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1. Introduction

The relation between gauge fields and strings has been significantly enlightened by the

AdS/CFT correspondence [1]. The general picture emerging is that the large tension

limit of string theory corresponds, holographically, to strongly coupled gauge theories.

Nevertheless, one would ideally like to go further and understand the stringy picture of

weakly coupled gauge theories. The small tension limit of string theory is an obvious

candidate for this picture and a semiclassical description of it would be desirable. Higher

spin gauge theories [2] might provide such a semiclassical description [3]. Moreover, the

formulation of higher spin theories in AdS spaces [4] opens the possibility for an holographic

interpretation of weakly coupled gauge theories. Recent work on higher spin theories

includes [5].

Recently, it was suggested that an interesting laboratory for studying the relation be-

tween weakly coupled quantum field theories and higher spin theories is provided by the

well-known three dimensional critical O(N) vector model. The explicit proposal put for-

ward in [6] is that both the free UV and the interacting IR fixed point of the O(N) vector

model are holographically described by the same AdS4 higher spin theory. A manifestation

of such a degeneracy in the holographic description is the fact that the UV and IR generat-

ing functionals of the critical O(N) model are related by a Legendre transform for large N .

This is one step further from the standard cases of AdS/CFT correspondence where the

relation between the weakly and strongly coupled boundary CFTs, even for large N , is in

general unknown. The apparent puzzle of having to describe both a free CFT (which does
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not have anomalous dimensions), as well as an interacting one, (which here has anoma-

lous dimension of O(1/N)), by the same AdS theory was recently argued to be resolved

by a Higgs mechanism for gauge fields with spin >2 in AdS4 [7]. This mechanism is at

work only when the bulk scalar is quantized with boundary conditions such that is corre-

sponds to an operator of dimension 2+O(1/N) in the boundary. On the other hand, it is

known [8, 9] that for subleading N the massless degrees of freedom coupled at the UV and

IR fixed points of the critical O(N) vector model are different, hence the relation between

the corresponding UV and IR generating functionals is less clear.

The lagrangian for the AdS4 higher spin theory is implicitly known through compli-

cated field equations [2]. This may be reminiscent of the standard situation with the IIB

SUGRA that is dual to N = 4 SYM, however there is an important difference: in the case

at hand one knows explicitly both the weakly as well as the strongly coupled regimes of

the boundary field theory. Therefore, one can work from bottom-to-top and evaluate the

bulk theory using the knowledge of the boundary CFT. In this work we propose that the

evaluation of the bulk AdS4 theory dual to the critical O(N) vector model can be done by

a self-consistency procedure based on the Legendre transform that relates the generating

functionals of the free UV and the interacting IR fixed points of the O(N) vector model.

To illustrate our idea, we consider here the minimal ansatz for the AdS4 lagrangian and

work out the tree level bulk couplings up to the quartic one. This is done by successively

matching the correlation functions produced by the bulk AdS4 lagrangian to the corre-

sponding ones of the boundary CFT which can be explicitly calculated. Although we do

not consider the coupling of the bulk scalar to higher spin fields in AdS4, our result for the

bulk cubic self interaction coupling can be carried over to the higher spin lagrangian. Our

calculation of the bulk quartic self interaction coupling may be useful both as its stands

i.e. for a possible pure gravity dual of the O(N) vector model or as an intermediate result

in future calculations of the higher spin dual of the model.

In section 2 we review the degeneracy in the holographic correspondence for scalar

fields in AdSD+1 with mass m in the range −D2/4 < m2 < 1−D2/4, and its manifestation

in terms of the Legendre transform that relates the UV and the IR generating functionals of

the boundary theory. In section 3 we apply our proposal to evaluate the bulk action up to

the the quartic scalar self interaction term. In section 4 we briefly discuss the implications

of our results for higher spin theories and comment on the nature of the bulk-boundary

relation for subleading N . The appendix A and B is reserved for a compact presentation

of the many technical details.

