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Abstract
We consider non-supersymmetric large N orientifold field theories.

Specifically, we discuss a gauge theory with a Dirac fermion in the
anti-symmetric tensor representation. We argue that, at large N and
in a large part of its bosonic sector, this theory is non-perturbatively
equivalent to N = 1 SYM, so that exact results established in the
latter (parent) theory also hold in the daughter orientifold theory. In
particular, the non-supersymmetric theory has an exactly calculable
bifermion condensate, exactly degenerate parity doublets, and a van-
ishing cosmological constant (all this to leading order in 1/N).
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1 Introduction

Gauge field theories at strong coupling are of great importance in parti-
cle physics. Exact results in gauge theories at strong coupling have a special
weight. In the last few years supersymmetry (SUSY) proved to be a guiding
principle (see e.g. [1]) providing deep insights in gauge dynamics. Recently
it was suggested that a large number of symmetry relations valid in super-
symmetric theories remain valid in the large N limit in non-supersymmetric
daughter theories obtained from the parent one through orbifoldization [2].
The most popular (non-SUSY) orbifolds are Z2 , or Zk in general [3, 4, 5]. In
particular, in the last paper it was argued that the superpotential of SUSY
gluodynamics [6],

W (S) = N(S log S/Λ3 − S) , S = λλ + ... , (1)

can be in a sense extended to its Z2 orbifold. This is equivalent to the
statement that the daughter theory has N vacua labeled by a bifermion
condensate

〈λλ〉k = NΛ3 exp

(
i
2πk

N

)
. (2)

While the planar equivalence is certainly true in perturbation theory [7, 8]
its nonperturbative status is being debated; a number of arguments pro and
con can be found in the literature [3, 4, 5].

The purpose of this work is to present a non-supersymmetric daugh-
ter (different from the Zk orbifolds) for which the large N equivalence be-
tween the parent SUSY theory and the daughter non-supersymmetric one at
nonperturbative level rests on a more solid ground than in the case of the
Zk orbifolds. This “orientifold field theory” was suggested in Refs. [9, 10]
in a somewhat different context. One of its advantages over more popular
Zk orbifolds is the absence in it of the twisted sector.

The field content of the orientifold gauge field theory differs from the
one of its parent theory, U(N) SUSY gluodynamics, in that the gluinos are
replaced by massless Dirac fermions in the rank-two antisymmetric tensor

representation of U(N) (denoted by + ). The total number of (say) left
handed fermions is thus N(N − 1) in the daughter theory and N2 in the
parent theory and agrees to leading order in 1/N . Similarly, one can discuss
a theory with a Dirac fermion in the symmetric representation ( + ).
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As we will see, this theory lives on a brane configuration of type 0A string
theory [9] which consists of NS5 branes, D4 branes and an orientifold plane
— hence the name “orientifold field theory.” The daughter theory in our
case is a much closer cousin of N = 1 SYM than the Z2 orbifold. Indeed,
the gauge groups in the parent and daughter theories are the same, and no
rescaling of the gauge couplings is needed.

Assuming that both theories are in the confining regime 1, we will show
that in the large N limit many results and symmetry relations that were
obtained for N = 1 SYM hold also for the above orientifold field theory.
One specific quantity is the bifermion condensate (2). It labels distinct vacua.
The number of vacua turns out to be the same in the parent and daughter
theories, N . Another result is the vanishing of the vacuum energy density in
the daughter theory.

We would like to emphasize that the spectrum of the orientifold field
theory does not coincide with that of N = 1 SYM in the large N limit. In
particular, there is no SUSY. While the composite color-singlet hadrons of
N = 1 are fermi-bose degenerate, the composite color-singlet hadrons of the
orientifold field theory are purely bosonic.

The organization of this paper is as follows: in Sect. 2 we present our
main result — the perturbative and nonperturbative equivalence. In Sect. 3
we briefly present the string theory realization of the theory in its conjectured
relation to M-theory. In Sect. 4 we compare our analysis and results with
those referring to Zk orbifold field theories and summarize conclusions.

