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In this paper we obtain a bound ΛNC

<
∼ 150 TeV on the scale of space-time noncommutativity

considering photon-neutrino interactions. We compute “⋆-dipole moments” and “⋆-charge radii”
originating from space-time noncommutativity and compare them with the dipole moments calcu-
lated in the neutrino-mass extended standard model (SM). The computation depends on the nature
of the neutrinos, Dirac versus Majorana, their mass and the energy scale. We focus on Majorana neu-

trinos. The “⋆–charge radius” is found to be r∗ =
√

|〈r2
ν〉NC| =

∣∣3
∑

3

i=1
(θ0i)2

∣∣1/4 <
∼ 1.6× 10−19 cm

at ΛNC = 150 TeV.

PACS numbers: 11.10.Nx, 12.60.Cn, 13.15.tg

In this paper we compare the consequences of the
neutrino-photon interaction that can be induced by
space-time non-commutativity [1], with characteristic
electromagnetic properties of neutrinos: charge radii and
dipole moments. These miniscule dipole moments are
sensitive probes of fluctuations at scales as small as
10−35 cm, as seen through electromagnetic interactions
at long range.

The action of the model that we would like to study,
differs from commutative theory by the presence of ⋆-
products and Seiberg-Witten (SW) maps [2, 3, 4, 5].
In the presence of space-time noncommutativity, neutral
particles can couple to gauge bosons via a ⋆-commutator
[6]

DNC
µ ψ̂ = ∂µψ̂ − ieκÂµ ⋆ ψ̂ + ieκψ̂ ⋆ Âµ , (1)

where a hat denotes noncommutative fields that are ex-
panded in terms of regular fields via SW maps. The
⋆-products originate from antisymmetric tensor fields
that can conceivably be traced back to an extension of
gravity. In the language of quantized gravity, noncom-
mutative effects belong to target space, a quantum defor-
mation of the classical base space. On target space, the
⋆-products induce an algebraic structure of position op-
erators that define noncommutative space-time. In any
case, observable effects are not necessarily fixed to the
Planck scale.

The effective model of neutrino and photon interac-
tions in noncommutative space-time [1] provides a de-
scription of the interaction of particles that enter from
an asymptotically commutative region into a noncom-
mutative interaction region [3]. The expansion in the
form proposed in [2, 3, 4, 5] is understood as a per-
turbative description of non-commutativity of the target
space variables. Currently, this approach neither tries to
describe dynamics of noncommutative structures nor in-
cludes nonperturbative effects. The action, written in

terms of commutative fields, is gauge invariant under
U(1)em-gauge transformations. The requirements satis-
fied by our model are summarized in [7]. For related
work on noncommutative gauge theory and phenomenol-
ogy, see [6, 7, 8, 9, 10].

Expanding the ⋆-product in (1) to first order in the
antisymmetric (Poisson) tensor θµν , we find the following
covariant derivative on neutral spinor fields:

DNC
µ ψ̂ = ∂µψ̂ + eκθνρ ∂νÂµ ∂ρψ̂ . (2)

We treat θµν as a constant background field of strength
|θµν | = 1/Λ2

NC that models the non-commutative struc-
ture of space-time in the neighborhood of the interaction
region [9]. The scale of noncommutativity ΛNC enters by
choosing dimensionless matrix elements cµν = Λ2

NCθ
µν of

order one. As θ is not invariant under Lorentz transfor-
mations, the neutrino field can pick up angular momen-
tum in the interaction. In the following we will assume
θ to be constant in the mean over as large an interaction
region as acceptable. The bounds that we are going to
derive rely on this assumption which we do not debate
any further. How this regional restriction can be derived
is not of our concern here. However, if string theory leads
consistently to associated Seiberg-Witten maps, it is for
this theory to answer those questions precisely.