2. The degeneracy in the holographic description and the Legendre trans-

form

It was noticed already in the early days of AdS/CFT that there is a potential ambiguity in

the holographic description of a boundary theory [10]. Let φ(r, x) be a bulk scalar1 with

1We use throughout the Euclidean version of the Poincaré patch of AdSD+1 with ds2 = (dr2 + dx2)/r2

where xi = (x1, . . . , xD) and we set the AdS radius to 1 such that the cosmological constant Λ = −D(D −

1)/2.
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mass m. Its asymptotic behavior near the boundary of AdSD+1 is

φ(r, x)|r→0 ≈ r∆−φ0(x) + r∆+A(x) , ∆± =
D

2
± ν , ν =

1

2

√

D2 + 4m2 ≥ 0 . (2.1)

The functions φ0(x) and A(x) are the two necessary boundary data to determine the

solution of the second-order bulk equation of motion for φ(r, x). Quantizing then φ(r, x)

with boundary condition A(x) = 0 (φ0(x) = 0) would give the generating functional of

the boundary operator O(x) with dimension ∆+ (Õ(x) with dimension ∆−). The above

ambiguity does not show up in most of the studied cases of AdS/CFT where the operator

Õ(x) has dimension below the unitarity bound i.e. ∆− < D/2− 1.

Nevertheless, there exist important cases where both ∆± are above the unitarity bound.

Then, the quantization ambiguity is present even when the asymptotic behavior (2.1) of

φ(r, x) is determined by one arbitrary boundary data as when one requires that the bulk

solution vanishes in the far interior (r → ∞) of AdS. In such a case the two functions

appearing in (2.1) are related by

A(x) = C∆+

∫

dDy
1

(x− y)2∆+ φ0(y) , C∆+ =
Γ(∆+)

πD/2Γ(ν)
. (2.2)

Then, the application of AdS/CFT correspondence yields either a functional W [φ0] of

φ0(x) or a functional J [A] of A(x). The first generates correlation functions of O(x) and

the second of ˜O(x). However, due to (2.2) the two functionals are not independent but one

is the Legendre transform of the other as [10, 11]

W [φ0] + 2ν

∫

dDxφ0(x)A(x) = J [A] ,
δW [φ0]

δφ0(x)
= −2νA(x) . (2.3)

An interesting observation regarding the relation betweenW [φ0] and J [A] was made in [12]

and was further elaborated in [13, 14]. The interchange between the boundary conditions

φ0(x) = 0 and A(x) = 0 is induced by a “double-trace” deformation.2 One way to see

this is to first choose the boundary condition φ0(x) = 0, which would yield the theory for

the operator Õ(x) with dimension ∆−, and then perturb this theory by f
2 Õ2(x). Noting

then that D/2 > ∆− > D/2− 1, this perturbation is relevant and for f →∞ it leads to a

possible IR fixed point of the Õ(x) theory, and at the same time to the boundary condition

A(x) = 0. Therefore, J [A] may be viewed as the generating functional of the UV fixed

point CFT while W [φ0] as the one for the IR fixed point CFT, the two being connected by

an RG flow.

An application of the above phenomenon can be found in the recently discussed case of

the AdS dual of the critical three-dimensional O(N) vector model. It has been suggested in

[6] that this well-known three-dimensional CFT has a dual in AdS4 which might be a higher

spin theory. For example, one would expect that there exists an action for a massive scalar

on AdS4 that yields the generating functional for the spin-zero “current”3 of the free UV

2This fact was also implicit in the OPE analysis of multi-trace deformations in [15].
3This name is used for the operator proportional to φa(x)φa(x) where φa(x), a = 1, 2, . . . , N are the

elementary fields.
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O(N) CFT. On the other hand, the generating functional of the interacting IR fixed point of

the model gives the correlation functions for a composite operator of dimension 2+O(1/N).

Then, by the arguments above, these two generating functional should be related by a

Legendre transform as in (2.3). However, the IR generating functional is the one directly

obtained from the bulk AdS4 lagrangian by the standard AdS/CFT correspondence and

involves the parameters of the bulk lagrangian. Moreover, the knowledge of higher-pt

correlation functions in the IR CFT gives information about anomalous dimensions of

various fields in the theory which can be directly translated to information about corrections

to masses of the bulk fields. In the next section we describe explicitly the use of the Legendre

transform as a self-consistency condition to evaluate the parameters of the AdS4 lagrangian

dual to the spin zero “current” of the critical O(N) model up to quartic order.

3. Evaluation of the AdS dual of the critical O(N) vector model

3.1 The cubic bulk coupling

The proposal of [6] for the AdS dual of the spin zero “current” of the critical O(N) vector

model is to consider a conformally coupled scalar on AdS4. In this Subsection we perform

the calculations for general D and keep in mind that at the end we want to set D = 3.