2 Orientifold field theory and N = 1 SYM

In this section we will argue that in the N →∞ limit there is a sector in
the orientifold theory exactly identical to N = 1 SYM and, therefore, exact
results on the IR behavior of this theory can be obtained.

The parent theory is N = 1 SUSY gluodynamics with the gauge group
U(N). In the large N limit the U(1) factor is irrelevant. The daughter theory
has the same gauge group, and the same gauge coupling 2. The gluino field

1In the Higgs regime the 1/N expansion becomes more subtle, see a discussion below.
2To be more precise, the gauge groups are almost the same. The U(1) factor completely

decouples in the parent theory, while it does not decouple in the daughter one. Moreover,
in the former theory the Zk center of the gauge group acts trivially while in the latter one
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λi
j is replaced by two Weyl spinors λ[ij] and ξ[ij]. We can combine the Weyl

spinors into one Dirac spinor, either Ψ[ij] or Ψ[ij]. Note that the number of
fermionic degrees of freedom is N2 −N , as in the parent theory in the large
N limit.

The hadronic (color-singlet) sectors of the theories are different. In the
parent theory composite fermions with mass scaling as N0 exist, and more-
over, they are degenerate with their bosonic SUSY counterparts. In the
daughter theory any interpolating color-singlet current with the fermion
quantum numbers contains a number of constituents growing with N . Hence
at N = ∞ the spectrum contains only bosons.

Classically the parent theory has just an R symmetry corresponding to
chiral rotations of the gluino field. Instantons break this symmetry down to
Z2N . The daughter theory has, on top, a conserved anomaly free current

λ̄α̇λα − ξ̄α̇ξα . (3)

In terms of the Dirac spinor this is the vector current Ψ̄γµΨ. If the corre-
sponding charge is denoted by Q, in the color-singlet bosonic sector Q = 0,
with necessity. Then the only global symmetry which remains in both the-
ories is Z2N spontaneously broken down to Z2 by the respective bifermion
condensates. This explains the existence of N vacua in both cases. We will
compare the bosonic sectors of the parent and daughter theories. Note that
in the daughter theory the part of the bosonic sector probed by the operators
of the type (3), which have no analogs in the parent theory, is inaccessible.

Let us start from perturbative consideration. The general argument for
any orbifold/orientifold field theory is given in [7, 8]. Let us see how it works
in our orientifold field theory. The Feynman rules of the planar theory are
shown in Fig.1. The difference between the orientifold theory and N = 1 is
that the arrows on the fermionic lines point in the same direction, since the
fermion is in the antisymmetric representation, in contrast to the supersym-
metric theory where the gaugino is in the adjoint representation and the
arrows point in the opposite directions. This difference between the two the-
ories does not affect planar graphs provided each gaugino line is replaced by
the sum of λ[..] and λ[..].

it is only Z2 that acts trivially. These distinctions are unimportant in the large N limit.
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a b c

Figure 1: (a) The fermionic propagator and the vertex. (b) N = 1 SYM. (c)
The non-SUSY theory.

There is a one-to-one correspondence between the planar graphs of the
two theories. Diagrammatically this works as follows (see, for example, Fig.
2). Consider any planar diagram of the daughter theory: by definition of
planarity it can be drawn on a sphere. The fermionic propagators form
closed, non-intersecting loops that divide the sphere into regions. Each time
we cross a fermionic line the orientation of color-indices loops (each one
producing a factor N) changes from clock to anti-clock wise, and vice-versa,
as easily seen in Fig. 2c. Thus, the fermionic loops allow to attribute to
each one of the above regions a binary label (say ±1) according to whether
the color loops go clock- or anti-clock-wise in that region. Now imagine that
the orientation of color loops in all regions with the −1 label is reversed. We
will get a planar diagram of the SYM theory in which all color loops go,
by convention, clock-wise. The number associated with both diagrams will
be the same since the diagrams inside each region always contain an even
number of powers of g so that the relative minus signs of Fig. 1 do not
matter.

