P-value is equal to about 30%.

We have also shown that a χ2 test, in this we could call quasi low-count
rate experimental scenario, gives within few %’s a result in agreement with
that reported using a Monte Carlo calculation for χ2

Per.
A limiting point of the analysis presented and common with others on

the same argument is the treatment of the systematic uncertainty which
are combined in two main sources in [11] and in one correction factor to
the overall normalization in [13, 12, 14, 15] and here. Moreover, no matter
effects are taken into account here. Yet, this correction gives only a small
contribution [12, 23].
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Figure 1: KamLAND results (dots). Solid line (hystogram): expected number of events
according to an average normalization of 86.8 events and no oscillations. Dashed line:
expected distribution with oscillations and using the ML fit. Solid line: best-fit ML with
oscillations.
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Figure 2: Profiles of lnLmax against the parameters. Up-right: no-oscillation hypothesis.
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Figure 3: Best fit with the no-oscillation hypothesis. Up-left: χ2
Pers statistics. The

dashed line corresponds to a total systematic uncertainty reduced at 2%. See text for
details.
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Figure 4: Best fit with the oscillation hypothesis. Up-left: χ2
Pers statistics. See text for

details.
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Figure 5: Maximum likelihood confidence regions at 90%, 95% and 99% (upper plot) for
two-flavor active neutrino oscillations at KamLAND. The best-fit points are indicated by
black dots (upper plot). Profile of ln L (lower plot) found by maximizing with respect to
α (see text for details).
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