The minimal gravity action that could reproduce the correlation functions of the spin-zero

“current” of the critical O(N) vector model is

SD+1 =
1

2κ2D+1

∫

dD+1x
√
g

[

−R+ 2Λ +
1

2
gµν∂µφ∂νφ−

D2 − 1

8
φ2 +

g3
3!
φ3 +

g4
4!
φ4 + · · ·

]

.

(3.1)

The overall normalization of the action can be fixed by requiring that the coefficient CT

of the energy momentum 2-pt function following from (3.1) coincides with the one of the

O(N) vector model. The latter is completely determined by the overall normalization of

the O(N) vector model action and does not depend on the normalization of the scalar

fields. Following the general treatment of the O(N) vector model in [8] we have

C
O(N)
T = N

D

(d− 1)S2D
, SD =

2πD/2

Γ (D/2)
. (3.2)

Then, from (3.2) and using the general result of [16] for CT we obtain to leading order in

O(1/N)
1

2κ2D+1
= N

πD

(D + 1)Γ(D)

1

S3D
,

1

2κ24
=
N

29
. (3.3)

Next we concentrate on correlation function of the operators dual to φ(r, x). We first

use the “regular” boundary data φ0(x), we set ∆ ≡ ∆+ and perform for simplicity the

rescaling φ0 → (2κ2D+1)
1/2φ0 to obtain the correlation functions of normalized 4 operators

W [φ0] =
∞
∑

n=2

1

n!

∫

dDx1 · · · dDxnφ0(x1) · · · φ0(xn)Πn(x1, . . . , xn) . (3.4)

4Operators whose 2-pt function is of order O(1).
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Up to 4-pt functions, the correlation functions that appear in (3.4) are given explicitly

in (A.4)–(A.6) of appendix A. The Legendre transform (2.3) of (3.4) may be written as

J [A] =

∞
∑

n=0

1

n!

∫

dDx1 · · · dDxnA(x1) · · ·A(xn)Pn(x1, . . . , xn) . (3.5)

Up to 4-pt functions, the P -functions in (3.5) are related to the Π-functions in (3.4) as

shown in (A.11)–(A.13) of appendix A.

Now the requirement that the P -correlation functions in (3.5) are correlation functions

of the free UV O(N) vector model comes into play. This provides the necessary dynamical

principle for the evaluation of the P -correlation functions. At this point we need to make

an assumption for the normalization of the 2-pt functions of the elementary N -component

scalars of the model. We can choose to represent them as unit normalized 2-pt functions

of free massless scalars in d dimensions, i.e.

〈φa(x1)φ
b(x2)〉 =

δab

(x212)
d
2
−1

, a = 1, 2, . . . , N . (3.6)

Notice that if Õ(x), whose correlation functions are given in (3.5), is required to be pro-

portional to φ2(x), the two parameters d and D are related as

D − 3 = 2(d− 3) . (3.7)

We are going to set D = d = 3 at the end, but one may view (3.7) as the relation between

two different regularization methods based on the analytic continuation in the number of

spacetime dimensions around 3. Using (A.4) and (A.11), the relation between Õ(x) and

φ2(x) can be found to be

Õ(x) ≡ k√
N
φa(x)φa(x) , k2 =

Γ
(

D−1
2

)

4π
D+1
2

. (3.8)

Next, using (3.8) and (3.6) we obtain

P3(x1, x3, x4) ≡
8k3√
N

1

(x212x
2
13x

2
23)

D−1
4

. (3.9)

Finally, from the relation

Π3(x1, x2, x3) = [P3(x1, x2, x3)]
amp. , (3.10)

and using the D’EPP formula (A.14) to amputate by [P2]
−1 the free 3pt function (3.9) we

obtain after some algebra

g23 =
1

N

1

2κ2D+1

24(D − 3)2π
D+3
2

[

Γ
(

D−1
2

)]3

[

Γ
(

D−1
4

)]6 [
Γ
(

D+3
4

)]2 . (3.11)

The result (3.11) is consistent with the results of [8] where is was found that the 3-pt

function of the scalar field with dimension 2 + O(1/N) vanishes at the interacting fixed

point of the three dimensional O(N) vector model. Moreover, (3.11) shows that for D = 3

the cubic coupling in the AdS action (3.1) vanishes. This result is independent of whether

or not the bulk lagrangian (3.1) contains higher spins, hence we conclude that the cubic

self interaction scalar coupling of the higher spin AdS4 theory vanishes.
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3.2 The quartic bulk coupling