Let us illustrate how this works, say, for the inside part of the graph in
Fig. 2b. In the parent theory we have the color factor Tr (T aT bT c) fabc while
in the daughter one Tr (T̄ aT̄ bT̄ c) fabc where T̄ = −T̃ and the tilde marks the
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transposed matrix 3. Using the fact that

[T aT b] = ifabcT c and [T̄ aT̄ b] = ifabcT̄ c

we immediately come to the conclusion that the above two expressions coin-
cide.

a b c

Figure 2: (a) A typical planar contribution to the vacuum polarization. (b)
For N = 1 SYM. (c) For the non-SUSY theory.

Thus, all perturbative results that we know of in N = 1 SYM apply for
the orientifold model as well. For example, the β function of the orientifold
field theory is

β = − 1

2π

3Nα2

1− (Nα)/(2π)

{
1 + O

(
1

N

)}
, (4)

where α = g2

4π
. In the large N limit it coincides with the N = 1 SYM result

[11]. Note that the corrections are 1/N rather than 1/N2. For instance,
the exact first coefficient of the β function is −3N − 4/3 versus −3N in the
parent theory.

Now let us argue that the perturbative argument can be elevated to non-
perturbative level in the case at hand. A heuristic argument in favor of the
nonperturbative equivalence is that the coincidence of all planar graphs of
the two theories implies that the relevant Casimir operators of the two repre-
sentations are equivalent in the large N limit. The partition functions of the

3To make the following expressions concise we use a shorthand, T a = T a and T̄ a = T a .
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two theories depend on the Casimir operators and therefore must coincide as
well.

A more formal line of reasoning is as follows. It is essential that the
fermion fields enter bilinearly in the action, and that for any given gauge field
configuration in the parent theory there is exactly the same configuration in
the daughter one. (The latter feature is absent in the Zk orbifolds.) Our
idea is to integrate out fermion fields for any fixed gluon field configuration,
which yields respective determinants, and then compare them.

Consider the partition function of N = 1 SYM,

Z0 =

∫
DADλ exp (iS[A, λ, J ]) , (5)

where J is any source coupled to color-singlet gluon operators (we will discuss
color-singlet fermion bilinears later).

For any given gluon field, upon integrating out the gaugino field, we
obtain

Z0 =

∫
DA exp (iS[A, J ]) det

( 6∂+ 6AaT a
adj

)
, (6)

where T a
adj is a generator of the adjoint representation.

If one integrates out the fermion fields of the non-supersymmetric ori-
entifold theory, at fixed A, one arrives at a similar expression, but with
the generators of the anti-symmetric representation instead of the adjoint,
T a

adj → T a
as.

To compare the fermion determinants in the parent and daughter theories
(assuming that the gauge field configuration Aa

µ(x), a = 1, ..., N2, is the
same and fixed) we must cast both fermion operators in similar forms. To
this end we will extend both theories. In the parent one we introduce the
second adjoint Weyl fermion ξi

j and combine two Weyl fermions into one
Dirac adjoint fermion Ψi

j. The determinant in this extended theory is the
square of the original one; we assume that taking the square root at the end
is harmless.

In the daughter theory instead of Ψ[ij], we will work with the reducible rep-
resentation, combining both symmetric and antisymmetric, Ψij (no (anti)sym-
metrization over the color indices). Then the number of the fermion Dirac
fields is the same as in the extended parent. Again, as in the previous case,
the determinant in the extended daughter theory is the square of the original

6



one. For infrared regularization we will introduce small mass terms, assuming
that the vanishing mass limit is smooth.

Next, we will make use of the fact that

T a
adj ∼ T a

× = T a ⊗ 1 + 1⊗ T a , (7)

and
T a

d = T a ⊗ 1 + 1⊗ T a , (8)

or
T a

d = T a ⊗ 1 + 1⊗ T a . (9)

The subscript d stands for “daughter.” Let us now introduce, as an auxiliary
object,

F (A, B) = tr ln
(
6∂+ 6Aa(T a ⊗ 1)+ 6Ba(1⊗ T a)

)
, (10)

and notice that (at largeN) F is invariant under separate gauge transforma-
tions acting on Aa and Ba. Using the fact that the Wilson loop operators
WC(A) = trP exp

(
i
∫
C A

)
form a complete set of gauge invariant operators,

we can write
exp {F (A, B)} =

∑
C,C′

αC,C′WC(A)WC′(B). (11)

The partition function of N = 1 SYM can be written, at large N , as

Z0 =

∫
DADB δ(A−B) exp

{−1
2
(S[A] + S[B])

} ∑
C,C′

αC,C′WC(A)WC′(B).