The gauge-invariant action for a neutral fermion that
couples to an Abelian gauge boson via (2) is

S =

∫
d4x ψ̄

[(
iγµ∂µ −m

)
(3)

− e

2
κFµν (iθµνρ∂ρ − θµνm)

]
ψ ,

θµνρ = θµνγρ + θνργµ + θρµγν ,

up to first order in θ [1, 10]. The noncommutative part
of (3) induces a force, proportional to the gradient of
the field strengths, which represents an interaction of the
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Stern-Gerlach type [11]. This interaction is non-zero even
for mν = 0 and in this case reduces to the coupling be-
tween the stress-energy tensor of the neutrino T µν and
the symmetric tensor composed from θ and F [1]. Above
interaction has also been derived in Ref. [12], following
the general discussion of the photon–electron noncom-
mutative interaction in [13]. For a discussion of energy
dependent Stern-Gerlach type of interactions, we refer
to [12].

Following the general arguments of [14, 15, 16, 17]
only the Dirac neutrino can have a magnetic moment.
However, the transition matrix elements relevant for
νi −→ νj may exist for both Dirac and Majorana neu-
trinos. In the neutrino-mass extended standard model
[17], the photon-neutrino effective vertex is determined
from the νi −→ νj + γ transition, which is generated
through 1-loop electroweak processes that arise from the
so-called “neutrino–penguin” diagrams via the exchange
of ℓ = e, µ, τ leptons and weak bosons, and is given by
[10, 14]

Jeff
µ (γνν̄)ǫµ(q) =

{
F1(q

2)ν̄j(p
′)(γµq

2 − qµ 6q)νi(p)L

− iF2(q
2)

[
mνj

ν̄j(p
′)σµνq

ννi(p)L

+ mνi
ν̄j(p

′)σµνq
ννi(p)R]} ǫµ(q). (4)

The above effective interaction is invariant under elec-
tromagnetic gauge transformations. The first term in (4)
vanishes identically for real photon due to the electro-
magnetic gauge condition.

From the general decomposition of the second term of
the transition matrix element T obtained from (4),

T = −iǫµ(q)ν̄(p′)
[
A(q2) −B(q2)γ5

]
σµνq

νν(p), (5)

we found the following expression for the electric and
magnetic dipole moments

del
ji ≡ B(0)=

−e
M∗2

(
mνi

−mνj

)∑

ℓ=e,µ,τ

U†
jkUkiF2(

m2
ℓk

m2
W

),(6)

µji ≡ A(0)=
−e
M∗2

(
mνi

+mνj

)∑

ℓ=e,µ,τ

U†
jkUkiF2(

m2
ℓk

m2
W

),(7)

where i, j, k = 1, 2, 3 denotes neutrino species, and

F2(
m2

ℓk

m2
W

) ≃ −3

2
+

3

4

m2
ℓk

m2
W

,
m2

ℓk

m2
W

≪ 1, (8)

was obtained after the loop integration. In Eqs. (6) and
(7) M∗ = 4π v = 3.1 TeV, where v = (

√
2GF )−1/2 =

246 GeV represents the vacuum expectation value of the
scalar Higgs field [18].

The neutrino mixing matrix U [19] is governing the
decomposition of a coherently produced left-handed neu-
trino ν̃L,ℓ associated with charged-lepton-flavor ℓ =
e, µ, τ into the mass eigenstates νL,i:

|ν̃L,ℓ; ~p 〉 =
∑

i

Uℓi|νL,i; ~p,mi 〉, (9)

For a Dirac neutrino i = j [15, 20]. Using mν = 0.05 eV
[21], and with the definition µii ≡ µνi

, from (7), in units
of [e cm] and Bohr magneton, we obtain

µνi
=

3e

M∗2
mνi


1 − 1

2

∑

ℓ=e,µ,τ

m2
ℓ

m2
W

|Uℓi|2



≃ 1.56 × 10−26[e/eV] = 0.29 × 10−30 [e cm]

= 1.60 × 10−20µB. (10)

From formula (10) it is clear that the chirality flip, which
is necessary to induce the magnetic moment, arises only
from the neutrino masses. The Dirac neutrino magnetic
moment (10) is still much smaller than the bounds ob-
tained from astrophysics [22, 23]. More details about
Dirac neutrinos can be found in [24, 25].