To evaluate the quartic bulk coupling using the Legendre transform it is simpler to set

D = d = 3. From (3.6) and (3.8) we obtain

P4(x1, x2, x3, x4) ≡
16k4

N

[

1

(x212x
2
24x

2
43x

2
31)

+ crossed

]

. (3.12)

Then, the calculation we need to perform is

Π4(x1, x2, x3, x4) = [P4(x1, x2, x3, x4)]
amp. + (3.13)

+

{
∫

d3xd3y [P3(x1, x3, x)]
amp. Π2(x, y) [P3(y, x3, x4)]

amp.+crossed

}

,

where the amputation is done with [P2]
−1. Evaluating the integrals on the rhs of (3.13)

and matching the results with the explicit expression for Π4 given in (A.6), would give the

value of the quartic coupling g4.

Let us start from the rhs of (3.13). The integrals have been calculated in [17], for

general dimension D, in terms of the invariant ratios

u =
x212x

2
34

x213x
2
24

, v =
x212x

2
34

x214x
2
23

, (3.14)

(see of [17, appendix C]), although the form of the results does not appear to be easily

manageable. Nonetheless, our purpose here is to find g4 and for that we only need the

leading term in the short distance expansion of the rhs of (3.13) as u, v → 0. In practice,

we can simplify things further by considering the expansion of the integrals in terms of the

variables v and Y = 1− v/u and consider the leading term in v for Y = 0.5

From the results in [17, appendix C] one can see that the rhs of (3.13) has an expansion

of the form

[RHS of (3.13)] ∝ 1

(x212x
2
34)
2

(

v2[−A ln v +B] + · · ·
)

, (3.15)

where the dots stand for subleading terms. Now, the important point is that the coefficient

A of the ln v term exactly vanishes. Therefore, we should not find a leading logarithmic

term also in the lhs of (3.13). This condition determines g4.

Before turning to the evaluation of the AdS integrals in Π4, we comment on the

vanishing of its leading logarithmic term. In order to obtain the full 4-pt function of

the operator O(x) one should add to Π4 the disconnected part. Once this is done, the

OPE analysis of the 4-pt function can be performed. Notice now that the vanishing of

the 3-pt function Π3 implies that the field O(x) itself does not appear in the 4-pt function

〈O(x1) · · · O(x4)〉. The next scalar that contributes to the OPE of this 4-pt function is

5This is inspired from OPE studies of conformal 4-pt functions where the leading term in v with Y = 0

corresponds to the leading contribution of conformal scalars [18].
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a scalar field with dimension ∆̃ = 4 + η̃ where η̃ = O(1/N). Then, the 4-pt function is

expected to have the form

〈O(x1)O(x2)O(x3)O(x4)〉 ∼
1

(x212x
2
34)
∆
[1 + v∆̃/2 + · · ·] . (3.16)

The vanishing of ln v term in (3.15) implies the following relation between the anomalous

dimension η of O(x) and η̃
1

2
η̃ − η = 0 . (3.17)

Given the known values [17] η = −25/3Nπ2 and η̃ = −26/3Nπ2 we see that (3.17) is

satisfied.

Now turn to the calculation of the leading logarithm in the lhs of (3.13). The contri-

bution to this from the AdS-star graph can be easily found using the general result (B.3)

in appendix B

Πstar4

∣

∣

lead.log
=
g4
π6

29

N

1

(x212x
2
34)
2
v2
[

−1

6
ln v + · · ·

]

. (3.18)

The contribution form the graviton exchanges is more complicated to evaluate, since the

graphs do not reduce into finite sums of conformal integrals as in the four dimensional case.

The direct channel graviton exchange has been computed in [20] for general dimensions,

but here we also need the crossed channels. After some tedious algebra whose essentials

are presented in appendix B the final result is

Πgrav4 |lead.log =
1

2π6
29

N

1

(x212x
2
34)
2
v2[− ln v] . (3.19)

Requiring that
[

Πstar4 +Πgrav4

]

lead.log
= 0 we finally obtain

g4 = −3 . (3.20)

4. Discussion

The critical three dimensional O(N) vector model appears to be a very interesting labo-

ratory for the study of the AdS/CFT correspondence. In contrast to most other cases of

AdS/CFT, here it is the boundary CFT side that is well understood at strong coupling.