(12)
Now let us turn to the daughter theory. The partition function of the orien-
tifold theory, at large N , can be written as (12), but with the orientations of
the Wilson loops W(B) reversed, since we replace the fundamental fermions
by anti-fundamental fermions. This gives

WC′ →WC̄′ = {WC′}∗ .

Moreover, WC′ is real, and this is why reversing the orientation should not
change the value of the partition function.

Let us present now a more detailed derivation which relies on the fact
that at large N the two kinds of gluons do not interact with each other. The
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partition function (12) can be written as

Z0 =

∫
DA exp {−S[A] + F (A, B = A)} . (13)

Let us expand exp(−S)

exp {−S[A]} =
∑

n

(−1)n

n!
{S[A]}n . (14)

At N →∞, the vertices or propagators coming from each factor of S cannot
connect A with B. Thus, we have

Sn ∼
n∑

k=0

CkS
k[A]Sn−k[B], (15)

where the ∼ sign means “can be replaced by” and Ck is a combinatorial
factor corresponding to the various choices of picking k out of n,

Ck =
n!

k!(n− k)!
.

Then

exp(−S) ∼
∑

n

(−1)n

n!

∑
k

n!

k!(n− k)!
{S[A]}k {S[B]}n−k

= exp(−S[A]− S[B]). (16)

Thus, we conclude that exp(−S) acts as exp(−S[A]−S[B]) and, at large N ,
we can think of the partition function as if we actually have two gauge fields.
Thus, at large N , Eq. (12) becomes

Z0 =
∑
C,C′

αC,C′ 〈WC〉 〈WC′〉 . (17)

In order to pass to the daughter theory one has to replace B = BaT a by

B = BaT a . But B is a dummy variable and, hence, this substitution will not
change the value of the partition function. Though we used a perturbative
intuition in order to arrive to the factorization of either the Wilson loops in
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(12) or the action in Eq. (16) we believe that this is an exact property of the
partition function. Note also that the factorization in the partition function
follows immediately from the existence of a master field [12]. Thus, given
the existence of a large N master field, the equivalence of the parent and
daughter theories is proven.

Another line of reasoning supporting non-perturbative planar equivalence
of the parent and orientifold theories is based on lattice formulations of both
theories. If one examines strong coupling diagrams for, say, a Wilson loop
on the lattice, one readily concludes that the large N diagrams of the two
theories can be put in a one-to-one correspondence and agree to leading order
in 1/N .

For all these reasons we believe that the full equivalence of these two
theories takes place in the large N limit, for quantities which do not involve
fermion external legs. The equivalence is nonperturbative. An immediate
result is that the vacuum energy of the orientifold theory is zero in the large
N limit (or at finite N it is 1/N relatively to a natural N2 behavior). To
be more precise, the expected dependence of the vacuum energy on the UV
cut-off and N is generically

ρ = Λ4
UV N2(c0 + c1/N + c2/N

2 + ...). (18)

In the present theory c0 = 0 while, generically, c1, c2, ... are non-zero. Namely,
the vacuum energy is zero only in the planar theory. If one keeps the com-
bination Λ4

UV N2 fixed then the limiting theory has a zero vacuum energy.
While this is an almost trivial statement in the UV, simply because of the
equivalence of the planar graphs, it is highly nontrivial from the IR point
of view. The daughter theory hadronic spectrum consists of bosons only,
since it is impossible to form light color-singlet fermions. Nonetheless one
should remark that contributions to the cosmological constant from color-
singlet loops only enter at the level of the genus-1 (torus) diagrams. These
are already O(1/N2) down with respect to the leading contribution to the
cosmological constant (which vanishes) and O(1/N) relative to the presumed
leading non-vanishing contribution in the daughter theory.