In the case of off-diagonal transition moments, the first
term in (8) vanishes in the summation over ℓ due to the
orthogonality condition of U (GIM cancellation)

del
ν̄jνi

=
3e

2M∗2

(
mνi

−mνj

) ∑

ℓ=e,µ,τ

m2
ℓk

m2
W

U†
jkUki, (11)

µν̄jνi
=

3e

2M∗2

(
mνi

+mνj

) ∑

ℓ=e,µ,τ

m2
ℓk

m2
W

U†
jkUki. (12)

In Majorana 4-component notation the Hermitian,
neutrino-flavor antisymmetric, electric and magnetic
dipole operators are

(
D5

D

)µν

ij

= e ψ⊤
i

[
C σµν

(
γ5

i1

)]
ψj . (13)

The characterizing feature of Majorana neutrinos, i.e.
fields that do not distinguish particle from antiparticle
(ψi = ψc

i ), forces one to use both charged lepton and an-
tilepton propagators in the loop calculation of neutrino-
penguin diagrams, producing a transition matrix element
T which is a complex antisymmetric quantity in lepton-
flavor space:

Tji = −iǫµν̄j [(Aji −Aij) − (Bji −Bij)γ5]σµνq
ννi

= −iǫµν̄j [2iImAji − 2ReBjiγ5]σµνq
ννi. (14)

From this equation it is explicitly clear that for i = j,
del

νi
= µνi

= 0. Also, considering transition moments,
only one of two terms in (14) is non-vanishing if the inter-
action respects CP invariance: The first term vanishes if
the relative CP of νi and νj is even, and the second term
vanishes if it is odd [16]. Finally, the dipole moments
describing the transition from Majorana neutrino mass
eigenstate-flavor νj to νk in the mass extended standard
model are:

del
νiνj

=
3e

2M∗2

(
mνi

−mνj

) ∑

ℓ=e,µ,τ

m2
ℓk

m2
W

ReU†
jkUki, (15)

µνiνj
=

3e

2M∗2

(
mνi

+mνj

) ∑

ℓ=e,µ,τ

m2
ℓk

m2
W

i ImU†
jkUki, (16)
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For the Majorana case the neutrino-flavor mixing matrix
U is approximatively unitary, i.e it is necessarily of the
following form [18]

3∑

i=1

U†
jkUki = δji − εji, (17)

where ε is a hermitian nonnegative matrix (i.e. with all
eigenvalues nonnegative) and

|ε| =
√

Tr ε2 = O (mνlight
/mνheavy

),

∼ 10−22 to 10−21. (18)

The case |ε| = 0 is excluded by the very existence of
oscillation effects.

The neutrino dipole moments (15,16) violate lepton
number by ±2 and for a general neutrino mass matrix,
they independently violate CP. Finally, note that there is
no exact GIM cancellation in lepton-flavor space, at least
in the Majorana case considered here, unlike the case for
off–diagonal transition matrix elements (11,12), and for
quark-flavors [10].

The flavor cancellation mechanism operates partly for
the Majorana light neutrino dipole moments. It is gener-
ated through the smallness of light neutrino masses con-
trolled by their heavy counterparts, combined with the
quadratic charged lepton mass asymmetry in (8,18).

Note that expressions (4) to (18) are exact in their bi-
linear dependence on the mixing matrix Ukj to all orders
of light and inverse heavy neutrino masses. However, the
mixing matrix U is subunitary, as it must be a submatrix
of the truly unitary 6× 6 neutrino flavor mixing matrix.

The electromagnetic dipole moments universally re-
duce to the three light mass eigenfields (eigenstates) of
neutrinos and antineutrinos, even though the mediat-
ing interactions proceed through light and heavy weak-
interaction eigenfields (eigenstates) involving minimally
six flavors. This extends the analogous situation per-
taining to neutrino and antineutrino oscillations, valid
at energies, in production and detection, far below the
masses of heavy–neutrino flavors [17]. The MNS param-
eterization is generated by diagonalizing the light–flavor
mass matrix in (6,7). The corresponding analytic struc-
ture is quite definite, yet often globally referred to as
the see–saw mechanism [26]. Specific mass patterns for
light-neutrino flavors arising from approximate discrete
symmetries are discussed in [27].