This means that the correlation functions derived from AdS/CFT coincide with the well-

known correlation functions of the interacting IR fixed point of the O(N) vector model.

Moreover, Legendre transforming the generating functional of the IR fixed point one gets,

to leading order in the 1/N expansion, the generating functional for the free UV fixed point

of the O(N) vector model. Notice that the assumption that the UV and IR generating

functionals are related via a Legendre transform is important dynamical information, in

particular for the IR fixed point. In the present paper we initiate the evaluation of the

AdS dual of the critical O(N) vector model making use of its connection with the IR fixed

point of the three dimensional CFT. Assuming a minimal form for the bulk action i.e. with-

out higher spin or derivative couplings, we evaluate the cubic and quartic self interaction

couplings of the bulk scalar that is dual to the spin-zero “current” of the O(N) model.
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The AdS dual of the O(N) vector model is believed to correspond to a higher spin

theory. Therefore it should be possible to check our results for the cubic couplings within

the context of the equations of motion of the minimal bosonic higher spin theory hs(4).

In particular, the vanishing of the cubic coupling was conjectured in [8] to indicate a

possible underlying discrete symmetry for the operator O(x). In the context of the higher

spin theory this symmetry may be a manifestation that the dual operator of O(x) might

actually be a fermion bilinear.6

Our result (3.20) for the quartic bulk self interaction coupling may not be directly

applicable to finding the higher spin lagrangian Nevertheless, it is an intermediate result

in this direction. For the full result one would have to take into account the couplings of

the bulk scalar with higher spin fields. Since these couplings are believed to be fixed [19],

by finding the leading logarithm of the higher spin exchange graphs in AdS4 one should

be able to unambiguously fix the quartic scalar self interaction coupling. We expect such

a calculation to be complicated but straightforward.

Another interesting class of questions that one can ask is the extension of the bulk-

boundary duality to higher orders in 1/N . At the field theory side, there exist a number of

results for the O(1/N) corrections to anomalous dimensions. These results should somehow

be reproduced by the bulk theory and this raises the intriguing possibility that we are

dealing here with a quantum gravity theory in AdS4 that yields sensible results. Another

important quantity that has been calculated is the 1/N correction to CT in (3.3) which

was found to decrease as one goes from the UV to the IR fixed points of the O(N) vector

model [8]. Hence it appears to be a natural extension of the C-function to odd dimensions

and is a measure of the degrees of freedom at the fixed point. Moreover, on the basis of the

results in [8], it was argued in [9] that the interacting IR fixed point of the O(N) vector

model describes the symmetry breaking pattern O(N) → O(N − 1). For this reason, if

the degrees of freedom coupled to the UV free fixed point are N , the massless degrees of

freedom coupled to the interacting fixed point are N − 1 [9]. This raises a puzzle regarding

the relation between the free UV and interacting IR fixed points of the O(N) vector model

for subleading N . Finally, it is also intriguing that the leading-N free energies at the free

UV and interacting IR fixed point of the O(N) vector model are different and related by

a rational factor 4/5 [21, 22]. This indicates that a holographic thermodynamical study of

the model may hide interesting surprises. We hope to return to some of these issues in the

near future.
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operator with dimension ∆ = D/2 + 1/2 that we use are respectively

G(x, y) = c∆ξ
−∆
2F1

(

∆

2
+

1

2
,
∆

2
;∆− 1; ξ−2

)

, (A.1)

ξ2 =
r2 + r′2 + (x− y)2

2rr′
, c∆ =

Γ(∆)

2∆π∆
, (A.2)

K̂(r′; y, x) = C∆

[

r′

r′2 + (y − x)2
]∆

, C∆ =
Γ(∆)

π
D+1
2

. (A.3)

With the above, the explicit expressions for the Π-functions in (3.4) are

Π2(x1, x2) = C∆
1

x2∆12
, (A.4)

Π3(x1, x2, x3) = − g3
2πD

√

29

N

[Γ (∆/2)]3 Γ (3∆/2−D/2)
[Γ (1/2)]3

1

(x212x
2
13x

2
23)
∆/2

, (A.5)

Π4(x1, x2, x3, x4) = −g4C4∆
29

N

∫ ∞

0

dr

rD+1

∫

dDxK̂(r;x, x1)K̂(r;x, x2)K̂(r;x, x3)K̂(r;x, x4)−

−
{

g23C
4
∆

29

N

∫ ∞

0

drdr′

(rr′)D+1

∫

dDxdDy
[

K̂(r;x, x1)K̂(r;x, x2)G(x, y) ×

× K̂(r′; y, x3)K̂(r′; y, x4)
]

+

+ (x2 ↔ x3) + (x2 ↔ x4)

}

+C4∆
29

N

[

1

4
Isgrav +

1

4
Itgrav +

1

4
Iugrav

]

.