In order to go beyond the equivalence of vacuum diagrams and correlators
with external gluonic sources we have to understand how the above argument
can be extended if we add fermionic bilinear sources.

It looks quite obvious that sources coupled to λλ ± λ̄λ̄ in the parent
theory can be mapped into sources coupled to Ψ̄(1 ± γ5)Ψ in the daughter
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theory. This will be enough to prove the equality of condensates in the
two theories and the x-independence of certain correlators, hence the parity-
doublet structure of the spectrum in both theories (see below). In particular,
a mass terms can be added to both theories without spoiling their large N
equivalence. Although we have not made a systematic study of this problem
it looks that many other fermionic bilinears (FB) — involving the gluon field
as well — can be mapped in the two theories so that

WSYM(J i
glue, J

j
FB) = Wori(J

i
glue, J̃

j
FB)(1 + O(1/N)) (19)

with an explicit dictionary relating J j
FB and J̃ j

FB. An example of such a pair
is

(Gαβ)i
j (λα)k

i (λβ)j
k ↔ (Gαβ)i

j (λα)[ik] (ξβ)[kj] , (20)

where (Gαβ)i
j is the gluon field strength tensor.

As was mentioned, we can derive the bifermion condensate 〈λξ〉 6= 0 in
the daughter theory starting from 〈λλ〉 6= 0 in the parent one, hence

〈λξ〉k = NΛ3 exp

(
i
2πk

N

)
,

as in Eq. (2).
Another property which is inherited by the daughter theory is the con-

stancy of the chiral correlator

〈λξ(x1) λξ(x2) ... λξ(xn)〉 = const. (21)

Physically it is related to the mass degeneracy of scalar and pseudoscalar
mesons.

It should be stressed that in Zk orbifolds some background gauge field
configurations are present in the parent theory and absent in the daughter
one, so that comparison of the fermion determinants does not prove nonper-
turbative equivalence.

To summarize, we can relate many correlators which involve even number
of fermions and/or gluon operators (hence, the corresponding hadron spec-
tra). However, the parent and daughter theories differ from each other in the
sector of odd number of fermions. For example, there is a gauge invariant
three-fermions state in N = 1 SYM. Such a state does not exist in the orien-
tifold theory. Remember also that the sector of the daughter theory probed
by the operators of the type (3) is not accessible for predictions.
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O4

NS5

NS5’

Figure 3: The type 0A brane configuration. The solid lines denote D4 branes.
The dashed line denotes the orientifold 4-plane.

3 The relation with type 0A string theory

and M-theory

In this section we show that our orientifold field theory has a simple
realization in type 0A string theory. Type 0A/B are bosonic closed string
theories with a low-energy spectrum which consist of the universal NS-NS
sector, a tachyon and a doubled set of R-R forms with respect to type IIA/B
string theories. Type 0B string theory has three kinds of orientifolds [13, 14].
We will be mostly interested in the nontachyonic one [13, 14]. Consider the
action Ω(−1)fR , namely the world-sheet parity combined with the world-
sheet fermion number. The NS-NS vacuum is odd with respect to this action
and, therefore, it is removed from the spectrum. Thus, the bulk theory is
tachyon free. In addition this orientifold removes half of the R-R fields so
that the theory now has only one set of R-R fields, as in the type IIB theory.
In order to remove R-R tadpoles one has to introduce 32 D9 branes. The
field theory on the D9 branes is a 10 dimensional U(32) gauge theory with
an antisymmetric fermion.

One can perform a sequence of T dualities to obtain a system of D4 branes
and O4 plane. Moreover, a brane configuration which consists of NS5 branes
and an O4 plane as in Fig. 3, leads [10] to our “orientifold field theory”.

We would like to use the relation of type 0A string theory to M-theory to
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study the strong coupling regime of the orientifold theory at large N . This
argument is certainly not a proof and we present it just to indicate that our
results in Sect. 2 are in agreement with the string theory picture.