The transition dipole moments in general receive very
small contributions because of the smallness of the neu-
trino mass, |mν | ≃ 10−2 eV [21]. The largest contribu-
tion amog them is proportional to Re and Im part of
U†

3τUτ2, which corresponds to the 2 → 3 transition.
For the sum and difference of neutrino masses we

assume hierarchical structure and take |m3 + m2| ≃
|m3 − m2| ≃ |∆m2

32|1/2 = 0.05 eV [21]. For the MNS

matrix elements we set |ReU†
3τUτ2| ≃ |ImU†

3τUτ2| ≤ 0.5.

The electric and magnetic transition dipole moments of
neutrinos del

ν2ν3
and µν2ν3

are then denoted as
(
del
mag

)
23

and are given by

∣∣∣
(
del
mag

)
23

∣∣∣ =
3e

2M∗2

m2
τ

m2
W

√
|∆m2

32|
(|ReU†

3τUτ2|
|ImU†

3τUτ2|

)
,

<∼ 2.03 × 10−30[e/eV] = 0.38 × 10−34 [e cm],

= 2.07 × 10−24 µB. (19)

The electric transition dipole moments of light neutrinos
are smaller than the ones of the d-quark. This is the order
of magnitude of light neutrino transition dipole moments
underlying the see–saw mechanism. It is by orders of
magnitude smaller than in unprotected SUSY models.

Now we extract an upper limit on the ⋆-gradient in-
teraction. The strength of the interaction (3) becomes
|mν e κ θ F |. We compare it with the dipole transition
interactions |F del

mag| for Majorana case (15,16). Assum-
ing that contributions from the neutrino-mass extended
standard model are at least as large as those from non-
commutativity, for κ = 1 we derive the following bound
on noncommutativity arising from the Majorana nature
of neutrinos:

ΛNC
>∼

∣∣∣∣∣
e κmν(
del
mag

)
23

∣∣∣∣∣

1/2

≃ 150 TeV. (20)

This is the main result of our considerations [28]. In Ref.
[12] the neutrino energy dependence was taken into ac-
count. The bound on noncommutativity thus obtained
is not a strict lower limit, but rather indicate the scale
ΛNC at which the expected values of the neutrino elec-
tromagnetic dipole moments due to noncommutativity
in our model matches the standard model contributions.
We would like to point out that on the scale of noncom-
mutativity this bound involves only the basic properties
of neutrinos and photons.

We proceed with determination of the radius of the
photon–neutrino interaction, by evaluating the quantity
that we shall call the neutrino ⋆-charge radius r∗2 =
〈r2ν〉NC. Since noncommutativity can be a source of
“transvers plasmon” decay into neutrino–antineutrino
pairs [1], this is to be compared with the same process
induced by the neutrino charge radii defined by the axial
electromagnetic interaction form factor [15, 16, 29, 30,
31, 32, 33, 34] in the neutrino-mass extended standard
model:

〈r2ν 〉 = 6

[
∂F1(q

2)

∂q2

]

q2=0

;
[
F1(q

2)
]
q2→0

−→ q2

6
〈r2ν〉, (21)

which in the limit of massless neutrinos corresponds to

〈r2νℓ
〉 ∼= 2

M∗2

(
3 − 2log

m2
ℓ

m2
W

)
=

GF√
2 π2

(
3

4
+ log

mW

mℓ

)
. (22)

We estimate the charge radii in the standard model from
(22) by taking ℓ = e:

√
|〈r2νe

〉| ≃ 0.64× 10−16 [cm]. Here



4

we remark that astrophysical estimates give interesting
bounds [36, 37, 38, 39]. These calculations should im-
plement all neutrino flavor properties. The so derived
bounds may also help in establishing the Majorana na-
ture of light neutrinos.