(A.6)

The s-channel graviton exchange amplitude can be read from the results of [23] in the

general form given by [20]. Specializing to D = 3 and ∆ = 2 we have

Isgrav =
1

(x212x
2
13x

2
14)
2

∫

d3wdw0
w40

f(t′)×

×
{

6

[

w0
w20 + (w − x′13)2

]2 [ w0
w20 + (w − x′14)2

]2

−

− 16w0

(

[

w0
w20 + (w − x′13)2

]3[ w0
w20 + (w − x′14)2

]2

+

+

[

w0
w20 + (w − x′13)2

]2[ w0
w20 + (w − x′14)2

]3
)

+ 32w20

[

w0
w20 + (w − x′13)2

]3 [ w0
w20 + (w − x′14)2

]3
}

, (A.7)

where

f(t′) = −π
2

[

w20
(w − x′12)2

]1/2

+
2

3
t′22F1

(

1

2
,
3

2
;
5

2
; t′
)

, (A.8)

t′ =
w20

w20 + (w − x′12)2
, x′i =

xi

x2
. (A.9)
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In (A.7), let us for simplicity denote the integrals that involve the first term in (A.8) with

Is and the ones that involve the hypergeometric function by I s. Then, in an obvious

notation we write

Isgrav =
1

(x212x
2
13x

2
14)
2
[6(Is1 + Is

1)− 16(Is2 + Is
2) + 32(Is3 + Is

3)] . (A.10)

The t and u-channels are obtained from (A.7) by the interchanges x′2 ↔ x′3 and x′2 ↔
x′4 respectively. A graphical representation of the 4-pt function is shown in Fig.1. The

correlation functions in W [φ0] and J [A] are related as

Π1(x1, x2) = − [P2(x1, x2)]
−1 , (A.11)

Π3(x1, x2, x3) = [P3(x1, x2, x3)]
amp. , (A.12)

Π4(x1, x2, x3, x4) = [P4(x1, x2, x3, x4)]
amp. −

−
{

∫

d3xd3y [P3(x1, x2, x)]
amp. P2(x, y) [P3(x3, x4, x)]

amp. +

+ crossed

}

. (A.13)

The amputation is done with [P2(x1, x2)]
−1 and with the help of the D’EPP formula

∫

dDx
1

(x1 − x)2a1(x2 − x)2a2(x3 − x)2a3
=

U(a1, a2, a2)

(x212)
D/2−a3(x213)

D/2−a2(x223)
D/2−a1

,

U(a1, a2, a3) = πD/2Γ (D/2− a1) Γ (D/2− a2) Γ (D/2− a3)
Γ(a1)Γ(a2)Γ(a3)

,

(A.14)

which is valid for a1+ a2+ a3 = D. To obtain the inverse 2-pt function of a scalar field we

use the formula

[

1

x2A

]−1

=
1

πD

Γ (D −A) Γ(A)
Γ (A−D/2) Γ (D/2−A)

1

(x2)D−A
. (A.15)

B. Leading logarithmic singularities of AdS integrals

Recall the definition of the cross ratios involved in the calculation of conformal 4-pt func-

tions

u =
x212x

2
34

x213x
2
24

, v =
x212x

2
34

x214x
2
23

, Y = 1− v

u
. (B.1)

Then, the general conformal 4-pt function can be expanded in the variables v and Y which

makes it easier to read the contributions due to various conformal tensors. For example

the leading (in the limit x212 , x
2
34 → 0), contribution due to a tensor of dimension ∆ and

rank k is of the form [18]

v
∆−k
2 Y k . (B.2)
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Figure 1: Graphical representation of Π4(x1, x2, x3, x4). The solid lines correspond to the scalar

and the dotted lines to the graviton.

Using standard techniques for the calculation of AdS graphs we can easily evaluate the

first term on the rhs of (A.6) that corresponds to the AdS-star graph in figure 1. We give

for completeness the result

g4
π6

29

N

1

(x212x
2
34)
2
v2

{

∞
∑

n,m=0

vnY m

n!m!