Similarly to type IIA string theory, type 0A can be obtained from M-
theory by a compactification of the eleventh dimension on a Scherk-Schwarz
circle [15]. By using this conjecture we can lift the brane configuration (Fig.
3) to M-theory, similarly to the lift of the analogous type IIA brane config-
uration [16, 17, 18]. Note that the presence of the orientifold plane can be
neglected in the large N limit, since its R-R charge is negligible with respect
to the R-R charge of the branes (N). Similarly to the type IIA situation we
will obtain a smooth M5 brane and the resulting curve (the shape of the M5)
will be the same as the curve of N = 1 SYM [18]

SN = 1. (22)

The meaning of this curve is that there are N vacua with the bifermion
condensate (2) as the order parameter, in agreement with our field theory
results.

4 Discussion and conclusions

One of the goals of this section is to compare in more detail the results
that are obtained in this work for orientifold field theories with the previous
results for orbifold field theories.

In order to be concrete let us discuss, as an example, the Z2 orbifold
theory (see Table). This theory as well has a realization in type 0A theory
[9]. It lives on a brane configuration of type 0A which consists of ‘electric’
and ‘magnetic’ D-branes, hence the labels ‘e’ and ‘m’ in the Table.

Let us divide the operators in the Z2 orbifold theory to operators that
are invariant (even) under the exchange of the labels ‘e’ and ‘m’ and op-
erators which are odd under this exchange. The first are called “untwisted
operators,” the second “twisted operators.” For example, the operator O+ =
trF 2

ee + tr F 2
mm is an untwisted operator whereas O− = trF 2

ee − trF 2
mm is a

twisted operator.
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Ue(N)× Um(N)
Aee adj. 1
Amm 1 adj.
λem

λme

Table 1: The Z2 orbifold theory.

The perturbative relation between the orbifold theory and its supersym-
metric parent concerns only the untwisted sector [7, 8]. The parent theory
does not carry information about the twisted sector of the daughter theory.
It is always assumed that the vacuum of the daughter theory is Z2 invariant.
However, the Z2 symmetry might be broken dynamically 4, due to a an ex-
pectation value of O−.

A possible sign of the Z2 instability comes from perturbation theory.
Indeed, let us assume for a moment that at some UV scale where pertur-
bation theory is applicable the gauge couplings of the two U(N) factors in
the orbifold theory are slightly different. We will denote 2π/αe = ze and
2π/αm = zm where the subscripts e, m refer to the first and second U(N)
factors, respectively. It is not difficult to find the renormalization group flow
of δz towards the IR domain. As long as δα � αe,m we have

d(δz)

d ln µ
= −3N2

z2
(δz) + higher orders . (23)

Neglecting weak logarithmic µ dependence of α we get

δz(µ) = δz(µ0)

(
µ

µ0

)−3N2α2/(4π2)

. (24)

If δz is small in UV, it grows towards the IR domain, an indication on
a destabilization tendency. A similar analysis for the conformal daughter
theory of extended SUSY, N = 4 , was carried out in Ref. [19].

The advantage of the orientifold theory over the orbifold theory is the
absence of the twisted sector. Moreover, the gauge groups are the same in

4A.A. thanks Y. Shadmi for suggesting this scenario.
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the parent and daughter theories, and so are the patterns of the spontaneous
breaking of the global symmetry and the numbers of vacua. This is also seen
from the string theory standpoint. The orbifold field theory originates from
the type 0A string theory which is obtained by a Z2 orbifold of type IIA.
The result is a bosonic string theory with a tachyon in the twisted sector. In
contrast, the orientifold field theory originates from a configuration with an
orientifold which removes the twisted sector (the result is very similar to the
bosonic part of the type I string).

If the equivalence between N = 1 SUSY gluodynamics and orientifold
theory does hold nonperturbatively, this must have a strong consequence
for the symmetry of the IR theory. Indeed, the degeneracy of the meson
masses inherited from the parent theory would imply that in the daughter
theory there is a tensorial operator (other than the energy-momentum tensor)
which is conserved in the large N limit. This is in no contradiction with
the Coleman-Mandula theorem [21] since in the large N limit all scattering
amplitudes vanish, and the S matrix tends to unity. Note that we discuss
here only the large N theory, namely the theory of planar graphs. In this
limit the theory is expected to be a free theory of color singlet glueballs.
Glueball couplings are all suppressed by powers of 1/N .