To estimate the ⋆-charge radii we first evaluate the
partial width

∑

ℓ=e,µ,τ

ΓSM(γ → ν̄L
ℓ ν

L
ℓ ) =

α

144

q6

Eγ

∑

ℓ=e,µ,τ

∣∣〈r2νℓ
〉
∣∣2 , (23)

which gives the SM rate induced by the charge radii [31].
For plasmon at rest q2 = E2

γ = ω2
pl. Taking the average

value of the plasmon frequencies of red-giant and white-
dwarf stars ωpl = 15 keV [31, 32], we obtain

Γ−1
SM(γ → ν̄ν) =

(
1 keV

ωpl

)5

× 0.25 × 1013 years

≃ 3 × 106 years. (24)

This value has to be compared with astrophysical obser-
vations.

The next step is to compare (23) with the noncommu-
tative rate

∑
ΓNC(γ → ν̄L

ℓ ν
L
ℓ ).

From Eq. (3) we extract the following gauge-invariant
amplitude for the γ(q) → ν(k′)ν̄(k) vertex in momentum
space for the left–chiral neutrinos:

Mγνν̄ = ie κ ψ̄L(θµνρkνqρ)ψL ǫµ(q). (25)

The amplitude (24) for the off-shell photon decay to
massless Majorana neutrinos, leads to the following rate
in the c.m. system [1]:

∑

ℓ=e,µ,τ

ΓNC(γ → ν̄L
ℓ ν

L
ℓ ) =

α

16

κ2 q6

EγΛ4
NC

3∑

i=1

(c0i)2.(26)

The coefficients, (c0i), are not independent. In pulling
out the overall scale ΛNC, we can always impose the con-
straint

∑3
i=1(c

0i)2 ≡ ~E2
θ = 1 [8].

We obtain the ⋆–charge radii, which in fact could rep-
resent the range of noncommutativity, to be a simple
function of the scale of noncommutativity:

r∗ =
√
|〈r2ν 〉NC| =

√√
3 κ

ΛNC

. (27)

The bound from Majorana neutrino induced scale of non-
commutativity (20), for κ = 1 implies [35]

r∗
<∼ 1.6 × 10−19[cm]. (28)

This means that the ⋆–induced charge radii r∗ at the

ΛNC
>∼ 150 TeV scale, are dominated by the neutrino-

mass extended standard model physics and are practi-
cally unobservable.

Note that there are polarization phenomena induced
by the noncommutativity tensor θµν , which would in-
volve correlations between spin and momenta. These,
however, have been integrated out in our estimate. The
motivation to do so lies in the fact that our model
for the photon–neutrino interaction represents only the
tree-level effective noncommutative gauge field theory in
which the question of renormalization is not addressed
[1, 12, 13, 40, 41].

In conclusion, we have compared the neutrino-mass ex-
tended standard model charge radii and electromagnetic
dipole moments of neutrinos with their analogs arising
from a theory of noncommutative space-time. If the
charge radii and electromagnetic dipole moments should
be found experimentally different from those predicted
by the neutrino-mass extended standard model, as indi-
cated from astrophysics [36, 37, 38, 39], then this could
be a signature of noncommutativity. We observe that
the sensitivity to noncommutativity in our model involv-
ing neutrinos [1] appears to be a function of the scale
of energy involved in the physical process, running from
the weak scale [1] up to a few hundreds of TeV’s [this
work]. In this way we can “understand” neutrinos as
particles which manifest them self as Majorana objects
at the short distances (high energies).

Independently of the noncommutative part of the
story, we believe that the difference between (10) and
(19), produced by standard model physics, points toward
the right direction for the determination of the real na-
ture of neutrinos. We hope that this comparison sheds
light on the magnitude of associated phenomena thus in-
duced. Our results relate to a set of physics problems
that involve mass and electromagnetic properties of neu-
trinos.

We would like to thank G. Raffelt for suggesting the
study of the neutrino charge radii and J. Wess for many
helpful discussions leading to the construction of our
model.
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