Γ2(2 + n)Γ2(2 + 2n+m)

Γ(1 + n)Γ(4 + n+m)
×

×
[

− ln v + 2ψ(4 + 2n+m) + 2ψ(1 + n)−

− 2ψ(2 + n)− 2ψ(2 + n+m)

]

}

. (B.3)

To calculate the leading logarithm of the graviton exchange graph we start with the inte-

grals in (A.7) that come from the hypergeometric function in (A.8). For clarity we present

here the integral in the first line of (A.7). Using the following representation [24]

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

1

2πi

∫

C

dsΓ(−s)Γ(a+ s)Γ(b+ s)

Γ(c+ s)
(−z)s , (B.4)

with an appropriately chosen contour C parallel to the imaginary axis and a standard

– 11 –
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Feynman parametrization we obtain

Is1 =
π2

4

1

2πi

∫

C

dsΓ(−s)Γ(1 + s)Ĩs1 , (B.5)

Ĩs1 =

∫ ∞

0
dt1 . . . dt3 t

1+s
1 t2t3

(

∑

t
)−4−s

exp

[ −1
∑

t
[t1t2A1 + t1 + t+ 3A2 + t2t3A3]

]

,(B.6)

∑

t = t1 + t2 + t3 , A1 =
x223

x212x
2
13

A2 =
x224

x212x
2
14

A1 =
x234

x213x
2
14

. (B.7)

Next we set in (B.6)

t3 = α1α2α3 , t2 = α1α2(1−α3) , t3 = α1(1−α2) 0 ≤ α1 <∞ , 0 ≤ α2, α3 ≤ 1 ,

(B.8)

and do successively the α1 and α2 integrations with result

Ĩs1 = A−21 B (2, 2 + s)

∫ 1

0
dα3(1− α3) [1− α3Y ]−2 2F1

(

2, 2; 4 + s; 1− α3(1− α3)v
1− α3Y

)

.

(B.9)

To obtain the leading logarithm now is suffices to set Y = 0 in (B.9). Then, we may use

the following representation for the hypergeometric function [24]

1

2πi

∫

C′
dtΓ(−t)Γ(c− a− b− t)Γ(a+ t)Γ(b+ t)(1− z)t =

= Γ(c− a)Γ(c− b)Γ(a)Γ(b)
Γ(c)

2F1(a, b; c; z) , (B.10)

where C′ run parallel to the imaginary axis, and we do the α3 integration to end up with

a double Mellin-Barnes integral over t and s. The t integration is straightforward while

there are double poles in the s integration. These are handled with the help of the general

formula [18]

1

2πi

∫

C

dsΓ2(−s)g(s)vs =
∞
∑

n=0

vn

(n!)2

[

2ψ(1 + n)g(n)− g(n) ln v − d

dξ
[g(ξ)]ξ=n

]

. (B.11)

Keeping only the leading term in v we obtain

Is1 |lead.log =
(

x212x
2
13

x223

)2

[− ln v]
π2

24
. (B.12)

Following the same procedure we can find the leading logarithmic terms in the direct

channel as

Is2 |lead.log =

(

x212x
2
13

x223

)2

[− ln v]
5π2

96
, (B.13)

Is2 |lead.log =

(

x212x
2
13

x223

)2

[− ln v]
7π2

384
. (B.14)

It is also easy to see, either by direct calculation or from the results of [17] that the I s

integrals do not have any logarithmic terms. Then, from (B.12)–(B.14) and (A.10) we see

that the leading logarithmic contribution in the direct channel vanishes.
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In general, the calculation of the crossed t and u channels is considerably more compli-

cated, but the extraction of the leading logarithms can be done relatively easy on the lines

sketched above. For the I t and Iu integrals we find that their leading logarithms are ex-

actly the same as the ones of the corresponding I s integrals. Therefore, their contribution

to the leading logarithm of the graviton exchange graph vanishes. Hence, the only possible

logarithms can come from the crossed channel integrals I t and It. Our calculation, done

on the lines described above, yield for the terms that give a non vanishing contribution

It
1

∣

∣

lead.log
= Iu

1 |lead.log = −
(

x212x
2
13

x223

)2

[− ln v]
π2

2
, (B.15)

It
2

∣

∣

lead.log
= Iu

2 |lead.log = −
(

x212x
2
13

x223

)2

[− ln v]
π2

4
. (B.16)

Using these result we obtain (3.19) in the main text.
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