Since the perturbative planar equivalence does not depend on the geom-
etry of space-time, one can compactify one or more dimensions, with a small
compactification size, to make the theory weakly coupled. One can then
compare the parent and the orbifold theories. This was done, in particular,
in Ref. [3] where it was shown that the toron contributions in the parent and
Z2 orbifold theories do not match (T 4 compactification is implied).

Compactifying one or more extra dimensions one should be very cautious,
however. In doing so we get a theory with scalar moduli (flat directions at
the classical level). It may happen (and in fact happens) that one or several
components of the moduli fields develop vacuum expectation values which
scale as N1/2. This breaks (a part of) the gauge symmetry leading to the
Higgs regime. Simultaneously, the 1/N expansion is broken too. Indeed, in
this expansion we assume that the smallness of g2 is compensated not by
a large value of the gluon field (the gluon propagator is O(N0)) but by a
large number of components of the gluon fields circulating in loops. Upon
compactification we get scalar fields, just a few components of which may
condense, compensating the smallness of g2.

An example was given by Tong [4], who considered R3 × S compactifica-
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tion at one loop. On R3 × S the third spatial component of the gluon field
becomes a scalar field with a flat (vanishing) potential at the classical level,
(A3)

i
j → φi

j. (Alternatively, one may speak of the Polyakov line in the x3

direction.) In the parent theory the flatness is (perturbatively) maintained
to all orders by supersymmetry. Nonperturbatively, the flatness is lifted by
R3×S instantons (monopoles) which generate a superpotential. It turns out
that in supersymmetric vacua the non-Abelian gauge symmetry is completely
broken by 〈φi

j〉 = viδ
i
j , down to U(1)2N , so that the theory is in the Coulomb

phase [20]. The expectation values vi scale as 1/g ∼ √N . This explains why
the generated masses ∼ gvi ∼ N0.

Tong showed that in the daughter theory a potential emerges at one loop,
making the point of the broken gauge symmetry unstable. Shifting from this
point, for a trial, one finds oneself in the Z2 -noninvariant (or twisted) sector,
for which no planar equivalence exists, and which proves to be energetically
favored in this case. In the true vacuum the energy density is negative rather
than zero and the full gauge symmetry is restored. The daughter theory is
in the confining phase. Obviously, then there is no equivalence.

The above remark implies that in considering equivalence between N = 2
(or N = 4) theories where scalar moduli are abundant, with the correspond-
ing orbifold/orientifold theories, one should be sure to be in the confining
rather than Higgs regime.

Another indication that the presence of the twisted sector in Zk orbifolds
may have a negative impact on the untwisted sector came from consideration
of the low-energy theorems. In particular, topological susceptibilities in the
parent and Z2 daughter theories were analyzed in [3].

The topological susceptibility reflects dependence of the vacuum energy
on the vacuum angle θ. For massless fermions such dependence is absent and
the topological susceptibility vanishes. Only if m 6= 0, the topological sus-
ceptibility does not vanish and can be readily derived to leading order in m.
Thus it is necessary to deform the parent/daughter theories by fermion mass
terms. This deformation does not affect perturbative planar equivalence.

It was shown [3] that under certain reasonable assumptions the topolog-
ical susceptibilities do not match, the discrepancy being a factor of 2. This
factor can be traced back to the fact that the number of vacua in U(2N)
SUSY parent is 2N while its Ue(N)×Um(N) daughter (Z2 orbifold) has only
N vacua.
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Needless to say, in our case of the orientifold daughter the topological
susceptibilities are identical, as so are the gauge groups, gauge couplings and
the number of vacua.

In conclusion, let us formulate a question which naturally comes to one’s
mind at the end of this paper:

“What is the symmetry of the daughter theory, weaker than SUSY, which
nevertheless implies infinite number of degeneracies in the spectrum?”
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